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Abstract—Modernization of energy systems has led to in-
creased interactions among multiple critical infrastructures and
diverse stakeholders making the challenge of operational decision
making more complex and at times beyond cognitive capabilities
of human operators. The state-of-the-art machine learning and
deep learning approaches show promise of supporting users
with complex decision-making challenges, such as those occur-
ring in our rapidly transforming cyber-physical energy systems.
However, successful adoption of data-driven decision support
technology for critical infrastructure will be dependent on the
ability of these technologies to be trustworthy and contextu-
ally interpretable. In this paper, we investigate the feasibility
of implementing explainable artificial intelligence (XAI) for
interpretable detection of cyberattacks in the energy system.
Leveraging a proof-of-concept simulation use case of detection
of a data falsification attack on a photovoltaic system using
XGBoost algorithm, we demonstrate how Local Interpretable
Model-Agnostic Explanations (LIME), a flavor XAI approach,
can help provide contextual and actionable interpretation of
cyberattack detection.

Index Terms—Artificial Intelligence, Cybersecurity, Energy
System, Explainable Artificial Intelligence, Events and Anomaly
Detection, Energy System Security, etc.

I. INTRODUCTION

As energy systems evolve by integrating large-scale clean
energy generation, flexible energy demand, emerging en-
ergy storage technologies, advanced telecommunications, and
software–new cybersecurity risks emerge. There are ample
opportunities for adoption of AI technology to resolve cyber-
security challenges. However, the opacity of most AI solutions
can challenge users to understand and trust the model’s deci-
sions [1]. Lack of transparency and interpretability in AI-based
decision-making systems are critical hurdles in the adoption
of cybersecurity applications including risks of missing out
crucial operational contexts and safety implications. For in-
stance, if an automated cybersecurity intrusion/threat detection
system blocks an IP address, flags a particular communication
stream as compromised, or detects an instance of a data-
stream as anomalous/cyberattack without a clear rationale,
system administrators or operators will not be able to make
an informed decision whether the red flags/detected anomalies
are false positives, a minor threat, or a severe security breach.
This ambiguity or lack of interpretability can lead to improper
action execution, ranging from ignoring real threats to over-
reacting to benign activities. Therefore, trusting an opaque
and unexplainable decision-making system not only increases

the risk of operational difficulties, but also compromises the
overall security of the system.

For AI technologies to be widely adoptable and impactful in
managing these cyber risks will require trustworthy and easily
interpretable explanations for system operators. Adding a layer
of explainability will help to improve operators understanding
of the cyberthreat detection mechanism, bolstering trust and
transparency of the model. The U.S. Department of Energy
initiated a number of programs and initiatives to enhance
cybersecurity and resilience of future autonomous energy
systems, as well as on the nation’s existing critical energy
infrastructure [2]. The Defense Advanced Research Projects
Agency (DARPA) initiated the explainable artificial intelli-
gence (XAI) program in 2017 to enable a deployed machine
learning or deep learning model to explain its decisions to its
user [3]. In parallel to the Department of Energy and DARPA,
a myriad of both federal and private sector initiatives have
emerged aiming to adopt artificial intelligence and machine
learning to address the challenges in cybersecurity domain,
such as the CISA Artificial Intelligence and Machine Learning
for Cyber curriculum, and NIST special publications, technical
notes, and interpretations [4], [5].

II. PRELIMINARIES
XAI is a type of AI technique that helps an AI model to be

transparent and interpretable. In simpler words, the reasoning
behind the model’s decision can be easily understood by
general audiences without expert knowledge. According to
[6], “XAI encompasses Machine Learning (ML) or AI systems
for demystifying black models internals and/or for explaining
individual predictions.” XAI is a growing research domain
among AI researchers and engineers and is being deployed
in multidimensional research areas [7]–[10]. For instance, in
healthcare XAI is being adopted in many areas including med-
ical diagnosis, automate medical coding, monitoring patients
using wearable, risk assessment, personalized medicine and
decision making [11]. In aerospace, XAI is used for improving
decision making processes in critical situations [12].
A. XAI Taxonomy

