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Abstract—We design a transfer learning assisted cascaded 
deep neural network (TL-CDNN) for multi-task optical 
performance monitoring in a WDM system. The method can 
decrease training resource and is robust to interference in 
WDM systems.  
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I. INTRODUCTION  
With the explosive growth of transmitted data, the next 

generation optical networks should be with more flexibility 
in managing the most of system parameters. The optical 
performance monitoring (OPM) technology, which can 
measure the critical system parameters such as optical 
signal-to-noise ratio (OSNR), bit rate and modulation format 
etc., is one of the keys to ensure the reliability of the next 
generation networks. 

The wavelength division multiplexing (WDM) 
technology is the most widely used capacity expansion 
method. However, the OPM schemes for WDM systems 
have been less studied. If the current ordinary OPM schemes 
for a single channel are directly applied to a WDM system 
with multiple channels, the analytical model training 
processes have to be repeated for each channel individually. 
It would be excessively time-consuming.  

Over the past decade, deep learning has attracted the 
attention of researchers in the OPM field which can be used 
for the accurate monitoring of a certain key parameter [1-3] 
or multiple parameters simultaneously [4-6]. It has also been 
combined with various neural network architectures for the 
OPM tasks in different transmission scenarios for the 
enhancement in efficiency and performance [7-9].  

Transfer learning (TL) has become a hot spot in deep 
learning because of its ability to apply knowledge and skills 
learned in previous tasks to novel tasks [10]. So once the link 
conditions change, transfer learning can greatly reduce the 
required amount of training samples and re-training time. 
Existing works on TL deployment in OPM tend to focus on 
analyzing the performance of conventional convolutional 
neural networks, and transfer the prior knowledge learned 
from traditional computer vision database ImageNet to 
various propagating modes [11], or building models on real-
time variable WDM channels to complete the migration 

between different modulation formats and transmission rates 
[12]. However, the generalization of pre-trained models 
based on single-channel and the robustness of fine-tuned 
models based on complex WDM channels have not been 
studied in details. 

The similarity between single-channel systems and 
WDM systems reminds us the possibility to apply transfer 
learning in a WDM system. To the best of our knowledge, 
we are the first so far to apply transfer learning from a single-
channel system to a multi-channel WDM system. We use the 
data collected in the single-channel system as the source 
domain, train the model in advance, and then use the data of 
each channel in the WDM system to fine-tune model 
parameters and complete the OPM task of each channel.  

In this paper, we propose a transfer learning assisted 
cascaded deep neural network (TL-CDNN) for joint 
modulation format identification (MFI)-OSNR monitoring 
task in a three-channel WDM system. We deal with four 
modulation formats: 8QAM, 16QAM, 32QAM and 64QAM. 
Considering the aging of devices and the system flexibility, 
we also deal with the situation of different signal power in 
three channels. The results demonstrate that the design can 
greatly decrease the training dataset size while maintaining 
good performance and exhibits strong robustness to the 
interference caused by the crosstalk between adjacent 
channels which is unique in WDM systems.  

II. OPERATING PRINCIPLE 
In this section, we will discuss details about the 

extraction of selected signal features and TL-CDNN model 
used in our monitoring task. After simple compensation for 
linear impairments by modulation format independent 
algorithms, the signals at the receiver will be used to extract 
data features. Due to the significant impact on the shape of 
amplitude histograms (AHs) brought by different 
modulation formats and OSNR values, AHs are suitable to 
be chosen as the input features of both MFI and OSNR 
estimation tasks.  

A deep neural network is composed of an input layer, 
hidden layers and an output layer. The neurons of each layer 
are fully connected with the neurons in last layer. Through 
multi-layer feature extraction and mapping, the neural 
network can fit highly complex nonlinear relations. The 
output of the k-th layer neurons can be written as: 
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where m
kY R∈  represents a vector consisting of the values of 

m neurons in the k-th layer; 1
n

kY R− ∈ represents a vector 
consisting of the values of n neurons in the last layer.

m n
kW R ×∈  is a weight matrix with the shape m n× ; 

kf  
represents the activation function used at the k-th layer. 

For the MFI task, the parameter to be observed are 
discrete, corresponding to the classification task in deep 
learning with cross-entropy [13] as the loss function. For the 
OSNR estimation task, the parameters to be observed are 
continuous, corresponding to the regression task in deep 
learning with mean square error (MSE) [14] as the loss 
function.  

