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Abstract—Due to the enormous volume of data generated by
connected vehicles (CVs), future vehicle-to-vehicle (V2V) commu-
nications will require a high-throughput communication channel.
While 5G millimeter-wave (mmWave) technology generally meets
these requirements, it suffers from the risk of performance
degradation under harsh weather conditions such as heavy rain,
snow or sand storms. This decline is primarily because of the high
frequency of mmWave, which results in significant propagation
attenuation loss. In contrast, 4G LTE is less susceptible to these
environmental challenges. In an effort to improve communication
performance reliability under severe weather conditions, we
propose a Deep Reinforcement Learning (DRL)-driven approach.
Our proposed framework utilizes the Received Signal Strength
Indicator (RSSI), short-term throughput, and weather param-
eters as input variables. It employs cumulative throughput as
the reward metric in the reinforcement learning process. As
the framework interacts with the environment, it learns to
dynamically switch between 5G mmWave and 4G LTE channels
to maintain a robust and reliable communication link between
CVs. Our approach has been validated through simulations using
the ns-3 network simulator, enhanced with a customized weather
model for 5G mmWave and 4G LTE channels. The simulation
results confirm that our DRL framework substantially improves
the reliability and performance of V2V communication within
minutes, even in harsh environmental conditions.

Index Terms—Connected Vehicles, V2V, mmWave, Reinforce-
ment Learning

I. INTRODUCTION

The concept of connected vehicles has brought a new
direction for modern transportation, promising enhanced navi-
gation and safety and also the realization of fully autonomous
vehicles. Among various network options, V2V communica-
tion has emerged as a cornerstone for facilitating real-time
data exchange between vehicles. The exchange of traffic and
vehicular control information through V2V communication is
critical for safe vehicle operations. To successfully implement
a comprehensive autonomous driving ecosystem in the future,
the communication channel must provide high reliability, low
latency, and robust data throughput to facilitate the transfer of
large volumes of data [1].

The 3rd Generation Partnership Project (3GPP) formalized
Vehicle-to-Everything (V2X) communications through the 4G

Long-Term Evolution (LTE) air interface in their Release-
14 and in Release-16, 3GPP unveiled the 5G New Radio
(NR), which incorporates the mmWave spectrum [2]. Despite
the benefits of mmWave, such as increased bandwidth and
lower latency, it faces challenges related to signal attenuation
loss. Specifically, its high frequency band is prone to shorter
transmission ranges and is easily obstructed by obstacles, as
outlined in [3].

Several studies have examined the attenuation loss experi-
enced under various weather conditions. For instance, the work
by Dimce [4] employs metrics such as rain intensity, raindrop
size distribution to assess attenuation loss due to rain and
snow. Another study by [5] investigates the impact of dust and
sand storms on 5G mmWave channels. Since attenuation loss
is particularly significant under adverse weather conditions,
the reliability of communication among CVs may be largely
compromised when operating over 5G mmWave channels.
This raises the primary question this paper aims to address:
How can we ensure reliable communications for CVs under
such challenging conditions?

In contrast to 5G mmWave, 4G LTE operates at lower
frequencies, whose longer wavelengths are less susceptible
to attenuation loss in adverse weather conditions. Our prior
research [6] has outlined a dual-mode switching strategy for
V2V communications among CVs. In general, CVs mostly
utilize the 5G mmWave channel but switch to 4G LTE during
inclement weather to maintain reliable communication. In our
prior work, channel-switching decisions were mainly based on
the Received Signal Strength Indicator (RSSI), which lacks
network performance indicators. In this work, we develop an
intelligent agent which evaluates multiple factors, including
RSSI , short-term throughput, weather conditions, and the
vehicle’s current state. By factoring in cumulative throughput,
we aim to ensure a high Quality of Service (QoS) for CVs,
resulting in a more robust and informed channel-switching
strategy.