It is important to learn about the XAI taxonomy to properly
deploy it in the domain-specific application. There are a few
ways to categorize the use of XAI, including based on the type
of explanation, application domain, and the levels of trans-
parency [13]. XAI has previously been classified according to
scope, methodology, usage, complexity, and models [14], [15].
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Based on the type of explanation, XAI can be categorized into
four categories: inherently interpretable models, blended mod-
els, self-explaining models, and post hoc explanations [13].
Based on the level of transparency, XAI can be categorized
into white-box, gray-box, and black-box model [16]. Similarly,
based on application domain XAI categories include medicine,
recommendation systems, and natural language processing
[13]. It is important to understand the XAI taxonomy to enable
effective cybersecurity solutions because of the diverse and
evolving threat landscape, and the variety of machine learning
models being deployed in different cybersecurity solutions.
For instance, as the threats evolve, significant features or
attributes indicative of the cyberattack might evolve as well.
Feature attribution techniques, such as SHAP or LIME can
highlight these concept drifts, hence assuring timely detection
of the novel threats. This knowledge of different categories
of XAI will help address model diversity and domain spe-
cific challenges in cybersecurity research by selecting right
approaches of explanations. For instance, feature visualization
or saliency mapping can help interpreting complex models
adopted in critical cybersecurity applications by highlighting
most important features or sequences.
B. Advantages of XAI in Energy Systems Cybersecurity

XAI can bring transparency and a human-level understand-
ing about the inner workings of complex machine/deep learn-
ing models deployed in the decision-making and safety moni-
toring of energy systems. XAI can facilitate fast and accurate
threat/attack/anomaly detection and enhance incident response
processes because it can provide contextual explanations in
a multidomain environment such as cyber physical energy
systems. Another advantage is that XAI generates a human-
understandable explanation, allowing users, stakeholders, and
asset owners of AI-based solution providers to adopt these
solution products with greater trust and reliability. In addition,
AI models can be protected against attacks, errors, biases,
and many other unforeseen threats arising from the black-box
nature of models by adopting XAI techniques [17], [18].

III. EXAMPLE DEPLOYMENT OF XAI FOR ENERGY
SYSTEM ATTACK DETECTION

In this section, we will present an example use case of lever-
aging XAI to cybersecure an energy system with distributed
energy resources (DERs)–specifically, photovoltaic systems.

A. Experimental Setup

Our study leverages data from a prior research [19].
The foundation of this experiment was a hardware-in-the-
loop (HIL) co-simulation environment, designed to develop
and demonstrate software called DER Management System
(DERMS) that can effectively manage and optimize the inte-
gration of DERs into the power grid. The experiment assumes
that next generation smart meters are hosting a DERMS
algorithm. The smart meter manages and communicates with
the site’s hardware inverters to meet system level goals,
including voltage regulation and a virtual power plant. The
HIL setup emulates a node controlled by the smart meter and
a co-simulation representing the wider distribution network,

including communication and control elements [20]. This
experiment yielded a comprehensive dataset encompassing
system, sensor and operational parameters.
B. Dataset

The data set consists of 35 features with 7, 260 data points
for each of the features. This data set contains emulated
data for electrical measurements (real and reactive control
setpoints, forecast and measured power), co-simulation pa-
rameters (time delay, latency, and stepsize), and timestamps.
For ease of experimentation, we selected 6 relevant features–
namely, forecast and measured power as well as control
setpoints for two unique and functionally different inverters
(labeled ”sma” and ”fron,” respectively).
C. Threat Scenario

We assume a hypothetical threat scenario in which an
attacker targets the photovoltaic plant by injecting anomaly
attacks into the selected data streams. Two types of anomalies
are injected: point anomalies and missing values, as shown in
Algorithm 1. Point anomaly, also referred as global anomaly
occurs when a portion of the dataset is considered anomalous
with respect to or significantly different from the rest of the
dataset [21]. On the other hand, a missing value attack pertains
to the deliberate act of inserting or substituting particular
data points with null or undefined values, mimicking the lack
of data in situations where values are usually present. This
type of attack has the potential to distort analyses, leave
records unfinished, and potentially undermine the credibility of
decisions based on data. In the context of adversarial attacks on
datasets, a missing value attack can be compared to a variant
of data vandalism, intentionally producing lack of information
to impede its effectiveness and trustworthiness.

