
GRASP and ILS Based Meta-Heuristic
Approximation Algorithms for Optimal Virtual

Network Synthesis (VNS) in Multi-AS Environment
Yong Xue, Alexander Brodsky and Daniel Menasce

George Mason University
Fairfax, Virginia, USA

{yxue2, brodsky, menasce}@gmu.edu

Abstract—Emerging Internet architecture utilizes a pluralistic
architectural paradigm in which multiple virtual overlay ser-
vice networks are built on top of the existing interconnected
Autonomous System (multi-AS) networks across the world to
satisfy diverse and ever-demanding service requirements from
end users as well as emerging network applications. However,
optimal provisioning and management of virtual networks in
the multi-AS environment is still a challenging and unsolved
problem. The problem has been extensively studied within the
research community as a so-called multi-domain virtual network
embedding (MD-VNE) optimization problem, but the current
research results so far have been unsatisfactory and lack practical
use. This paper proposes a bottom-up virtual network synthesis
(VNS) approach to the MD-VNE problem in multi-AS network
environment and formulates it into a combinatorial optimization
problem. We then propose two trajectory-based meta-heuristic
approximation algorithms based on Greedy Randomized Adap-
tive Search Procedure (GRASP) and Iterative Local Search
(ILS) methods together with a simple Greedy Heuristic (GH)-
based algorithm as approximate solutions to the multi-AS VNS
optimization problem. Experiments with these three approxima-
tion algorithms were conducted, and their performances were
analyzed quantitatively based on well-defined metrics. The anal-
ysis results show the feasibility of the developed approximation
solutions for practical solutions to the MD-VNE problem.

Index Terms—MD-VNE, multi-AS Virtual Network Synthesis
(VNS), meta-heuristic algorithm, greedy heuristic algorithm,
GRASP, ILS, optimization approximation.

I. INTRODUCTION

Emerging Internet architectures utilize a pluralistic archi-
tectural paradigm in which multiple virtual overlay service
networks are built on top of the existing multi-AS Internet
infrastructures to satisfy diverse and ever-demanding services
requirements from end users as well as emerging networking
technology applications [1]. There are several emerging soft-
ware defined (SD) networking technologies and applications
such as SD-WAN, Network as a Service (NaaS) and overlay
QoS service networks [17] [18] [16], in which a virtual
network request (VNR) specified by a set of topological and
QoS parameters is provisioned across multiple shared substrate
networks from multiple independent infrastructure network
providers (InP). The virtual network (VN) is instantiated
using virtualized node and link resources with certain QoS
guarantees from the underlay Infrastructure Network Providers
(InP) of terrestrial, 5G mobile, and high-speed SATCOM

networks. However, optimal provisioning and management
of virtual networks in the multi-AS environment is still a
challenging and unsolved problem due to lack of resource
exposure/sharing by each InP, and lack of coordination and
control across AS boundary as explained in [19] [4].

Multi-domain Virtual Network Embedding (MD-VNE)
refers to an optimization problem in the field of network vir-
tualization, which is concerned with efficiently and optimally
mapping or embedding virtual network request (VNR) onto
a shared set of physical Internet network infrastructures that
combined can satisfy all the specified topological and QoS
requirements of the VNR. The MD-VNE problem has been
studied within the network virtualization research community
and has received increasing attention in the past decades [7]
[9] [15]. However, all existing MD-VNE solutions are top-
down and are faced with challenges in two fronts: 1) how to
decompose a VNR into smaller VN requests to map them to
different underlay network domains and combine the mapped
solutions afterwards; 2) how to gain full topology and resource
knowledge of all network domains in a easy and salable way.

Our previous research has introduced a bottom-up virtual
network synthesis (VNS) approach for VNE in the multi-AS
environment (called mAS-VNS) such that the complexity of
the current MD-VNE problem can be reduced to a simplified
single domain VNE (SD-VNE) problem logically. Under this
paradigm, all network segment resources from multiple InPs
are collapsed and aggregated into a single resource pool [19].

