
Towards Cycle-accurate Simulation of xBGAS
Jie Li∗, John D. Leidel†, Brian Page‡ and Yong Chen∗

∗Texas Tech University, USA
†Tactical Computing Laboratories, USA
‡Laboratory for Physical Sciences, USA

Email: ∗{jie.li},{yong.chen}@ttu.edu, †jleidel@tactcomplabs.com, ‡bapage@lps.umd.edu

Abstract—High-performance computing (HPC) systems are
evolving to address big-data and data-intensive workloads, shift-
ing from monolithic architectures to integrated setups with micro-
processors, accelerators, and advanced interconnects. However,
this transition introduces complexities, latency challenges, and
performance bottlenecks in large-scale parallel applications. To
tackle these issues, the Extended Base Global Address Space
(xBGAS) project enhances memory addressing through innova-
tions in Instruction Set Architecture (ISA) and microarchitecture.
Leveraging RISC-V’s extensibility, xBGAS integrates an extended
register file and new instructions, enabling efficient global mem-
ory access. This paper introduces REV-xBGAS, a cycle-based
simulator using the Structural Simulation Toolkit (SST) to model
xBGAS-enabled processors. With SST’s modularity, REV-xBGAS
allows easy configuration of network latencies, bandwidths,
and topologies, enabling performance evaluations under varied
conditions.

Index Terms—Architecture Simulation, High-performance
Computing (HPC), RISC-V, Structural Simulation Toolkit (SST)

I. INTRODUCTION

The growing volume of big-data and data-intensive work-
loads, exemplified by Large Language Models (LLMs) in
high-performance computing (HPC) systems, is necessitating
a transformation in computer architectures and programming
models. Despite the progress made in fabrication and device
packaging, the components of high-performance computing
systems are designed independently and require intricate,
multilevel software stacks to link the different parts. Latencies
that are not desired, complexity, and a decrease in performance
of large-scale parallel applications are often the result of
this. The Extended Base Global Address Space (xBGAS)
project is proposed to extend the addressing capabilities at
the Instruction Set Architecture (ISA) and microarchitecture
level to reduce the number of software layers and simplify
the implementations of the Partitioned Global Address Space
(PGAS) programming model [1]–[4]. It leverages the exten-
sible nature of the RISC-V architecture by integrating an
extended register file and introducing a set of new instructions
to provide global, scalable memory addressing support [2], [5].

It is worth noting that xBGAS cannot run on current
commodity microprocessors as the new register file and new
instructions are introduced. Previous developments and exper-
iments mainly rely on the functional simulator built on the
traditional RISC-V simulator, Spike, and use MPI to simulate
communication between processing elements (PEs) [2], [6].
Although this approach provides a relatively fast environment

for developing and testing the xBGAS runtime library and
compiler, it is limited in performance analysis because of its
inability to model the time behavior of hardware components.
Moreover, it is unable to assess the effects of extended in-
structions on various networks, which is a major shortcoming
when building and evaluating a new distributed system.

In this paper, we present REV-xBGAS, a cycle-based simu-
lator that is capable of simulating xBGAS-enabled processors
using the Structural Simulation Toolkit (SST) [7], [8]. Taking
advantage of the modularity and extensibility of SST, we
can configure the xBGAS-enabled distributed system to have
different network latencies, bandwidths and topologies, and
evaluate the system performance under different configura-
tions. Our contributions are summarized as follows:

• We present the detailed design and implementation
of REV-xBGAS, reflecting the microarchitecture-level
changes to achieve the extended global address space.

• We configure and run the xBGAS-enabled distributed
system with various network topologies, demonstrating
its functional correctness.

• We simulate xBGAS in a cycle-based manner, allowing
us to gain a deeper understanding of its behavior and
performance, and use this knowledge to optimize the
runtime library.

This paper is structured as follows. First, we provide the
background of xBGAS in Section II. Next, we present the
detailed design and implementation of REV-xBGAS in Section
III and demonstrate the evaluation of xBGAS using different
network configurations in Section IV. Section V discusses
future directions and concludes the paper.