We replace the selected data point with manipulated values,
or erase the value by replacing it with NaN. The modified
datastream is received by the control center, and may lead the
system operator to an inaccurate decision which can result in
adverse impacts on system stability, equipment damage, or
risk to personnel safety. Algorithm 1 helps injecting point
anomalies and missing value attacks into the dataset and
mimics the real-world data imperfections. This method tests
the robustness and adaptability of the proposed solution model
in handling incomplete or irregular data, which is common in
practical scenarios.
D. Proposed Solution Approach

Figure 1 represents the proposed workflow for adopting XAI
to detect cyberattacks. The solution approach takes historical
measurements and manipulated data streams to train and test
an anomaly detection algorithm. In this experiment, we train
an XGBoost classifier to detect different types of anomalies
and classify them. We then use Local Interpretable Model-
agnostic Explanations (LIME) to explain different decisions of
the model from the testing data, as discussed in the experimen-
tal results section. LIME is a method of explanation with the
aim of identifying an interpretable model over an interpretable
representation that is locally faithful to the predictions of any
classifier models [22]. This technique is leveraged to explain
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Fig. 1: A comprehensive workflow that delineates the progression from data generation and collection to attacks, their subsequent
detection, and the explanatory procedures that elucidate the entire process.

Algorithm 1 Injecting point anomalies and missing value
attacks
Require: Original Data
Ensure: Anomaly Data

0: Assign Total Anomaly Count
0: Point Anomaly Indices ← empty list
0: Missing Value Indices ← empty list
{Inject Point Anomaly attack.}

0: for i← 1 to Total Anomaly Count do
0: Select random row, col
0: Modify value at row, col (e.g., value × 5)
0: Append (row, col) to Point Anomaly Indices
0: end for
{Inject Missing Value attack.}

0: for i← 1 to Total Anomaly Count do
0: Select random row, col
0: Set value at row, col to NaN
0: Append (row, col) to Missing Value Indices
0: end for
0: Add label column to Anomaly Data indicating anomaly

type
0: Plot Anomaly Data
0: return Anomaly Data =0

the predictive model (XGBoost, in this study) since LIME can
analyze specific instances and explains how a specific instance
can contribute to the model’s prediction, rather than giving a
generic explanation as to why this model is behaving in a
particular way [23].
E. Experimental Results

In this subsection, we discuss the experimental results for
anomaly detection, classification, and explanation of attacks
on the photovoltaic system data set.

TABLE I: Classification report for XGBoost classifying at-
tacks and anomalies in photovoltaic system dataset.

Precision Recall F1-score Support

0 (Normal) 1.00 0.98 0.99 84
1 (Point Anomaly Attack) 1.00 1.00 1.00 1284
2 (Missing Value Attack) 0.99 1.00 0.99 84

Accuracy 1.00 1452
Macro Avg 1.00 0.99 0.99 1452

Weighted Avg 1.00 1.00 1.00 1452

Table I represents the performance of the XGBoost method
to classify the attacks to the photovoltaic system data. We can
see that the adopted method successfully detects and classifies
the point anomalies, missing values, and normal datapoints
with high accuracy. Within our analysis, the classification
report generated by the XGBoost model demonstrates the per-
formance metrics across three distinct classes: normal, point
anomaly attacks, and missing value attacks. Precision indicates
the accuracy of positive predictions, showing the majority of
the instances labeled within the classes are correctly predicted.
Recall represents the model’s adeptness at classifying the
majority of genuine instances within a class. This minimizes
the risk of overlooking crucial datapoints. The F1-score acts
as a balanced representation of both precision and recall.
This metric indicates an equilibrium between classifying true
positives and avoiding false alarms. Uniformly high metrics
across the classes add confidence that the model is capable of
distinguishing between normal data and the two attack types.
However, these metrics, while representing performance of
the XGBoost model, do not clarify the reasoning behind the
model’s decisions.

Figure 2 represents the confusion matrix for the attack on
the photovoltaic system dataset with proper representation of
true and predicted labeling. The presented confusion matrix
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Fig. 2: Confusion matrix of the XGBoost algorithm in classi-
fying true and predicted classes.

details the performance of our XGBoost classifier across
three distinct classes: 0, 1, and 2, representing normal, point
anomaly attacks, and missing value attacks, respectively. Each
row of the matrix represents the true class instances, in contrast
to the predicted classes in the columns. Although off-diagonal
cells, with various color intensities, demonstrate misclassifica-
tions, the diagonal cells’ strong color gradient represents true
predictions for each class. A higher number of misclassified
instances is indicated by a more intense color. From the
dataset, it is evident that there is an imbalance. Although
this type of imbalance is common in scenarios like the one
under consideration, where the number of abnormal instances
is likely to be higher than the normal instances, particularly
during an attack, it can still be effectively addressed. Various
techniques can be employed to mitigate this issue, including
resampling methods (such as undersampling the majority class
and oversampling the minority class), generating synthetic
data, and implementing data augmentation strategies. Beyond
immediate numerical insights into true and predicted classes,
the matrix raises a deeper question: Why do specific misclas-
sifications manifest and what intricacies drive them?