There have been two schools of approaches to the MD-
VNE problem: 1) finding exact solution via formal optimiza-
tion formulation solvable by available optimization problem
solvers, and 2) obtaining optimal or near-optimal solution
through development of proper heuristic or meta-heuristic
approximation algorithms [2] [3] [6]. However, formal opti-
mization approach poses challenges in practical use for real-
time dynamic network optimization applications due to its
high computational costs and the possibility to become an
intractable NP-hard problem. For these reasons, many research
efforts have turned to heuristic or meta-heuristic-based approx-
imation algorithms recently [3]. To the best of our knowledge,
other than various ad-hoc heuristic based algorithms, almost
all meta-heuristic algorithms developed for MD-VNE are
population-based to include ACO, PSO and GA [11] [5] [12]

[13]. There is a lack of study in trajectory-based meta-heuristic
algorithm development for the MD-VNE problem, including
Greedy Randomized Adaptive Search Procedure (GRASP),
and Iterated Local Search (ILS), which seems to be a natural
fit for the mAS-VNS problem.

This paper focuses on developing approximation algorithms
for the mAS-VNS optimization problem. The key contribu-
tions of this paper include: 1) Development of an optimization
framework for developing heuristic and metaheuristic-based
approximation algorithms for the mAS-VNS problem, 2) Use
of the framework to develop three approximation algorithms
including a simple greedy heuristic (GH), a GRASP meta-
heuristic and an ILS meta-heuristic algorithms all for the
mAS-VNS optimization problem, and 3) Implementation, ex-
perimentation and comparative performance assessment of the
developed approximation algorithms, including a demonstra-
tion of the relative performance of the approximate algorithms
compared to the implemented optimal exact solution in [19].

The rest of the paper is organized as follows. Section II
provides a brief review of some researches in MD-VNE and
related heuristic and meta-heuristic based optimization approx-
imation algorithms. After that, the paper describes a frame-
work for Multi-AS VNS approximation solution development
in Section III. Then Section IV describes a simple greedy
heuristic algorithm and two meta-heuristic based approxima-
tion algorithms to the VNS optimization method. Finally,
in Section V, we describe the experiment and performance
evaluation results of three approximation algorithms. Section
VI provides a brief summary of the research results.

II. RELATED WORK

VN Embedding (VNE) problems have been extensively
studied in the network virtualization research community and
most solutions are based on either formal optimization or some
heuristic methods as summarized in several survey papers
[3] [2] [6]. An early research on the MD-VNE problem is
presented in [7] [15] and the MD-VNE research has been
receiving more attention in the past decades [8] [9]. Some
additional examples of the MD-VNE research include the
policy-based framework for multi-domain VNE [15], and
multi-domain connection stitching techniques [9]. Note that all
the results published so far suffer the challenges identified in
Section I. Also note that meta-heuristic algorithms seen so far
are all population-based including Ant Colony Optimization
(ACO) approach [5], Particle Swarm Optimization (PSO) ap-
proach [12], Genetic Algorithm (GA) approach [13] plus some
variations [11]. In additon, due to the limitation of resource
sharing in multi-domain environment, almost all the research
proposals use a top-down VNR decomposition approach and
are explored under different restrictive assumptions. The re-
sulting solutions have all fallen short to become a complete
and practical solution to the MD-VNE problem in real-world
[4] [19].

III. MULTI-AS VNS OPTIMIZATION PROBLEM

This section describes a methodology by which some effi-
cient heuristic/meta-heuristic algorithms can be developed as
approximate solutions to the mAS-VNS optimization problem.
The basic framework is: 1) use SP/VP/InP network mode, but
a bottom-up virtual network synthesis approach to avoid top-
down network embedding across multiple InP networks; 2)
further simplify complexity by collapsing all the InP networks
into a single logical InP substrate network (i.e., InP network
segment resource pool); and 3) view the mAS-VNS problem
as a combinatorial optimization search problem in the search
space defined by all possible mappings between the VNR links
and potential paths instantiated utilizing network segments
provided by the InP substrate networks. Fig. 1 below illustrates
the concept to reduce the VNP access network (gateways) and
all the InP links (segments) to a single logical InP substrate
network shown by the dotted line and exemplary VNR-InP
path instantiation as shown by the color-coded VNR link
mapping examples across one or more InP networks.

