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Abstract—Synthetic data generation has recently garnered
substantial attention in the research community. This method
crafts data that mirrors authentic datasets and proves invaluable
for machine learning endeavors, including classifier training and
prediction tasks. Moreover, synthetic data addresses challenges
related to data scarcity, preserving privacy, and analyzing special-
ized domains like healthcare and finance. This study introduces
an approach to produce synthetic time series data on edge devices,
leveraging the capabilities of Generative Adversarial Networks
(GANs). This opens avenues to harness generative machine learn-
ing to tackle edge computing challenges. Our approach utilizes
a GAN to create time series data that closely resembles datasets
found in the real world. Furthermore, this GAN is implemented
on an edge device, enabling real-time synthetic data generation.
Our findings affirm the GAN’s efficacy in producing data closely
aligned with actual time series datasets, highlighting the potential
of GANs in facilitating real-time synthetic data creation on edge
devices for various machine learning applications.

Index Terms—Edge computing, GAN, Synthetic time series,
Machine learning

I. INTRODUCTION

Time series synthetic data refers to artificially generated
sequences of data points ordered in time. Such data is par-
ticularly valuable in domains like finance, healthcare, and
energy, where understanding temporal patterns and making
future predictions are essential [1]. Creating synthetic time
series data can be crucial when historical data is limited and
confidential or when there is a need to simulate potential future
scenarios that haven’t occurred yet. Advanced machine learn-
ing techniques are now being employed to produce synthetic
time series data that closely mimic the statistical properties
of real-world temporal datasets. Researchers and businesses
can conduct meaningful analyses, develop predictive models,
and test strategies without compromising data privacy or
integrity by ensuring high-quality synthetic data that respects
the intricacies and dependencies of time series.

Generative machine learning, particularly models like Gen-
erative Adversarial Networks (GANs) [2], Variational Au-
toencoder (VAEs) [3], and more, has revolutionized data
synthesis in several significant ways [4], [5]. This has led to
the creation of images, sounds, and textual content that are
often indistinguishable from genuine content to the unaided
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eye or ear. However, generating synthetic time series data
is a more challenging task [6]. Time series data is often
characterized by complex dependencies between data points,
and the temporal nature of the data makes it challenging to
generate realistic synthetic data. As a result, the generation of
synthetic time series data has been a relatively under-explored
area of research. However, recent advances in generative
machine learning have made it possible to generate synthetic
time series data that closely follow the statistical properties
of real-world time series data. This has led to the creation
of synthetic time series data that can be used for various
purposes, including data augmentation, anomaly detection, and
data simulation.

Machine learning on edge devices is becoming increasingly
popular [7]. Edge devices are small, low-power devices that
can perform machine-learning tasks on the edge of the net-
work. This allows for faster processing and lower latency.
However, edge devices are often resource-constrained, mean-
ing they have limited memory and processing power. This
makes it challenging to run complex machine-learning mod-
els on edge devices. Researchers have explored application-
specific implementations of machine learning like SVM [8],
CNN [9], RNN [10], LSTM [11] in an embedded device
setting. But, to our knowledge, there has been no research
on generating synthetic time series data on edge devices. This
paper presents a novel approach to generating synthetic time
series data on edge devices using generative machine learning.
The proposed approach uses a generative adversarial network
(GAN) to generate synthetic time series data on edge devices.
The proposed approach is evaluated on a dataset of stock price
prediction. The findings indicate that the suggested method
can produce synthetic time series data that accurately reflects
the statistical characteristics of genuine time series data. This
unveils the opportunity to investigate generative models for
application-specific analysis in edge computing environments.

II. METHODOLOGY

Our approach unfolds in four stages: data preprocessing,
model training, optimization, and deployment to edge devices.
Initially, the data is cleansed by removing outliers, normalized,
and segmented into training and testing sets. We then employ
a Generative Adversarial Network (GAN) to train on this
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Fig. 1: A standard architecture of a Generative Adversarial
Network (GAN) [12]

prepared dataset. Following training, the model is optimized
for edge deployment by refining its architecture and reducing
parameters. Lastly, the streamlined model is deployed on an
edge device, and its performance is validated against the test
dataset.

A. Generative Adversarial Networks

Generative modeling, an unsupervised learning approach in
machine learning, focuses on identifying and learning patterns
within input data. The objective is to allow the model to
produce new instances that closely resemble those from the
original dataset. Generative Adversarial Networks (GANs)
ingeniously handle generative modeling by reframing it as a
supervised learning challenge. This involve a pair of networks
– a generator G and a discriminator D – that are trained in
tandem. The typical GAN architecture is shown in Figure 1.