Previously, different networks have been used for OSNR 
estimation or MFI individually. However, in this paper, we 
have designed a cascaded deep neural network (CDNN) for 
joint OSNR estimation and MFI. As shown in Fig. 1, the 
CDNN consists of a classification network followed by a 
regression network, and the amplitude histogram data is the 
common input of these two-level networks. The first-level 
network is used to identify the modulation format of the 
input sample and then automatically selects the second-level 
network to estimate the OSNR value according to the output 
label. In this paper, each amplitude histogram is divided into 
80 bins, so the number of neurons in the input layer of two 
networks is 80. The composition of hidden layers used to 
extract features in the two network is the same, the number 
of neurons in the hidden layers is 200 and 100, respectively, 
and the nonlinear activation function used by each neuron is 
LeakyReLU. Moreover, since the output of neurons is 
naturally continuous and interval free, we need to use 
Softmax function as the activation function of the output 
layer of the classification model to transform the output 
value into a multi-dimensional vector with continuous 
values between [0, 1], representing the probability that the 
input sample belongs to various types. In the output layer, 
the number of neurons in the MFI model is 4, corresponding 
to four modulation formats. The number of neurons in the 
OSNR estimation model is 1, representing the OSNR value. 

However, in existing OPM techniques, training the 
optimal parameters of a deep learning model requires large 

numbers of training samples with same distribution as the 
test set. Once the settings of the transmission link change, it 
needs to be retrained. In a WDM system, due to the 
inevitability of inter-channel interference, distinctions exist 
between different wavelength channels. If multiple channels 
are monitored simultaneously, the model training should be 
performed for each individual channel. This costs training 
samples and training time multiplied, which is quite 
resource-consuming. 

To solve this problem, we introduce transfer learning. 
Taking the data collected in a simple single-channel system 
as the source domain, only a small amount of data from 
different WDM channels in the target domain need to be 
collected. Transfer learning can reduce the dataset size while 
ensuring the OPM performance by obtaining relevant 
knowledge from the source domain.  

Besides, there are two situations resulting in the 
deterioration of transmission signal quality: (a) the decrease 
of the signal power in the channel under test, caused by 
system aging or temperature changing; and (b) the 
aggravated interference from the adjacent channel caused by 
the higher signal power in the adjacent channel due to the 
flexibility in signal power across different WDM channels in 
future optical networks. These two situations are both taken 
into account to verify the performance of the proposed OPM 
method in the WDM system in this work. 

III. SYSTEM SETUP AND RESULTS 

A. System setup 
Based on the simulation software OptiSystem, we use a 

pseudo-random binary sequence (PRBS) to digitally 
simulate 8QAM, 16QAM, 32QAM and 64QAM with the 
sequence length of 152 1− . The self-phase modulation and 
cross-phase modulation are introduced into the transmission, 
then the modulated signals will be launched to a span of 
single-mode fiber (SMF) whose transmission length is 3*80  
km, dispersion parameter is 16.75 ps/nm/km, nonlinear 
coefficient is 20 22.6 10  m /W−×  and attenuation coefficient 
is 0.2 dB/km. The generated signals are transmitted in a 
single-channel system and a three-channel WDM system 

 
Fig. 2. (a)Schematic diagram of the single-channel system; (b)schematic 
diagram of the three-channel WDM system (EDFA: Erbium-doped fiber 
amplifier; MUX: multiplexer; DE-MUX: demultiplexer). 

 
Fig. 1. CDNN structure with AH data as input and the result of class task 
will be used to select OSNR estimation module. 
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respectively. The data collected from the single-channel 
system is used as the source domain, as shown in Fig. 2(a). 
The data collected from the WDM system is used as the 
target domain, as shown in Fig. 2(b).  

At the transmitting side of the single-channel system, the 
central wavelength of the laser is 193.4 THz and the line 
width is 100 kHz. At the transmitting side of the three-
channel WDM system, the central wavelengths of the three 
lasers used are 193.3 THz, 193.4 THz and 193.5 THz, 
respectively, and the line width is also 100 kHz. The channel 
at 193.4 THz in the WDM system is selected as the channel 
under test (CUT) for data collection. After the transmitter 
modulation is completed, optical signals are coupled to the 
SMF for transmission by a wavelength division multiplexer. 
There is a pre-amplifier before entering the fiber, and an 
EDFA in each fiber span.  