As mentioned earlier, we used LIME to interpret the XG-
Boost classifier as a predictive model to differentiate between
normal and anomalous data points. LIME generates a surrogate
model around a particular instance to understand the complex
behavior of the black-box model. A surrogate model is an
approximation method that mimics the behavior of a more
complex model or system. It is often used when the original
model is too computationally expensive or time-consuming
to evaluate directly, or when the original model is a black-
box and difficult to interpret. To assess a specific instance,
LIME perturbs the instance’s feature space and looks for the
variations in the predictions of the model concerned (here,
XGBoost is the model). In this experiment, we applied LIME
to six selected features, which can help us visually understand
and identify a particular feature, which is crucial in classifying
a particular instance as attack (anomalous) or normal.

Fig. 3: Local explanations using LIME for photovoltaic dataset
for 47th instance.

Fig. 4: Local explanations using LIME for photovoltaic dataset
for 31st instance.

In Figure 3, we observe that, among the features assessed,
one feature (PV Pmax forecast sma) strongly stands out,
being represented entirely in red for a particular instance. This
results allows us to infer that this particular feature influenced
the XGBoost model strongly in classifying this particular
instance as anomalous data point because of its high absolute
weight in the LIME explanation. On the other hand, the
three features followed by PV Pmax forecast sma, are in the
green zone contributed toward a prediction of normalcy, which
means that, in this particular instance it can be inferred that
these three features were not manipulated during the attack.
In Figure 4, we see a shift in the influence of the features on
the model’s predictive decision. Among the features evaluated,
five are represented in green (contributing toward deciding
normalcy) and one was represented in red (contributing to
identification of an attack). Thus, we observe an instance-
specific explanation, resulting in enhanced interpretability of
the complex XGBoost model, leading toward building trust in
the model’s decision to detect anomalous datapoints resulting
from a cyberattack.

It is crucial to consider the necessary proof of correctness
for a machine learning-based system that involves XGBoost
and LIME for anomaly detection in a complex dataset that
requires a multifaceted approach. Firstly, XGBooptimizes the
feature selection and decision making through gradient boost-
ing, helping identify the anomalies. Second, the integration of
LIME enhances the interpretability of the model by locally
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approximating its behavior on individual predictions. Finally,
by injecting point anomalies and missing value attacks into
the dataset, the effectiveness of the anomaly detection process
can be tested and validated in a controlled environment.
This ensures that the model is both statistically sound and
applicable to real-world applications.

IV. LIMITATIONS, CHALLENGES, VULNERABILITIES

Even though XAI is increasingly becoming a new frontier
of AI systems’ adaptability, a wide variety of limitations,
challenges, and vulnerabilities pose significant risks, requiring
further extensive research on XAI for energy system cyberse-
curity. The complexity of explanations, the trade-off between
accuracy and interpretability, time and resource-intensive com-
putation, data privacy concerns, adversarial attacks, standard-
ization, and regulation, are a few limitations and challenges of
XAI’s utility for cybersecurity deployments. In addition, the
explanation method needs to capture the physics or complexity
of the energy system and learn the interdependencies to
properly explain the behavior of the models. Additionally,
the explainability is vulnerable to cyberattacks by malicious
actors, including model manipulation, information leakage,
model poisoning, model evasion, model stealing, and many
other machine learning attacks.

V. CONCLUSION AND FUTURE WORK

Complexities and uncertainties of modern power systems
are leading to the deployment of complex machine learn-
ing/deep learning models to address challenges in cyberse-
curity. In this article, we have shown the challenges of lever-
aging machine learning based cybersecurity approaches and
the importance of explainability to address these challenges.
Leveraging the usecase of a cyberattack on a PV plant we
demonstrated how LIME based explanations can help interpret
the results of the XGBoost based attack detection technique.
While this paper provides an initial proof of concept use case
for XAI in energy system cybersecurity, we aim to expand
on this work in the future by investigating different types
of explanations including physics based and counterfactual
explanations. By providing interpretable results this work
aims to accelerate the adoption of machine learning based
technologies in the field and help establish and maintain trust
in these technologies.
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