The generative model in this context is designed to mirror
the data’s distribution. It is trained with an aim to increase the
likelihood of the Discriminator erring in its judgment. Con-
versely, the Discriminator operates by gauging the probability
that a given sample is sourced from the actual training data
rather than being produced by the Generator. GANs operate
on the principles of a minimax game: the Discriminator works
to reduce its reward V(D, G), while the Generator endeavors
to increase the Discriminator’s loss, effectively maximizing its
own. The following mathematical expression can encapsulate
this dynamic:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z)))]
(1)

In this equation:

• E represents the expectation operator.
• x ∼ pdata(x) indicates samples drawn from the real data

distribution.
• z ∼ pz(z) denotes noise samples taken from a particular

distribution, commonly a Gaussian distribution.
• D(x) is the discriminator’s estimation of the probability

that the real data instance x is genuine.

• D(G(z)) is the discriminator’s estimation of the proba-
bility that a fabricated instance (created by the generator
from noise z) is genuine.

The discriminator, within the GAN architecture, produces
an output termed as D(x). This output essentially represents
the probability that the data point xx is drawn from the real
dataset. In simpler terms, D(x) signifies how confident the
discriminator is that xx is genuine and not synthetically pro-
duced. The primary mission of the discriminator is to enhance
its ability to accurately discern and classify the genuine data
from its synthetic counterparts. It thrives on its capacity to
recognize real data as true and generated data as fabricated.

On the flip side, the generator has a contrasting objective.
It endeavors to concoct data that, when passed through the
discriminator, garners high D(x) values. In essence, the gener-
ator’s success is measured by how convincingly it can trick the
discriminator into believing that the synthetic data it creates
is indistinguishable from authentic data.

This interplay between the generator and discriminator re-
sults in a strategic game reminiscent of the classic ”minimax”
contests in game theory. Here, the generator is on a quest
to minimize the value V, which represents its discernibility,
while the discriminator, in opposition, is striving to maximize
V, indicating its success rate in distinguishing real from fake.

The fine-tuning and balancing of these intertwined objec-
tives are achieved through an iterative process. Specifically, an
alternating gradient descent algorithm is employed, ensuring
both entities—generator and discriminator—progressively im-
prove and adapt in response to each other, aiming for an equi-
librium where the generator produces near-perfect synthetic
data and the discriminator becomes adept at its distinguishing
task.

B. Model Architecture and Offline Training

To work with time series data, we need a model that
takes dependencies between time series data into account and
employs an adversarial learning architecture. Long-Short Term
Memory(LSTM) is a type of recurrent neural network that
can learn long-term dependencies between time series data
[13]. This proficiency is derived from their inherent capacity
to retain memories of preceding events, thereby giving them
a remarkable aptitude for comprehending the influence of
historical data points on forthcoming values. Unlike traditional
Recurrent Neural Networks (RNNs), which falter with long
sequences due to issues like vanishing or exploding gradi-
ents, LSTMs use gating mechanisms to efficiently process
extended temporal dependencies. This capability ensures they
can determine patterns across the varied time interval, which
is vital for tasks like forecasting or anomaly detection in
sequential data. Moreover, LSTMs can understand and map
relationships in sequential data directly, eliminating the need
for manual feature extraction and can seamlessly integrate with
architectures like Convolutional Neural Networks (CNNs) to
capture both temporal and spatial features. Their flexibility
also means they can navigate multivariate time series and
predict across multiple future time steps. However, while
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their advantages are considerable, it’s crucial to understand
that LSTMs aren’t a one-size-fits-all solution. Depending on
the data’s nature and computational constraints, sometimes
simpler models might be more appropriate. But for intricate,
long-sequence time series challenges, LSTMs stand out as a
robust choice.

Consequently, based on its adeptness at handling time-
series, we employ LSTM as the foundational architecture for
both the generator and discriminator within our setup. This
choice stems from LSTM’s intrinsic ability to capture long-
term dependencies, making it particularly suitable for our
requirements. The training process for these two components is
conducted in an adversarial setting. Figure 2 shows the high-
level design of our proposed model. The main goal of this
model is to learn the normal distribution of a given dataset
using adversarial training. The adversarial methodology en-
sures that both entities iteratively improve in tandem, with
each striving to outperform the other, ultimately enhancing
the model’s overall efficacy.