II. BACKGROUND

xBGAS is a novel approach to providing high performance,
scalable, shared memory address spaces based on the open-
source RISC-V ISA. In this section, we give a brief overview
of the xBGAS microarchitecture and instructions.

A. xBGAS Addressing Model

Remote data access in xBGAS is implemented by mapping
remote resources into the extended address space, such that
inter-PE memory operations can be conducted with memory
access semantics (load/store). To provide extended address
spaces, xBGAS introduces a set of 32 xBGAS-specific registers
to the RISC-V RV64 register file. These extended registers,
denoted as e0-e31, are analogous to standard general purpose

2024 Workshop on Computing, Networking and Communications (CNC)

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 468

[127:64] = e21 [63:0] = x21

eld x31, 0(x21)

imm (0)+

Extended Register Base Register Base Address Offset

Address on remote PENamespace IDEffective Address:

Figure 1. xBGAS Addressing Model

registers (x0-x21)and contain the namespace ID that denotes
the logical storage location of the remote data object.

Figure 1 gives an example of the xBGAS addressing model
for the xBGAS eld instruction, which loads an integer value
from a remote PE and stores the value in x31. Note that in this
instruction, the base register (x21) contains a standard 64-bit
memory address, and together with the immediate value 0, they
form the target address. The corresponding extended register
(e21, shares the same index as the base register) contains the
logical namespace ID.

B. xBGAS ISA Extension

xBGAS introduces four sets of extended instructions for re-
mote data operations and value manipulations of the extended
registers. These instructions are summarized as follows:

Integer Load/Store Instructions: Similar to the base
load and store instructions of the standard RISC-V ISAs,
xBGAS introduces extended load and store instructions for
remote data operations using the RISC-V I-type and S-type
instruction encoding, respectively. The mnemonic of these
instructions are simply adding e to the base load and store
instructions, and the extended register corresponding to the
base register is implicitly used for specifying the namespace
ID. For example, eld is the counterpart of the ld instruction; it
loads a double-word size of data from remote PE. xBGAS sup-
ports operations on data with sizes ranging from a byte to a
double word.

Raw Integer Load/Store Instructions: Unlike the previous
set of load/store instructions where the extended register is
implicitly used, the instructions in this category allow speci-
fying the extended register explicitly. This is achieved through
the RISC-V R-type encoding, where three registers can be
encoded in a single instruction. This permits applications to
perform more complex operations and reduces the number of
instructions for collective operations [4]. An example of raw
integer load instructions is as follows:

erld rd, rs1, ext2 (1)

It loads a double-word (64-bit) value from the effective
address formed by combining the namespace ID stored in ext2
and memory address stored in rs1, and saves the value in rd.

Bulk Integer Load/Store Instructions: The previous two
categories of instructions are only capable of transferring a
single data element with up to the register-width (64-bit)
size. Transferring large data elements with patterns, which
is a common practice in distributed programming, requires a

loop of previous xBGAS load/store instructions, resulting in a
significant increase in the number of instructions. Instructions
in this category are designed to improve the transfer of large
data elements by encoding the data patterns in one instruction.
This allows a single bulk load/store instruction to move data
elements that are larger than the size of a register. Instead of
being stored in registers, the data elements are transferred to
memory. The RISC-V R-4 type encoding is used to facilitate
the encoding of four registers. An example of this category
of instructions is:

ebld rd, rs1, rs2, rs3 (2)

It loads m elements (encoded in rs2) with n strides (encoded
in rs3) from memory address x (encoded in rs1) of namespace
y (encoded in the extended register of rs1), and stores the data
elements at the starting address encoded in rd with the same
pattern as the data source.

Address Management Instructions: The final category of
xBGAS instructions do not operate directly on remote data;
instead, they provide the capability to manipulate the values
in the extended register. These instructions follow the standard
RISC-V I-type instruction encoding and make use of the
core RISC-V ALU in the same way as moving data between
general-purpose registers. For example, to set e21 to have a
value stored in the general purpose register x10, we may issue
the following instruction:

eaddie e21, x10, 0 (3)

The comprehensive description of xBGAS instructions can
be found in the xBGAS specification [9].