Due to the high costs and challenges of accurately mea-
suring environmental variables, we opted for simulation-based
evaluation rather than real-world experiments. Utilizing the ns-
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3 simulator [7] allows us to assess 5G mmWave channel per-
formance under varying weather conditions in a more feasible
and controlled manner. In this simulation-based research, our
primary contribution lies in assessing the performance of both
5G mmWave and 4G LTE channels for V2V communications
under various adverse weather conditions, focusing on dust
and sand environments. To mitigate communication degra-
dation, we propose an automated channel-switching strategy
that transitions from 5G mmWave to 4G LTE when CVs
encounter sandstorms. To the best of our knowledge, this is
the first study to employ a DRL-based framework to address
V2V communication interruptions caused by extreme weather
conditions. Our DRL-based solution offers notable improve-
ments in maintaining reliable communication and optimizing
channel-switching decisions based on environmental factors.

The rest of this paper is organized as follows. Section II
gives an overview of some related work. Section III presents
our DRL-based channel switching framework for V2V com-
munications. We describe our simulation and data generation
procedures in Section IV, and discuss evaluation results in
Section V. Finally, in Section VI, we conclude the paper and
suggest some future work.

II. RELATED WORK

There have been several existing studies for V2V com-
munication using mmWave, mainly for collision avoidance
[8]. Most of their eventual goals were to enhance the V2V
communication performance for improved traffic safety and
driving convenience. The key enabler of V2V is the use of
mmWave, which can achieve high speed and large capacity
in V2V communication by providing a wide bandwidth in
high frequency band. In addition to these directions, some
researchers have investigated how mmWave could improve
overall network efficiency and reliability [3].

Using a simulator to study 5G mmWave V2V communica-
tion offers several advantages regarding safety, cost-efficiency,
and experimental control [9]. In a simulated environment,
researchers can precisely manipulate variables such as weather
conditions, traffic density, and vehicle speed to study their
impact on communication performance without the risks and
costs associated with real-world experiments.The primary fo-
cus of this paper is to explore vehicular communications under
extreme weather conditions. Recent work by the authors cited
in [4] has contributed to this area by incorporates the effects of
rain and snow on V2V communication channels based on the
ITU model. Additionally, another study [10] extends the ns-3
Millicar [9] model to evaluate the impact of dust and sand on
5G mmWave channel performance.

Recent studies have demonstrated the utility of reinforce-
ment learning in making handover decisions between 5G
mmWave and 4G LTE networks. The authors in [11] employed
a deep Q-network to predict user associations for handovers
and [12] employed a Proximal Policy Optimization (PPO)
algorithm to manage handover frequency adeptly. However,
these prior works primarily focus on scenarios involving
base stations for handover between 5G and LTE. Our paper

distinguishes from them in that we are the first to propose
a V2V channel-switching mechanism that operates directly
within vehicles. Our study introduces a DRL framework that
autonomously switches between 5G and 4G networks when
CVs encounter adverse weather conditions.

III. DEEP REINFORCEMENT LEARNING FOR CHANNEL
SWITCHING

This section elaborates on our DRL based channel switching
approach for V2V communications under adverse weather
conditions. We first introduce some reinforcement learning
concepts and then explain our proposed approach in detail.

A. Reinforcement Learning

Reinforcement Learning (RL) is a subfield of machine
learning where an agent learns optimal behavior through
trial and error interactions with its environment. Traditional
RL algorithms perform well when the state-action space
is relatively limited, allowing agent to explore all possible
combinations and identify an optimal action policy. However,
the effectiveness of RL algorithms diminishes as the size
of the state-action space grows, mainly because the agent
may not explore every state-action pair [11]. To mitigate this
limitation, DRL employs Deep Neural Networks to model
intricate relationships between complex state spaces and their
corresponding actions. These networks undergo iterative ad-
justments based on reward signals, thereby fine-tuning the
agent’s decisions. A cornerstone in this field is the Deep
Q-Network (DQN), introduced by Mnih et al. [13]. DQN
combines the strengths of Q-learning with Artificial Neural
Networks, providing an effective framework for RL training
in complex scenarios where traditional RL algorithms struggle.

B. Proposed DQN-based Channel Switching

Our proposed framework aims to optimize vehicular com-
munication performance under challenging weather condi-
tions, specifically focusing on maintaining robust and high-
throughput connections in V2V networks. The basic idea of
our approach is to let CVs utilize 5G mmWave channels
as much as possible, given their superior data rates and
bandwidth. However, when vehicles traverse areas with severe
weather conditions which significantly degrade the reliability
of 5G mmWave communications, our system dynamically
switches to the more robust 4G LTE channel. This adaptive
scheme ensures a stable and high-performing communication
network for CVs, regardless of the weather conditions they
encounter.