Fig. 1. Multi-AS VNS Solution Framework

To facilitate mAS-VNS solution development, we model
a network G using the Attributed Relational Multi-Graph
(ARMG) model defined by a 5-tuple

G = (N,L, FL, AN , AL)

where
N is a finite set of network nodes,
L is a finite set of links connecting pair of nodes in N .
FL : L → {{n1, n2}| n1, n2 ∈ N} is a mapping function that
maps the links in L to a pair of connecting nodes in N .
AN = {NCap, Loc} is a finite set of attribute functions for
node, specifically node capability and location.
AL = {LCap,D} is a finite set of attribute functions for link,
specifically link capacity and delay.

In addition, we use super-scripted notations GV and
GS to represent the VN of VNR and the substrate net-
work of collapsed InPs and VNP networks. Let pij =
(gi, s1, gh, s2, · · · gj) be a non-loop path between gateway
nodes gi and gj in NS and PS(i, j) be the set of all non-loop

paths between gateway nodes gi and gj in NS . We also denote
Plnk(p) = {s1, s2, · · · , sn−1} be all the links (segments)
traversed along path p. Our mAS-VNS optimization objective
is:

Minimize mN∈MN ,mL∈ML
Cost(GV)

=
∑

n∈NV

Cost(mN (n)) +
∑
l∈LV

Cost(mL(l))

where mN () and mL() are node and link
mapping/synthesizing functions respectively. Since node
mapping can be separated from link synthesis in finding a
solution, our discussion for the VNR mapping cost of GV

will focus on link synthesis only. Note that if a link l maps
to a path p, the following important path properties are true:

Cost(mL(l)) = CostS(p) =
∑

s∈Plnk(p)

CostS(s)

LCapS(p) = mins∈Plnk(p)LCapS(s)

DS(p) =
∑

s∈Plnk(p)

DS(s)

Note that a partial and full mapping solution for VNR GV

can be represented as

Sk = {l1 : p1, l2 : p2, · · · , lk : pk} for k ≤ |LV |

Therefore, mAS-VNS can be paraphrased as a combinatorial
optimization problem based on the fact that each VNS solution
is a sequence of link-to-path mapping pairs and that each VNR
link l ∈ LV that is mapped to gateway nodes gi and gj can be
instantiated by any one of the paths in PS(ij). The number
of all possible VNS mapping solutions grows exponentially
and form the solution search space within which the global
optimal solution is to be found, and hence a combinatorial
optimization problem.

Since a VNR mapping solution can be incrementally con-
structed through a sequence of link mapping, for which
we have the following equations that will be used in the
approximation algorithms to be described in next section.

Cost(Sk) = Cost(Sk−1) + Cost(pk)

D(Sk) = max{D(Sk−1), D(pk)}

IV. HEURISTIC AND META-HEURISTIC APPROXIMATION
ALGORITHMS FOR MULTI-AS VNS

Heuristic and meta-heuristic methods are among the most
popular and powerful methods for approximation algorithm
development to the optimization problem for which either an
exact solution does not exist or finding the optimal solution is
computationally too costly or intractable. A heuristic algorithm
is an approximation method that uses a problem-specific
heuristic to incrementally build a solution step by step using
some heuristic rules that is expected to produce an optimal or
near-optimal solution in the end. A meta-heuristic algorithm
is a more general algorithm to approximation of optimization
problems, which uses some high-level strategies to guide the

effective use of specific heuristic algorithms to improve the
performance of the approximation algorithm in order to yield a
near-optimal solution more effectively. Trajectory-based meta-
heuristic algorithms are a class of optimization algorithms
that use iterative improvement strategies to search for the
best possible solution. These algorithms explore the search
space by creating an initial solution as the start of a trajectory
and interactively modify a trajectory to improve its quality
following the defined meta-heuristic rules.