III. XBGAS CYCLE-ACCURATE SIMULATION

The extended addressing capabilities of xBGAS require
changes in the processor architecture to bridge the in-system
bus architecture with the network fabric. For example, when
the namespace ID refers to the data object on PEs on remote
compute nodes, the in-system bus packets must be translated to
be routed to the correct resource on the fabric. Designing and
implementing a cycle-accurate simulator for xBGAS-enabled
processors should reflect the architecture changes and model
the behaviors of each component. In this section, we describe
the details of the implementation of REV-xBGAS.

REV-xBGAS is built on the REV RISC-V CPU model [10],
which is an open-source project designed to provide cycle-
based simulation capabilities of arbitrary RISC-V cores with
5-stage pipelining. REV utilizes the Structural Simulation
Toolkit (SST) as the core parallel discrete event simulation
framework and can be attached to other SST elements for full
system and network simulations. Figure 2 shows the overall
architecture, where the customized and new components added
to the REV CPU model are highlighted in colors, with some
modifications to the CPU register files and decoder. These new
components are described below.

2024 Workshop on Computing, Networking and Communications (CNC)

469

Remote Memory
Controller

 CPU

Memory
Controller

Memory Backend

Remote Memory Controller

Namespace
Lookaside
Buffer

Network Interface Controller

 CPU

Memory Backend

xBGAS Node 2

Network Interface Controller

F
a
b
ri
c
 I
n
te
rc
o
n
n
e
c
t

xBGAS Runtime Metadata

My PE ID

Total # of PEs

Shared Memory Metadata

Barrier

......

Remote Memory
Controller

xBGAS Node 1

Memory
Controller

Outgoing Req Q

Outgoing Resp Q

Incoming Req Q

Incoming Resp Q

Figure 2. REV-xBGAS Architecture. Colored blocks are the main components added to support xBGAS simulation. The red block represents the remote
memory controller, the green block is the customized NIC capable of packetizing information for remote memory operations, and the blue block is the static
memory space for the runtime metadata.

A. xBGAS Extended Registers

Incorporating the extended registers utilized by xBGAS in-
volves straightforwardly creating a register file data structure
as defined in REV. This structure is essentially an array
composed of 32 unsigned 64-bit integers, and accessing and
updating the register values means simply reading and altering
the corresponding elements in the array. These extended reg-
isters are solely designated for xBGAS instructions, ensuring
that the existing RISC-V instructions implemented in REV
remain unaffected and do not require modifications.

B. Remote Memory Controller

The Remote Memory Controller (RMC), colored red in
the diagram, is designed analogously to the local memory
controller and provides interfaces to access the remote memory
address space. There are several data structures implemented
in this component, a Namespace Lookaside Buffer (NLB) and
four queues that handle outgoing/incoming requests/responses,
as shown in the zoomed-in block.

Similar to the Translate Lookaside Buffer (TLB), which
accelerates the translation of a virtual address to a physical
address, the NLB takes a namespace ID as input and translates
it to a global resource address on the fabric. If the NLB
translation result refers to the local node address, the memory
request is dispatched to the memory controller and fulfilled by
the local memory hierarchy. Otherwise, the memory request
is sent to the outgoing request queue which is waiting to be
sent to the fabric. NLB is initialized and distributed to each
participating node when the simulation is initialized.

RMC handles not only requests originating from the local
CPU issuing a xBGAS load/store instruction but also those
from remote processing elements. Temporary storage of these
requests is managed using the outgoing request queue and the
incoming request queue. The outgoing requests, structured as
CPU packets, are forwarded to the Network Interface Con-
troller for conversion into fabric packets. On the other hand,
the incoming requests, already transformed into CPU packets,
are routed to the memory controller to perform operations
in the local memory. Responses that fulfill these incoming
requests find their place in the outgoing response queue and
are subsequently routed to the PEs through the NIC. Addi-
tionally, incoming responses, comprising memory operation
responses sent from remote PEs, are temporarily stored in the

incoming response queue to facilitate the proceeding of stalled
xBGAS load/store instructions.