The objective of our framework is to dynamically manage
channel switching in a way that preserves both higher through-
put and reliable communication for CVs, especially when they
navigate through areas with severe weather. To achieve this, we
employ a Deep Q-Learning Network where the agent’s value
and policy networks adapt based on specific state and reward
evaluations. The agent is in charge of CV connection and the
actions taken by the agent are based on these evaluations.
Our design optimizes state, action, and reward functions to
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execute channel switching only when necessary. This strategy
minimizes the number of switches and reduces the network’s
control signaling overhead. Our system’s definitions for state,
action, and reward are as follows:

1) State: In our previous research [6], we focused on
only one main factor RSSI to measure the performance of
connected cars. In this research, we add another metric:
the throughput to measure communication of CVs over 5G
mmWave or 4G LTE networks. In our model, these two metrics
form the state that guides the decision-making process in our
RL algorithm. We also consider environmental conditions like
humidity, visibility, and the size of particles in the air to decide
whether to switch channels.

2) Action: In our proposed scheme, the action space a
is defined as a discrete set containing two primary actions:
A : {Keep 5G mmWave channel, Switch to 4G LTE channel}.
In the first action, the agent chooses to continue using (or
switch back to) the 5G mmWave channel. This action is
favorable under smooth weather and when high throughput
is achievable. In the second action, the agent switches to or
maintains a connection via the 4G LTE channel. This action
is generally chosen when the agent predicts or detects severe
weather conditions that could significantly affect the reliability
of 5G mmWave communication.

3) Reward: In our study, we employ a unique reward design
based on the concept of cumulative throughput during the
driving journey. As CVs traverse weather conditions along the
road, the short-term throughput for 5G and 4G channels varies
dynamically. The 5G channel is the obvious choice under good
weather conditions due to its higher data rate capabilities.
However, in severe weather conditions, the performance of the
5G channel may deteriorate, causing the short-term throughput
to plummet to zero. Under such situations, our algorithm
intelligently switches to the more robust 4G channel. By using
cumulative throughput as the reward metric, our system aims
to balance the high-speed advantages of 5G and the reliability
of 4G, optimizing the overall communication performance
for CVs. While other communication factors like latency,
reliability or control signals might be good measurement in
a real experiment but they are out of range of this paper.

4) Algorithm Design: Our proposed Deep Q-Network
(DQN) algorithm proceeds in two phases: the training phase
and the execution phase. During the training phase, the algo-
rithm doesn’t directly interact with the environment; instead,
it undergoes offline training. Initially, a comprehensive dataset
is gathered, which includes variables like RSSI and short-term
throughput for both 5G mmWave and 4G LTE channels. After
pre-processing, this dataset serves as the training material for
the DQN model. To ensure the model learns robustly and
can adapt to a range of scenarios, an ϵ-greedy exploration
strategy is employed. This enables the model to try out a
variety of actions in different states, allowing it to fine-
tune its understanding of the best channel-switching strategies
under varying conditions. Algorithm 1 summarizes our DQN
algorithm’s training process during the training phase.

As shown in Algorithm 2, the execution stage leverages the

Algorithm 1 Training DQN Procedure for Channel Switching
Input: Q-network, ns-3 weather simulator
Output: Q-network
Start:

Generate CVs’ RSSI and short-term throughput.
Randomly initialize the policy π and model.

Loop:
Iteratively select one pair of CVs in the system.
For each CV pair, choose the action with the largest

Q-value under corresponding weather condition.
Observe reward and new state based on agent actions.
Collect and save the data item state, reward, action,

post-state into memory.
Sample a mini-batch of data from the memory.
Train the deep Q-network using the mini-batch data.
Update policy π based on action with maximum Q-

value.
end loop
Return: Return the deep Q-network.

trained Q-networks to determine channel-switching actions for
CVs by selecting actions with the highest Q-values. Subse-
quent evaluation metrics are derived based on these actions.