In this section, we propose three approximation algo-
rithms for the mAS-VNS optimization problem to include:
1) a Greedy Heuristic (GH) algorithm for incremental ap-
proximate solution construction; and 2) two trajectory-based
meta-heuristic algorithms using Greedy Randomized Adaptive
Search Procedure (GRASP) and Iterated Local Search (ILS)
paradigms. Note that the proposed algorithm GH-VNS is
a single pass algorithm while the proposed GRASP-VNS
and ILS-VNS algorithms are multi-start iterative search al-
gorithms for the mAS-VNS optimization problem. Note that
both greedy heuristic algorithm and GRASP/ILS based meta-
heuristic algorithms are naturally suitable for the of mAS-VNS
optimization search problem where a sequence of best posisble
link-path mappings need to be found within reasonable time.

Note that one of basic heuristics used in our approximation
algorithms is to instantiate each VN link l ∈ LV with next
lowest-cost feasible path in the substrate InP networks. To
speed up the mapping step, we pre-calculate all k-shortest
paths (denoted as PS

k (ij) for a small select k) between two
gateway nodes nodes gi and gj using a k-shortest path algo-
rithm using augmented Dijkstra shortest path (SP) algorithm
modified for our multi-graph model of the logical InP layer
substrate networks.

A. Greedy Heuristic mAS-VNS Approximation Algorithm

Our proposed GH-VNS approximate algorithm utilizes two
greedy heuristic rules in incremental approximate solution
construction: 1) map each VN link to the next lowest possible
cost path between two mapped gateway nodes first because
it tends to yield lower mapping cost for the link, thus better
total cost for the VNR instantiation in the end; 2) map each
link in VN in descending capacity order tends to reduce
blocking probability across all the VN links. The algorithm 1
below is the pseudo code of the GH-VNS algorithm.

Heuristic algorithmic rules and implementation strategies
for the GH-VNS algorithm are as follows.

1) LinkSort() sorts all links in the VNR in descending order
based on the link capacity such that larger capacity links
will be attempted first thus minimizing the chance of
blocking.

2) At each link instantiating step, we will map each VN
link to the next available lowest-cost path in PS

k (ij)
between the two mapped gateway nodes for the link,
which does not violate QoS constraints, thus yielding
lower incremental cost.

Algorithm 1 GH-VNS: Greedy Heuristic Algorithm for mAS-
VNS Optimization.
Description:Given a VNR network, GH-VNS finds an approx-
imation solution to the mAS-VNS optimization problem.
GH-VNS(vnr)

cList = LinkSort (vnr) based on link capacity attribute
solution = {}
while not (FullSolutiont(solution)) do
l = FindNextBestLink (cList)
p = next least-cost path in PS

k (ij)
while not (SatisfyConstraints(solution, l, p)) do

if PS
k (ij) ̸= {} then

p = next least-cost path in PS
k (ij)

else
return no-solution

end if
end while
solution = solution ∪ {l : p}

end while
return solution

3) SatisfyConstraints(solution, l, p) checks to see if the
current solution plus new link mapping l : p satisfy the
capacity, end-to-end delay, and total cost constrain of
the current partial solution.

B. GRASP-based Heuristic Approximation Algorithm

Greedy Randomized Adaptive Search Procedure (GRASP)
is a trajectory-based multi-start iterative meta-heuristic algo-
rithms for optimal combinatorial search problem [14]. The
basic idea of GRASP is to use a two-phase process in which
an incremental construction phase in which an initial feasible
solution is constructed followed by an improvement phase
that utilize a LocalSearch() procedure to find the local optima
as the current best solution. Such steps are repeated through
multiple iterations and the current best solution is updated
at the end of each iteration, which becomes the approximate
global optimal solution in the end. To maximize the chance of
escaping local optima and exploration of the solution space, a
procedure called GreedyRandomizedConstruction() is utilized
that introduces greediness, randomness and adaptability into
the start solution generation process in each iteration. The
GRASP-VNS algorithm utilizes both exploration (multi-start)
and exploitation (local search) techniques to search for global
optimal solution. The pseudo-code of the GRASP-VNS algo-
rithm is described in Algorithms 2 and 4 below.