C. xBGAS NIC
The xBGAS NIC is similar to the traditional NIC but is

expanded to be capable of packetizing additional information
for remote memory operations. This additional information
includes Src, PktId, Addr, Opcode, Size, Nelem, Stride, and
Data.

The source node ID (Src) helps determine which node
should receive the responses for remote memory operations.
The packet ID (PktId) serves to match responses with re-
quests, getting assigned a new value when a request arises.
Meanwhile, the memory address (Addr) specifies where the
data object on the remote nodes starts. As for the operation
code (Opcode), it signifies various operation types like load,
store, bulk load, and bulk store for remote memory operations.
Additionally, the element size (Size) designates the size of
each data element in bytes. Alongside this, the fabric packet
contains information about the number of elements (Nelem)
and the stride (Stride) specifically for bulk transfers. Lastly,
the data field (Data) takes on the role of carrying the payload
of remote memory operations.

D. xBGAS Instruction Decoding
Except for these newly introduced simulated hardware

components, the modification made to the REV CPU model
incorporates the decoding support for xBGAS extended in-
structions. As mentioned above, the xBGAS instructions follow
the existing encoding formats (I-, S-, R-, R4-type) defined in
RISC-V ISA and therefore do not require additional logic
to extract the “opcode”, “funct” fields, register fields, and
immediate bits. The only modification required is to link
the combination of “opcode” and “funct” fields with the
implementation functions of xBGAS extended instructions,
following the xBGAS specification [9].

It should be noted that the xBGAS CPU only loads exe-
cutables from the local memory hierarchy, and therefore the
fetch stage of the pipeline does not involve the participation of
newly added components. However, when a xBGAS instruction
is decoded, the extended registers will be used to decode the
namespace ID, and the memory access and write back stages
will leverage the new components to perform remote memory
operations and destination updates.

2024 Workshop on Computing, Networking and Communications (CNC)

470

E. xBGAS Instruction Execution

The execution of the xBGAS instructions is done through a
header file that provides the instruction implementations and
an encoding table to find the implementation functions after
decoding the instructions.

We use the instruction eld x31, 0(x21) as shown in Figure 1
to exemplify the construction of the implementation function
for the eld instruction. When this instruction is decoded,
the implementation function initially accesses the general-
purpose register x21 and computes the address in the remote
processing element (PE), given by x21 + 0. Subsequently,
the implementation function invokes the API provided by the
remote memory controller (RMC) to initiate a remote load
request, providing the namespace ID (encoded in e21) and
the calculated address as parameters. The RMC then handles
the remote memory operation, and once the corresponding
response is received, it updates the destination register (x31).
The instruction stalls until the destination register has been
successfully updated.

The encoding table is constructed as a C++ vector of
struct entries, with each entry corresponding to an individual
instruction. Within REV, the encoding table holds all enabled
instructions. For each unique combination of the ”opcode”
and ”funct” fields, there exists a single corresponding im-
plementation function. The REV CPU decodes instructions
and, by examining the encoding table, identifies the right
implementation function to be executed.

F. xBGAS Runtime Metadata

The xBGAS runtime has been designed to offer APIs to
developers through a C-based library. This empowers applica-
tions to conduct memory allocation and data movement utiliz-
ing gets and puts with the xBGAS instruction set extensions.
Applications employing the xBGAS model are linked to the
runtime library, and their compiled executables are run within
the REV-xBGAS simulator for simulation.

However, there exists a disconnect between the origi-
nal xBGAS runtime library and the simulator. While the
xBGAS runtime library supports environment routines that
provide essential details (such as PE ID, the count of partic-
ipating PEs, etc.) to the calling application, this environment
information is solely accessible to the simulator itself once
the simulation has been initialized. To bridge this gap between
the xBGAS runtime library and the simulator, we designate a
distinct static memory space of 4KB within each simulated
xBGAS node, visualized as the blue block in Figure 2. This
designated memory space is employed as an interface for
the exchange of environment information. In addition, the
xBGAS runtime library also manages a data structure that
records the metadata of shared memory information across all
participating PEs and a bitmap that is used for synchronization
among PEs (i.e., barrier). Recognizing the indispensability of
this information for all PEs, we utilize the aforementioned
static memory space to store these data structures.