Algorithm 2 Execution Procedure for Channel Switching
Input: Trained Deep Q-network, ns-3 weather simulator
Output: Chosen channel, Evaluation results
Start:

Generate CVs’ RSSI and short-term throughput.
Load trained Q-network model.

Loop:
For each CV pair, choose action with largest Q-value.
Observe state based on the actions selected.
Update the evaluation results: the cumulative through-

put of CV pair.
end loop
Return: The chosen channel and evaluation results.

IV. SIMULATION AND EVALUATION

In this section, we outline the setup of our simulations and
learning environment.

A. Simulation Design and Setup

We used the ns-3 network simulator [7] as the platform to
generate our dataset to overcome the challenge of collecting
real-world data on CV’s communication. What is unique about
our research is that we developed a custom weather module
for ns-3, which is the first to incorporate the most up-to-
date 3GPP channel models for V2V communication and is
complete with variable weather impacts. Our enhanced ns-3
model can autonomously generate simulation outcomes based
on weather parameters such as particle size, visibility, and
humidity.
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In this study, we concentrate on a use-case illustrated in
Figure 1: two vehicles traveling along a highway at the same
speed, experiencing different weather conditions along the
road. The upper vehicle aims to establish a communication
channel with the lower vehicle, either through a 5G mmWave
or 4G LTE channel. The CV pair travel through n different
sandstorm conditions and try to establish a smooth com-
munication under different weathers. It is worth noting that
although we started with a simplified two-vehicle scenario for
illustrative purpose, our framework is designed to be easily
extendable to more complex cooperative vehicle configurations
and other V2V situations.

Fig. 1. Simulation Scenario Design.

B. V2V Communication Metric

In our simulation framework, vehicles traverse through
various severe weather conditions that have a negative impact
on both 5G mmWave and 4G LTE communications due to
attenuation loss. We employ the Mie scattering model, as cited
in [10] to quantify this loss. Specifically, we use the attenuation
variable Ad (dB/km) which is given as Equation (1) :

Ad = aefd
v [C1 + C2a

2
ef

2 + C3a
3
ef

3] (1)

where ae is the equivalent particle radius in meters, f is the
frequency in GHz, d is the length of propagation wave, v is
the visibility in km, C1, C2 and C3 are constants defined by
relative humidity.

To evaluate the effectiveness of our DRL-based channel-
switching scheme under challenging weather conditions, we
generated data for various factors that affect 5G mmWave
performance, such as humidity, visibility, and particle size. We
selected 28 GHz for the 5G mmWave frequency and 2.1 GHz
for 4G LTE. Our ns-3 simulation code is publicly available on
GitHub (https://github.com/ericliujian/ns3-mmwave-weather),
and the simulation parameters can be found in Table I.

TABLE I
SIMULATION PARAMETERS

Particle Size (µm) 600-800 Visibility (km) 0.000-0.003

Humidity (%) 80-100 Frequency (GHz) 2.1, 28

Speed (Mph) 50 Distance (m) 100

V2V Scenario Highway Vehicle State Line-of-Sight

C. Learning Environment

In this study, our DQN setup employs a fully-connected
neural network as outlined in Table II. We used the Relu
activation function for the hidden layers and opted for the

Adam optimizer. The model starts with an initial learning rate
of 0.001 and the discount factor was set to 0.99. Our replay
buffer has a maximum storage capacity of 10,000 observation
samples, and training is conducted in mini-batches of 128
samples each. We set the episodes as 100. After the training
phase concludes, the model transitions into the execution
phase and is deployed directly within our ns-3 simulation
environment for performance assessment.

TABLE II
HYPER PARAMETERS

Hidden Layer: 3 Activation Function: Relu

Optimizer: Adam Learning Rate: 0.001

Discount Factor: 0.99 Replay Size: 10000

Mini-batch Size: 128 Episodes: 100

V. NUMERICAL RESULTS AND ANALYSIS

To assess how real-world weather conditions affect
mmWave and LTE transmission channels, we integrated
weather data from the Climate Data Online (CDO) database
into our simulations. Specifically, we utilized a year-long
dataset from Blanding Municipal Airport in Utah, spanning
from January 1 to December 31, 2022. This comprehensive
dataset offers values of key climate variables - namely humid-
ity and visibility. We incorporated these climate variables into
our customized ns-3 weather model to generate training data,
which includes the RSSI and short-term throughput metrics
for CVs.