Algorithmic rules and implementation strategies for the
GRASP-VNS approximation algorithm are noted below:

1) GreedyRandomizedConstruction() implements an incre-
mental construction process for generating new trajec-
tory. To maximize exploration and exploitation of the
mAS-VNS solution search, following techniques are
employed.

Algorithm 2 GRASP-VNS: Meta-Heuristics Algorithm for
mAS-VNS Optimization
Description:Given a VNR network, GRASP-VNS tries to find
an approximation solution to the mAS-VNS optimization.
GRASP-VNS(vnr, maxIterations)

bestSolution = InitializeSolution()
bestCost = EvaluateCost(bestSolution)
for i = 1 to maxIterations do

cList = BuildCandidateList(vnr, seed)
sol = GreedyRandomizedConstruction(cList)
localOptimum = LocalSearch(sol)
localOptimumCost = EvaluateCost(localOptimum)
if localOptimumCost < bestCost then

bestSolution = localOptimum
bestCost = localOptimumCost

end if
end for
return bestSolution

GreedyRandomizedConstruction (candidateList)
solution = {}
for i = 1 to |LV | do

l = LV [i]
pList = candidateList[i]
RCL = BuildRestrictCandidateList (pList)
p = RandomSelectComponent(RCL)
solution = solution ∪ {l : p}

end for
return solution

A) Greediness: For each mapped link l between gate-
way nodes gi and gj the set PS

k (i, j) of the k-
shortest mapping paths are considered first for lower
incremental cost at each step.

B) Adaptation: Instead of considering the first path
in PS

k (i, j) for mapping, GRASP-VNS builds a
restricted candidate list (RCL) from the candidate
list. In doing so, an increasing number of candidates
should be considered following each incremental
link mapping to increase the window of available
candidate paths so as to avoid potential blocking
due to lack of substrate link resources. In our
GRASP-VNS algorithm, α-shortest paths (α ≤ k)
are considered for mapping at each incremental VN
link mapping, where α is a function of the number
of links considered so far (i.e. number of iteration).
To make RCL adaptive, the length α parameters is
defined as α = ⌈(i+ 1)/2⌉ for i-th iteration.

C) Randomness: A mapping path from the α-shortest
path list is randomly selected to add into the current
partial solution vs. the next shortest path to avoid
potential blocking patterns.

2) Note that RandomSelectComponent(RCL) selected link
mapping should not violate the bandwidth and delay
constraints when added to the current partial solution.

C. ILS-based Heuristic Approximation Algorithm

Iterated Local Search (ILS) algorithm is also a trajectory-
based multi-start iterative meta-heuristic algorithm that
uses perturbation to escape local optima and maximize the
exploration of other local optima in the solution search space
[10]. At the same time, by utilizing exploitation techniques
of LocalSearch() based on VNS-specific heuristics, the ILS-
VNS algorithm tries to explore all local optima dynamically
through perturbation to reach the global optimal solution
within the search space as described in the high-level pseudo
code of the Algorithms 3 and 4 below.

Algorithm 3 ILS-VNS Meta-Heuristics Algorithm:
Description: Given a VNR network,ILS-VNS tries to find an
approximation solution to the mAS-VNS optimization.
ILS-VNS (maxIterations, perturbationFactor)

bestSolution = GenerateInitSolution()
bestCost = EvaluateCost(bestSolution)
for i = 1 to maxIterations do

perturbedSolution = PerturbSolution(bestSolution,
perturbationFactor)
localOptimum = LocalSearch(perturbedSolution)
localCost = EvaluateCost(localOptimum)
if localCost ≤ bestCost then

bestSolution = localOptimum
bestCost = localCost

end if
end for
return bestSolution

Algorithmic rules and implementation strategies for the ILS-
VNS algorithm are below:

1) PerturbSolution() is a key functional component of the
ILS which returns a different start solution in search
space via a perturbation technique in order to escape
local optima and maximize the chance to explore other
part of the solution search space for global optimal solu-
tion. Various heuristics can be employed as specified by
the perturbationFactor parameter. For the VNS problem,
the perturbation heuristic we used is randomly select
1/3 of links of the current bestSolution and replace the
associated mapped path with a randomly selected t-th
(t ≤ k) shortest path from the pre-calculated k-shortest
path set for that link.