Fig. 2: Flow diagram illustrating the training process of the
proposed GAN model

C. Edge Deployment

The GAN model has been designed with the capability
to grasp the intricate distribution of temporal parameters,
enabling it to efficiently generate synthetic data. Following
the completion of offline training, we specifically extracted the
generator component, as its primary role is centered around
data synthesis. However, a challenge emerges due to GAN’s
inherent complexity; its training process necessitates extensive
computational resources, often limiting it to be executed on
robust, high-performance computing systems. While training
GANs require high-performance computing, deploying pre-
trained GAN models for inference or generating data is more
feasible. This approach leverages the strengths of both cen-
tralized training resources and decentralized edge processing.

Fig. 3: iBUG: Custom made AI enabled edge device [14]

The model size of GANs, especially in the case of deep
architectures, can be substantial. Edge devices have limited
storage capacity, and deploying large models is impractical
in terms of storage requirements and memory usage. We
implemented structural simplifications to enhance the de-
ployability of the model on edge devices, recognizing the
inherent resource constraints typically associated with such
platforms. In order to optimize the model, we incorporated
two primary techniques. First, model pruning was employed
to effectively reduce the overall size of the model. Identify
and prune redundant or less important neurons, connections,
or layers from the GAN model. Pruning reduces the model’s
size by eliminating components that contribute less to its
overall performance. Second, we utilized model quantization,
opting specifically for float16 quantization. The weights of
the GAN’s generator and discriminator are converted from
float32 to float16. This reduces the amount of memory needed
to store these parameters. The intermediate activation values
during inference are also converted to float16. This approach
not only reduced the model’s size by half but also ensured that
the accuracy remained largely unaffected, thereby striking a
balance between size and performance. Moreover, the reduced
memory requirements also improves the energy efficiency and
reduce memory access times, which leads to faster inference.
After quantization, the model might experience a drop in
performance due to the reduced precision. The quantized
model is fine-tuned using a smaller learning rate to help it
adapt to the quantized representation.

For edge deployment we used iBUG board, developed by
the authors [14], which is a low-cost, low-power, and high-
performance edge device. The device boasts a dual-core ARM
Cortex-M0+ processor clocked at 133 MHz, coupled with
246 KB of SRAM and 2 MB of onboard flash memory.
Additionally, for wireless interactions, it is fitted with a 2.4
GHz IEEE 802.15.4 radio module. A visual representation of
the iBUG’s physical layout can be found in Figure 3.

D. Dataset

To rigorously assess the efficiency of our introduced model,
we utilized a financial time series dataset, specifically curated
from Yahoo Finance. This dataset is comprehensive, presenting
six integral attributes: Open, High, Low, Close, Adj Close, and
Volume. Each of these attributes is encapsulated as integer
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values, ensuring precision and clarity in data representation.
Spanning a noteworthy period from 1 January 2017 to 24
January 2021, the dataset meticulously captures 1,022 distinct
financial events. A salient feature of this dataset is its com-
pleteness, with no data points missing, ensuring continuity and
consistency in the analysis. To prepare the data for our model,
it underwent a normalization process using the MinMaxScaler,
a technique that transforms features by scaling them to a
given range. This ensures that all the features contribute
equally to the model’s performance. With an intention to set a
clear distinction between training and validation, the data was
strategically bifurcated into an 80:20 ratio. To ensure clear
separation for training and validation, the data was split in an
80:20 ratio. The 80% was used for training and adjusting the
model’s parameters, while the 20% was utilized for evaluating
the model’s predictive performance.

III. RESULTS AND DISCUSSION

In this paper, we have created an LSTM-based GAN model
to generate synthetic time series data. Then we have deployed
the model on a resource constraint edge device to evaluate
the data generation performance at the edge. For qualitative
evaluation, we compare the generated data with the real data.

To comprehensively analyze the distribution and diversity
between real and synthetic datasets, two powerful visualization
techniques, PCA and t-SNE, are employed. t-SNE is partic-
ularly adept at mapping high-dimensional data into 2D or
3D visual spaces, thereby offering an intuitive yet qualitative
understanding of data structures and inherent relationships. Its
visualization often emphasizes clear cluster formations, and
while these visual patterns provide valuable insights, t-SNE
does not intrinsically yield quantitative analyses. Thus, for
deeper insights or metrics, one might consider supplementing
t-SNE with additional quantitative methods.

Fig. 4: PCA (left) and t-SNE (right) results of the original data
(blue dots) and synthetic data (red dots)

On the other hand, PCA, or Principal Component Analysis,
serves as a quantitative approach to dimensionality reduction.
It harnesses linear algebraic principles to distill vast datasets
into more manageable forms by identifying the directions
(or principal components) that capture the most variance.
Each of these components contributes a quantifiable amount

to the dataset’s variance, allowing users to make informed
decisions on how many components to retain. For instance,
one might opt to preserve components that account for a
cumulative 95% of the original data’s variance. While PCA
doesn’t serve as a ”metric” in the conventional sense like
accuracy or precision in classification scenarios, it undeniably
offers valuable numeric insights into the intricate structure and
inter-relationships present in the data.