To demonstrate the generalizability of transfer learning, 
the signal transmission parameters such as the symbol rates, 
the states of polarization and the OSNR ranges are selected 
differently in the source domain and the target domain. The 
signals transmitting in the single-channel system adopted in 
this paper are in a low transmission symbol rate with single 
polarization (SP). In the single-channel system, the symbol 
rates of four modulation formats are unified as 10 Gbaud and 
the OSNR values of SP-8QAM and SP-16QAM gradually 
increase from 13 dB to 22 dB at 1 dB step, while the OSNR 
values of SP-32QAM and SP-64QAM gradually increase 
from 16 dB to 25 dB also at 1 dB step. To further improve 
the transmission system capacity, we use dual polarization 
(DP) signals in the three-channel WDM system. We set the 
symbol rates of DP-8QAM\DP-16QAM and DP-
32QAM\DP-64QAM as 35 Gbaud and 25 Gbaud, 
respectively. The OSNR values of 8QAM and 16QAM 
gradually increase from 18 dB to 27 dB at 1 dB step, while 
the OSNR values of 32QAM and 64QAM gradually increase 
from 23 dB to 32 dB also at 1 dB step. 

After compensation by modulation format independent 
algorithms such as chromatic dispersion (CD) compensation, 
timing recovery and constant modulus algorithm (CMA) 
equalization, the receiver collects 50 AHs for each OSNR 
value in a specific modulation format. There are a total of 
2000 (=4*10*50) AHs in the dataset for each certain system 
setup, and these data will be fed into the proposed TL-CDNN 
model for off-line DSP processing. Once the modulation 
format has been determined successfully, the modulation 
format dependent algorithms can be optimized.  

 The biggest difference between the single-channel 
system and the three-channel WDM system is that the 
channels in the WDM system do not exist independently, but 
will be interfered by other channels, especially adjacent 
channels. In order to more comprehensively verify the 
applicability of the proposed method to WDM systems, we 
set up three scenarios to collect data (a) the laser emission 
power of the three channels is same; (b) the transmitting 
power of a channel adjacent to the CUT is 6 dBm higher and 
the scenario is denoted as delta_p_6; (c) the transmitting 
power of the CUT is 3 dBm lower than the other two 
adjacent channels and the scenario is denoted as CUT_-3. 

B. Results and discussion 
To verify the impact of transfer learning, we compare the 

requirements in the training samples of CDNN models with 
TL and without TL. When the laser emission power of the 
three channels is consistent, from a dataset with a total of 
2000 samples in the target domain, we took 5% to 70% AHs 
for training at 5% growth step. As shown in Fig. 3(a), after 
100 epochs, for the MFI task, both methods can achieve 100% 
recognition rate eventually. To converge to 100%, only 200 
AHs are needed with the method using TL and 1400 AHs are 
required for the method without TL, respectively. For the 
OSNR estimation task, the error of the method with TL is 
always much smaller than that of the method without TL. 
And only 100 AHs are enough for the method with TL to 
reduce the root mean square error (RMSE) to lower than 1 
dB, while the method without TL needs 1300 AHs to ensure 
this value. And Fig. 3(b) shows the accuracy and RMSE 
versus for four modulation formats when the amount of 
training AHs is sufficient. This is enough to demonstrate that 
the introduction of TL can significantly reduce the cost while 
guaranteeing the OPM performance, and only a small 
amount of data in the target domain to complete the OPM 
work. 

Fig. 4 shows how the performance of CDNN models 
with TL and without TL varies with the training sample size 
when multiple channels in the WDM system transmit 
unequal power. Although the attenuation of the CUT power 
and the increase of an adjacent channel power can lead to 
deterioration of transmission signal quality, it is obvious in 
Fig. 4 that CDNN with TL always outperform the CDNN 
without TL. The results show that the proposed method can 
still perform well in MFI and OSNR monitoring when the 
channel is disturbed and the quality is poor. 

 
Fig. 4. Accuracy and RMSE vs. the number of training AH of CDNN with 
TL and without TL in the case of (a) delta_p_6 and (b) CUT_-3. 

 
Fig. 3. (a) Accuracy and RMSE vs. the number of training AH of CDNN 
with TL and without TL; (b) accuracy and RMSE vs. four modulation 
formats with TL. 
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IV. CONCLUSIONS 
In this paper, we have proposed a cascaded deep neural 

network with transfer learning for the OPM tasks in a WDM 
system. The results for 8QAM, 16QAM, 32QAM and 
64QAM signals show that using the method with TL, the 
proposed scheme can get a pre-trained model from a simple 
single-channel system to simultaneously complete the MFI 
and OSNR estimation task in a three-channel WDM system.  
By introducing TL, MFI accuracy can reach 100% and 
RMSE value can be ensured lower than 1 dB requiring only 
a small amount of training AHs collected from WDM 
systems. The robustness of the proposed method is also 
proved when the channel signal quality deteriorates due to 
the different signal power in different channels. TL-CDNN 
proposed in this paper provides further research for the 
combination of OPM task and deep learning based on WDM 
systems. 
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