2) GenerateInitSolution() generates a start solution and
LocalSearch() is the same procedure utilized in GRASP-
VNS.

D. Shared Local Search Algorithm

The basic idea of local search procedure is to take an initial
solution and explore the neighbors of the current solution by
making some modifications to it and examining the quality
of the resulting neighbor solution. The aim of local search
is to quickly find the local optima within the local search

region and some of the popular techniques include hill
climbing, TABU search and variable neighborhood search.
The LocalSearch() is a shared function for both GRASP-VNS
and ILS-VNS meta-heuristic algorithms.

Algorithm 4 Local Search Algorithm:
Description: LocalSearch() is an algorithm that tries to find
the local optimal solution within localized search space.
LocalSearch(vnr)

currentSolution = initSolution
currentCost = EvaluateCost(currentSolution)
repeat

neighborSolution = FindBestNeighbor(currentSolution)
neighborCost = EvaluateCost(neighborSolution)
if neighborCost ≤ currentCost then

currentSolution = neighborSolution
currentCost = neighborCost

end if
until termination condition is met
return currentSolution

The algorithmic rules for the LocalSearch() are:
1) FindBestNeighbor() uses a best-improving strategy and

returns most promising neighbor solution in the search
space that should be better than the current solution if
all constraints are satisfied. For our VNS problem, the
best neighbor is selected as follows.

2) Loop through steps below for each link l in VNR that
maps to the gateway nodes gi and gj .

• If the current l mapping corresponds to m-th short-
est path, then choose the neighbor whose l map-
ping is replaced by (m-1)-th shortest path from
PS
k (i, j) (m ≤ k) that does not violate the capac-

ity and QoS constraints, then keep it as current
mapping, otherwise try next shorter (i.e., (m-2)-th
shortest) path until no more shorter path available,
in this case mark this mapping as “best” and will
not be further considered for neighbor expansion of
link l mapping.

• Update the current solution with the new l mapping
if found in step above

3) Termination condition is met when all the selected
neighbor solutions defined by the heuristics above have
been exhausted.

V. EXPERIMENT AND ANALYSIS

In this section, we present the results of experiments and
performance analysis of the three approximation algorithms
we developed in the context of the following questions we are
trying to answer:

1) How do three approximation algorithms (a.k.a, GH-
VNS, GRASP-VNS and ILS-VNS) perform compared
to the exact optimization algorithm in terms of basic
performance metrics, namely run time and cost of the
VNS algorithms for a given set of VNR run test data?

2) How well do three approximation algorithms perform in
terms of decrease in run-time (i.e., speed-up) vs. increase
in cost of the solution (i.e., loss in optimality) for each
VNR run?

A. Experiment Setting and Data

In this paper, we use the same test-bed we developed for the
formal mAS-VNS optimization solution experiments described
in our previous research paper in terms of hardware, software
and test data. Specifically, 1000 compatible VNR-InP network
pairs of data set (i.e., matching at the node level) are generated
as the population and we randomly select 50 of them as
sample for the experimental evaluation test run. We leverage
the same performance data from the results of mAS-VNS
ILP optimization algorithm for our exact vs. approximation
solution performance comparison. Note that the same set of
the test data are used for approximation algorithm evaluation.
Readers can refer to [19] for more details.

B. Evaluation Methods and Metrics

The primary objective of the experiment is to evaluate and
compare the performance of the mAS-VNS exact optimal
solution and approximate solutions in terms of run-time and
network cost. TO that end, we define the following two
basic metrics plus two derived metrics for our quantitative
performance analysis.