We trained the RL agent on this comprehensive, year-long
dataset to let the agent learn how to make effective channel-
switching choices. The purpose was to construct a highly
adaptive Deep Q-Network (DQN) model that is fine-tuned to
make optimal decisions under various weather conditions. In
our framework, we used cumulative throughput as the reward
metric. This choice of reward function allows the agent to
prioritize decisions that would maximize the overall com-
munication throughput, thereby ensuring Quality of Service
(QoS) under varying environmental circumstances. Through
this mechanism, the agent learns to switch channels to maxi-
mize this cumulative throughput, offering a more reliable and
robust communication system for CVs.

To verify the viability of our approach, we conducted
a simulation under a one-hour lasting sandstorm. In such
circumstances, vision is poor and CVs need to communicate
with each other continually to ensure safety. The decision-
making process was guided by the DQN model previously
trained on extensive weather data. As depicted in Fig.2,
the experiment specifically underscores the fluctuations in
short-term throughput for vehicles operating in the middle
of a sandstorm. The 5G mmWave throughput is noticeably
compromised to near zero at several time stamps due to the
severe weather conditions, while the 4G LTE manages to keep
the communication alive, although at a lower data rate.

When our DQN-trained agent comes into play, it proactively
switches the communication channel to 4G LTE in response

2024 Workshop on Computing, Networking and Communications (CNC)

454



Fig. 2. Short-term throughput over time without switching.

to the deteriorating weather conditions. The outcomes of our
adaptive channel-switching strategy are depicted in Fig. 3. The
red dots represent the moments when the 4G LTE channel
was selected, occurring 25 times out of 60. By employing
dynamic channel switching, our system reaches a cumulative
throughput of 109 Mbps during the sandstorm, roughly five
times greater than relying solely on 4G LTE, which is only
22 Mbps.

To examine the responsiveness of our DQN agent during
severe weather, we focus on the timing of channel switches.
The one-hour sandstorm intensity oscillates between mild
and severe, and during this period, CVs face approximately
four extreme sandstorm episodes. Examining the timestamps
closely, it is evident that our DQN agent successfully transi-
tions from 5G channel to the 4G LTE channel within at most
one minute when the sandstorm turns severe, and switches
back to 5G channel within at most one minute when the
sandstorm turns mild. This underscores our model’s capability
to promptly alternate between 5G mmWave and 4G LTE when
faced with severe weather conditions.

Fig. 3. Short-term throughput over time with channel switching.

Additionally, our dynamic channel-switching approach
largely eliminates the possibility of total service blackouts that
could last several minutes during sandstorms if the vehicles
were only using 5G mmWave. This feature enhances the safety
of V2V interactions by ensuring continuous although reduced
communication through 4G LTE channel. Our approach can
mitigate the risk of dangerous accidents resulting from com-
plete communication failures.

VI. CONCLUSION

As the trend of global warming accelerates, the world is
witnessing an increase in the frequency of severe weather
events such as hurricanes and storms. Resilient and efficient
V2V communication systems are needed to cope with harsh
weather conditions and ensure the safety of drivers. In this
paper, we first point out that the high-throughput, low-latency
5G mmWave technology is highly susceptible to performance

degradation under extreme environmental conditions, while
the slower 4G LTE technology is more resilient in such
scenarios. Therefore, to reconcile these trade-offs, we propose
a DRL-driven framework that smartly navigates the choice
between 5G mmWave and 4G LTE channels. Our model
learns to adaptively switch between channels to sustain a
reliable, high-throughput communication link between CVs.
The channel switch occurs within a minute of the onset of
severe weather, highlighting our agent’s ability to respond in
a timely fashion. Simulation results show that our solution
achieves higher cumulative throughput without experiencing
total service dropouts, even under severe weather conditions
like sandstorms. These outcomes confirm that our solution is
practical and beneficial to real-world vehicular networks. One
potential future work direction involves the integration of real-
time weather prediction algorithms with multi-agent systems,
through which we aim to enhance the reliability and reduce
the latency of our approach.
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