The outcomes derived from the PCA and t-SNE analyses are
distinctly illustrated in Figure 4 . In this visual representation,
each individual point encapsulates the mean value derived
from the six distinct parameters present within the dataset.
Distinguishing between the data types, real data points are
marked with red dots, while the synthetic ones are highlighted
with blue dots. The proximity and overlap between these red
and blue dots provide a clear visual metric. By meticulously
observing this overlap and the spatial distribution of these
points, we can derive insights into the model’s performance.
Not only does it indicate the accuracy of the synthetic data
generation but also underscores how well the generated data
emulates the inherent patterns and characteristics of the real
data. This visualization thus serves as a compelling tool for
a more nuanced evaluation of the model’s capabilities in
generating synthetic data that closely mirror real-world data
points.

Fig. 5: Real vs. generated comparison of all the parameters in
the dataset

In Figure 5, every visual representation provides a compar-
ative analysis, plotting the real data against the generated data
for individual parameters within the dataset. This comparative
exercise encompasses data that’s been generated both by
computer and edge device. The blue line represents the real
data, the green line presents GAN-generated data and the
orange line is the data collected from the edge device. By
closely examining these visualizations, we can observe that
the generated data aligns with the distribution and patterns
observed in the real data. The generated data appears to capture
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the nuanced trends and inherent characteristics of the real data
with commendable accuracy, underscoring the efficacy of the
generation methodologies employed.

The results indicate a significant similarity between the
synthesized and the original data. Both PCA and t-SNE anal-
yses affirm this similarity between real and synthesized data.
This suggests that the GAN model capably produces synthetic
time series data mirroring real datasets. The implication is
promising, highlighting the potential of employing GANs in
edge devices to craft synthetic data that aligns with real-world
metrics for various machine-learning applications.

Synthetic data generation through GANs has emerged as a
powerful tool, especially for anomaly detection within time
series datasets [15]. Current implementations predominantly
rely on centralized server-based systems which, while ef-
fective, often involve heavy computational overheads. For
instance, in industries like manufacturing, real-time detection
of anomalies in equipment operation data can prevent costly
downtimes. Similarly, in finance, instantaneous identification
of irregularities in transaction data can thwart fraudulent
activities. However, the lag introduced by sending data to
centralized servers for processing can sometimes hinder real-
time responses in such scenarios. Thus, transitioning these
processes directly to edge devices, closer to the source of data
generation, could significantly reduce this lag.

In upcoming research initiatives, the potential of utilizing
generative synthetic data techniques on edge devices for
immediate anomaly detection is an intriguing direction. Such
an approach could provide industries with instant analytical
insights, leading to accelerated decision-making and improved
operational effectiveness. Particularly in edge contexts, notably
within the IoT sphere, the real-time augmentation of data using
GANs becomes essential. An example can be observed in the
healthcare sector, where synthesizing medical data directly on
the device can be instrumental for instantaneous diagnostics.
Given the fluidity of edge computing environments, a signif-
icant research trajectory could be the development of GANs
capable of dynamically adjusting their structures or parameters
in response to resource availability or evolving data trends.
Furthermore, considering the vulnerability of edge devices to
adversarial intrusions, fortifying the resilience of GANs in
such scenarios, along with crafting countermeasures against
potential security breaches, is of paramount importance.

IV. CONCLUSION

The results presented in this article are relatively basic
compared to the capabilities of GANs to generate synthetic
data with real-world values. This data can be used for machine
learning tasks, such as training classifiers and predicting out-
comes. It can also be shared in a privacy-preserving manner,
which means that the original data remains confidential. The
results presented in this article are based on a simple GAN
architecture. However, more advanced GAN architectures can
generate more realistic and complex synthetic data. For ex-
ample, conditional GANs can be used to generate synthetic
data that satisfies certain constraints, such as having a specific

distribution or following a particular pattern. The use of GANs
to generate synthetic data has a number of advantages. First,
it can be used to create large amounts of data, which can be
helpful for machine learning tasks that require a lot of data.
Second, it can be used to generate data that is similar to real
data, which can improve the performance of machine learning
models. Third, it can be used to share data in a privacy-
preserving manner, which can be essential for protecting
sensitive data. Overall, the results presented in this article are
promising. However, there is still much potential for GANs to
be used to generate synthetic data with real-world applications
for machine learning tasks and sharing in a privacy-preserving
manner.
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