1) Run time denoted by T (alg): The time (in seconds)
taken to calculate an exact or approximate solutions
by the ILP optimization or approximation algorithms
respectively.

2) Cost denoted by C(alg): The total cost (unit cost) of
the exact IPL optimization solution and approximation
solutions.

Additionally, we define two derived metrics for more advanced
performance analysis. The following normalized metrics are
defined where Aopt represents the optimization algorithm and
Aapr represents approximation algorithm.

1) Approximation Error Rate (AER): Measures how close
the cost of the solution generated by approximation
algorithm is to the cost of the exact optimal solution.

AER(Aapr) =
(C(Aapr)− C(Aopt))

C(Aopt)

Since C(Aopt) is always less than or equal to C(Aapr),
we have AER(Aapr) ≥ 0 and a larger value means a
worse performance.

2) Speed-Up Factor (SF): The ratio between the time taken
by the optimal algorithm over the time taken by the
approximate algorithm.

SF (Aapr) =
T (Aopt)

T (Aapr)

Since T (Aopt) is normally greater than or equal to
T (Aapr), we have SF (Aapr) ≥ 1 and a larger value
means a better performance. This is speed up of an
approximation algorithm in reference to the exact

optimal algorithm.

C. Analysis of the Approximation Algorithm Performance

The following line charts in Figures 2-5 visually show the
performance of the three approximation algorithms in terms
of two basic and two derived metrics as defined in section
V-B. Specifically, Fig. 2 shows the run time of the three
approximation algorithms compared to the run time of the
exact ILP optimization solution. Fig. 3 shows the costs of the
mAS-VNS results from the three approximation algorithms
compared to the exact solution from the ILP optimization
algorithm. Note that the run-time and cost numbers from the
exact solution is based on the ILP implementation described
in [19]. Measured from a different perspective, Fig. 4 shows
how the speedup stacks among different approximation
algorithms. Fig. 5 shows how the Approximation Error
Ratio (AER) stacks up among the different approximation
algorithms.

Fig. 2. Run-time for Exact and Approximate Algorithms.

Fig. 3. Costs for Exact and Approximate Algorithms.

From those performance charts in Figures 2-5, the following
observations can be made:

1) The run times for all three approximation algorithms are
very low and close to each other for all 50 test VNR data
runs compared with the exact optimal solution. The ILS-
VNS algorithm seems to fluctuate the most, followed by
GRASP-VNS with GH-VNS algorithm being the most
stable as shown in Fig. 2

Fig. 4. Speed-up for Approximate Algorithms.

Fig. 5. Error Rate for Approximate Algorithms.

2) The run times for all three approximation algorithms
are fractional compared to the exact solution of the ILP
optimization algorithm for all test data runs. The run-
time of the approximation algorithms is at least one
order of magnitude lower as shown in Fig. 4 and Fig. 2.

3) Note that the significant gain in speed for the approx-
imation algorithms is at the cost of relatively small
optimality loss for the mAS-VNS solution as shown in
Fig. 5

4) Even though for most of the test data runs, the approx-
imate solution’s costs are higher than the exact solution
from the optimization algorithm, but occasionally the
approximation algorithms also generate a result that is
optimal as shown in Fig. 3 and Fig. 5.

5) Out of three heuristic/meta-heuristic mAS-VNS algo-
rithms, the GH-VNS algorithms seems to be the most
stable and consistent, and performs the best even though
the algorithm itself is the simplest compared to the
GRASP-VNS and ILS-VNS algorithms.

VI. CONCLUSION

This paper describes and quantitatively evaluates three
heuristic and meta-heuristic approximation algorithms for the
mAS-VNS optimization problem as a follow-on study from
our previous research on formal modeling and optimization
formulation for exact solution to the mAS-VNS problem
[19]. The evaluation results are promising and have demon-
strated the validity and feasibility of the developed mAS-
VNS approximation algorithms to support online and dynamic
virtual network provisioning and optimization in multi-AS

environment in real world network applications.

REFERENCES

[1] Anderson, T., Peterson, L., Shenker, S., & Turner, J. (2005). Overcoming
the Internet impasse through virtualization. Computer, 38(4), 34-41.