TABLE I
CONFIGURATIONS OF THE XBGAS DISTRIBUTED SYSTEM

Subsystem Parameters Values

Nodes

of Nodes 4, 8, 16, 32, 64, 128, 256
of Cores per Node 1

CPU Architecture RV64G + xBGAS
CPU Clock Freq. 2.5 GHz

Memory cap. per Node 1 GB

Network

Latency 40 µs
Bandwidth 10 GB/s
Flit Size 32 Bytes

Buffer Size 512 Bytes
Topologies Star, Torus, Fat tree

IV. EXPERIMENTAL RESULTS

Structural Simulation Toolkit (SST) offers a wide selection
of simulation models for computer subsystems, from CPUs
and memory to network components. These models allow for
simulations with different architectures and configurations. In
this section, we utilize the REV-xBGAS CPU model and the
Merlin network model to simulate xBGAS distributed systems
across a range of network configurations [11]. This is done to
showcase the simulator’s capability for conducting functional
correctness tests and facilitating performance comparisons.

A. Experiment setup

All simulations are executed on a production academic HPC
cluster comprising 240 nodes. Each node is equipped with 64
physical AMD EPYC 7702 processors and boasts a memory
capacity of 512 GB. These nodes operate on a CentOS 8
system running kernel version 4.18.0. The simulation tasks are
submitted to the HPC cluster via Slurm version 22.05.8. The
number of physical nodes engaged in the simulations varies
depending on the scale of the xBGAS distributed system being
simulated.

B. Benchmarks

We utilize two microbenchmarks implemented with the
xBGAS runtime library for our analysis [3]. The microbench-
marks are compiled by the xBGAS RISC-V GNU compiler
toolchain to translate the extended xBGAS instructions into
binaries that can be recognized by the REV-xBGAS simulator.
The first microbenchmark involves broadcasting four integers
(16 bytes) from one processing element (PE) to others, while
the second one entails each PE transmitting four integers to
every other PE, known as the “all-to-all” communication.
These microbenchmarks are instrumental in assessing the
scalability of the xBGAS node count across diverse network
topologies. It’s noteworthy that both the broadcast and all-
to-all operations encompass procedures to synchronize PEs,
ensuring the completion of all remote memory operations
before microbenchmarks terminate on all PEs.

C. Simulation parameters

All the simulated xBGAS nodes are standardized to share
an identical node configuration. Each of these simulated nodes
is configured with an REV-xBGAS CPU model that has the
RISC-V RV64G architecture with the xBGAS extension. Each
node is set to have a single 2.5 GHz processor and 1 GB of

2024 Workshop on Computing, Networking and Communications (CNC)

471

Figure 3. The Performance Comparision of the Broadcast Microbenchmark

memory, which is sufficient to execute microbenchmarks. Con-
sequently, memory operations between Processing Elements
(PEs) necessitate traversing the fabric and are managed by
remote memory controllers.

Although REV is compatible with alternative memory hi-
erarchy models such as MemHierarchy [12], known for its
accurate memory simulation, we use the REV built-in memory
model that prioritizes speed, albeit at the expense of memory
modeling fidelity. This trade-off is sufficient for microbench-
marks characterized by small local memory footprints. The
network module employs the Merlin library [11], which offers
flexible networking components for simulating high-speed
networks across different topologies. In our experimental
setup, we configure the xBGAS distributed system with node
counts ranging from 4 to 256. These configurations encompass
various topologies, including Star, Torus, and Fat Tree. The
specifics of the configuration are outlined in Table I.

D. Performance comparison

The performance results for the broadcast and all-to-all
microbencharks are shown in Figure 3 and Figure 4, respec-
tively. The y-axis shows the runtime in ms and the X-axis
represents the number of nodes in the xBGAS distributed
system configuration.