[2] Cao, H., Wu, S., Hu, Y., Liu, Y., & Yang, L. (2019). A survey of embed-
ding algorithm for virtual network embedding. China Communications,
16(12), 1-33.

[3] Cao, H., Hu, H., Qu, Z., & Yang, L. (2018). Heuristic solutions of virtual
network embedding: A survey. China Communications, 15(3), 186-219.

[4] Dietrich, D., Rizk, A., & Papadimitriou, P. (2013). Multi-domain virtual
network embedding with limited information disclosure. In 2013 IFIP
Networking Conference (pp. 1-9). IEEE.

[5] Diallo, M., Quintero, A., & Pierre, S. (2019). An efficient approach
based on ant colony optimization and tabu search for a resource
embedding across multiple cloud providers. IEEE Transactions on Cloud
Computing, 9(3), 896-909.

[6] Fischer, A., Botero, J. F., Beck, M. T., De Meer, H., & Hesselbach, X.
(2013). Virtual network embedding: A survey. IEEE Communications
Surveys & Tutorials, 15(4), 1888-1906.

[7] Houidi, I., Louati, W., Ameur, W. B., & Zeghlache, D. (2011). Virtual
network provisioning across multiple substrate networks. Computer
Networks, 55(4), 1011-1023.

[8] Huo, Y., Song, C., Cao, Y., Zheng, J., & Min, J. (2020). A Multi-domain
Virtual Network Embedding Approach. In International Conference
on Computer Engineering and Networks (pp. 1439-1446). Springer,
Singapore.

[9] Li, S., Saidi, M. Y., & Chen, K. (2016). Multi-domain virtual network
embedding with coordinated link mapping. In 2016 24th International
Conference on Software, Telecommunications and Computer Networks
(SoftCOM) (pp. 1-6). IEEE.

[10] Lourenço, H. R., Martin, O. C., & Stützle, T. (2019). Iterated local
search: Framework and applications. Handbook of metaheuristics, 129-
168.

[11] Madni, S. H. H., Abd Latiff, S. I. M., Coulibaly, Y., & Abdulhamid, S. I.
M. (2016). An appraisal of meta-heuristic resource allocation techniques
for IaaS cloud.

[12] Ni, Y., Huang, G., Wu, S., Li, C., Zhang, P., & Yao, H. (2019). A
PSO based multi-domain virtual network embedding approach. China
Communications, 16(4), 105-119.

[13] Pathak, I., & Vidyarthi, D. P. (2017). A model for virtual network em-
bedding across multiple infrastructure providers using genetic algorithm.
Science China Information Sciences, 60, 1-12.

[14] Pitsoulis, L. S., & Resende, M. G. (2002). Greedy randomized adaptive
search procedures. Handbook of applied optimization, 168-183.

[15] Samuel, F., Chowdhury, M., & Boutaba, R. (2013). Polyvine: policy-
based virtual network embedding across multiple domains. Journal of
Internet Services and Applications, 4(1), 1-23.

[16] Sitaraman, R. K., Kasbekar, M., Lichtenstein, W., & Jain, M. (2014).
Overlay networks: An akamai perspective. Advanced Content Delivery,
Streaming, and Cloud Services, 51(4), 305-328.

[17] Song, B., Hassan, M. M., & Huh, E. N. (2012). Delivering IPTV service
over a virtual network: a study on virtual network topology. Journal of
Communications and Networks, 14(3), 319-335.

[18] Yang, Z., Cui, Y., Li, B., Liu, Y., & Xu, Y. (2019). Software-defined wide
area network (SD-WAN): Architecture, advances and opportunities. In
2019 28th International Conference on Computer Communication and
Networks (ICCCN) (pp. 1-9). IEEE.

[19] Xue, Y., Brodsky, A., & Menasce, D. (2023). Modeling and Optimiza-
tion of Virtual Networks in Multi-AS Environment. 12th International
Conference on Operation Research and Enterprise Systems(ICORES)
2023.