While the star topology isn’t commonly employed in larger
HPC systems, our experiments reveal its advantageous perfor-
mance for smaller-scale setups. In both broadcast and all-to-
all microbenchmarks, the star topology consistently demon-
strates the shortest runtime when compared to torus and fat-
tree topologies. In the case of broadcast, torus showcases
marginally better runtime than fat-tree when node count re-
mains below 128; however, they perform comparably as node
count reaches 256. The all-to-all microbenchmark unveils a
performance transition between torus and fat-tree: for node
counts under 64, torus performs better; once the threshold is
exceeded, fat-tree has the advantage.

V. CONCLUSION AND FUTURE WORK

In this work, we present the design and implementation
details of REV-xBGAS, the simulation infrastructure built atop
the REV RISC-V CPU model, aiming to provide a cycle-based
simulation environment for xBGAS. REV-xBGAS integrates
customized and new components into REV, reflecting the
architectural modifications necessary for simulating xBGAS at
the cycle level. By leveraging the network models offered by

Figure 4. The Performance Comparision of the All-to-all Microbenchmark

SST, we configured the xBGAS-enabled distributed system
with various network topologies. Subsequently, we conduct the
execution of two microbenchmarks across different scales of
xBGAS distributed systems. Our experiments not only demon-
strate functional correctness but also facilitate performance
comparisons across diverse system configurations.

As REV continues to undergo active development, our
forthcoming efforts encompass integrating the latest upstream
updates of REV into REV-xBGAS. We also intend to enhance
the xBGAS runtime library by incorporating algorithms for
collective operations tailored to specific network topologies.
Meanwhile, our ongoing initiatives involve porting more
benchmarks to xBGAS, within the REV-xBGAS simulation
environment, with plans to share additional results with the
community in the near future.

REFERENCES

[1] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick, “Upc++: a
pgas extension for c++,” in 2014 IEEE 28th international parallel and
distributed processing symposium. IEEE, 2014, pp. 1105–1114.

[2] J. D. Leidel, X. Wang, F. Conlon, Y. Chen, D. Donofrio, F. Fatollahi-
Fard, and K. Keville, “xbgas: Toward a risc-v isa extension for global,
scalable shared memory,” in Proceedings of the Workshop on Memory
Centric High Performance Computing, 2018, pp. 22–26.

[3] B. Williams, X. Wang, J. D. Leidel, and Y. Chen, “Collective commu-
nication for the risc-v xbgas isa extension,” in Workshop Proceedings
of the 48th International Conference on Parallel Processing, 2019, pp.
1–10.

[4] X. Wang, J. D. Leidel, B. Williams, A. Ehret, M. Mark, M. A. Kinsy,
and Y. Chen, “xbgas: A global address space extension on risc-v for
high performance computing,” in 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2021, pp. 454–463.

[5] A. Waterman, Y. Lee, D. Patterson, K. Asanovic, V. I. U. level Isa,
A. Waterman, Y. Lee, and D. Patterson, “The risc-v instruction set
manual,” Volume I: User-Level ISA’, version, vol. 2, 2014.

[6] B. Keller, “Risc-v, spike, and the rocket core,” Berkeley Architecture
Group, 2013.

[7] A. F. Rodrigues, R. C. Murphy, P. Kogge, and K. D. Underwood,
“The structural simulation toolkit: exploring novel architectures,” in
Proceedings of the 2006 ACM/IEEE conference on Supercomputing,
2006, pp. 157–es.

[8] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,
M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. Cooper-Balis et al.,
“The structural simulation toolkit,” ACM SIGMETRICS Performance
Evaluation Review, vol. 38, no. 4, pp. 37–42, 2011.

[9] T. C. Labs. (2020) xbgas architecture specification. [Online]. Available:
https://github.com/tactcomplabs/xbgas-archspec/releases/tag/v0.0.6

[10] T. C. Labs. (2023) Rev: Risc-v native cpu model for sst. [Online].
Available: https://github.com/tactcomplabs/rev

[11] K. S. Hemmert, “Merlin element library deep dive.” Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States), Tech. Rep., 2018.

[12] G. R. Voskuilen, “Sst deep dive: Memhierarchy.” Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States), Tech. Rep., 2018.

2024 Workshop on Computing, Networking and Communications (CNC)

472

