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Abstract—Through the use of renewable energy, sustainable
Internet of Things (IoT) network can significantly enhance its
sustainability and scalability. However, it faces a unique security
challenge known as malicious energy attack (MEA), which
compromises information security by selectively charging nodes
to manipulate the routing path in the network. To efficiently
counter MEA, we introduce a two-stage deep learning framework
to accurately detect the presence of MEA. It is composed of
a stacked residual network (SR-Net) for classification and a
stacked LSTM network (SL-Net) for prediction. This model is
capable of determining whether an IoT network is under MEA
attacks and identifying the affected nodes. Our experimental
results verify the efficacy of our proposed model, with the SR-
Net demonstrating an average binary cross entropy of less than
0.0590, and the SL-Net showcasing an average mean-square error
of approximately 0.0215. These results suggest a high degree of
accuracy in detecting MEAs, underscoring the potential of our
approach in fortifying the security of sustainable IoT networks.

Index Terms—IoT security, deep learning, malicious energy
attack

I. INTRODUCTION

The exponential growth of Internet of Things (IoT) presents
substantial sustainability challenges, as traditional power so-
lutions like power grids or batteries are not scalable to
accommodate the deployment of a vast number of devices
over extensive areas. To fulfill these sustainability needs,
energy harvesting emerges as a promising solution [1, 2].
It empowers wireless devices by scavenging energy from
the environment, such as solar, RF energy, and biothermal
energy, allowing nodes to operate semi-perpetually without
battery replacements [3, 4]. In this work, we consider the

sustainable IoT network where nodes harvest ambient RF
energy. Although the energy harvesting feature can greatly
enhance the sustainability and scalability of IoT network [5–
7], it arises a unique security challenge known as malicious
energy attack (MEA) [8].

In our previous work [9], we verified the effectiveness of the
MEA and developed a reinforcement learning based method
to enhance the attack performance. The MEA attacker ma-
nipulates the energy distribution of Energy Harvesting Nodes
(EHNs), thereby controlling network traffic to go through
a specific node. A typical process of MEA is presented in
Fig. 1. It takes advantage of the energy-aware properties of
routing protocols within sustainable IoT networks. An adver-
sarial energy source, the energy attacker, selectively charges
specific EHNs. Consequently, these targeted EHNs with extra
energy, will become more active than other normal nodes
to work as data forwarders or information aggregators. By
strategically selecting its victims, the attacker can alter the
routing path to divert data traffic through a compromised node.
The compromised node is a node in the network that was
cracked by the attacker and will passively collect and share
information with the attacker without inserting any malicious
information into the network. The target of the MEA is to
manipulate the routing path to the compromised node as much
as possible. Although the attacker doesn’t directly profit from
the energy attack, it can greatly augment the effectiveness
of other attack methods, such as eavesdropping, black hole,
wormhole, selective forwarding, and Sybil attack.

MEA is an emerging attack method [9] that the counter-
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Fig. 1. The Process of MEA [8]

measure has not been sufficiently investigated in the litera-
ture. In response to this gap, we propose a two-stage deep
learning framework to accurately detect the MEA and identify
the infected EHNs. This MEA detection will assist the IoT
network in avoiding routing paths through the infected EHNs
and further defending against MEA.

The deep learning framework is composed of a stacked
residual network (SR-Net) that classifies whether an IoT
network is under MEA and a stacked LSTM network (SL-Net)
that identifies whether each EHN is infected by energy attack.
In this framework, we utilize the residual energy levels (RELs)
of all EHNs in the network as the input. The REL is highly
relevant to the energy attack and easy to obtain [8]. We divide
the time into uniform slots, within which we measure the
REL, thereby generating a series of time-related REL values.
The MEA detection problem is transformed into a process
of extracting and analyzing features from time sequences.
Benefiting from its advanced capabilities of nonlinear feature
representation and time series sequence prediction, the long
short-term memory network (LSTM) adept at learning long-
term dependencies, is ideally suited to address our MEA
detection problem.

The contributions of this paper can be concluded as follows:

• A two-stage deep learning model is proposed for MEA
detection. It can effectively extract the features of REL
sequence, judge the state that whether the current network
is under MEA and give the prediction results that reveal
which nodes are most likely to be attacked.

• We build a MEA dataset by collecting REL information
from a network that under energy attack. This dataset can
be used to trained the proposed detection model.

• We conduct an evaluation to verify the detection perfor-
mance of proposed method. .

The rest of the paper is organized as follows: Section II
illustrates the IoT network model and the method of generating
the dataset. Section III provide more detail about our proposes
a two-stage DL detection scheme for the MEA problem, and
Section IV presents the evaluation results and analysis. Finally,
we give the conclusion of the whole paper in Section V.

II. IOT NETWORK MODEL AND DATASET CONSTRUCTION

A. IoT Network Model
In this study, we conduct simulations on a large-scale IoT

network consisting of 90 Energy Harvesting Nodes (EHNs)
deployed in a 700 square meter area, as shown in Fig. 2.
The data transmitted by these nodes varies with diverse engi-
neering applications, not confined to the transmission of any
particular type of information like underwater communication
[10] and solar energy information [11]. Instead, it represents a
versatile, non-specific network that operates on RF technology,
adaptable to a wide range of scenarios. To simulate a highly
dynamic large network, the energy harvest rate of each EHN
fluctuates over time.

We assume a node in the original network is been compro-
mised and will share the traffic it forwarded to the attacker.
The compromised node has no malicious interaction with the
network other than passively sharing information with attacker.
The attacker are interested in the traffic originating from a
specific source node to a destination node. The source node
will continuously send traffic to the destination node every
2 time slots. The blue arrow line illustrates the preferred
routing path of the original IoT network without attack. The
compromised node we select to verify the effectiveness of
the attack is in the lower left corner which has very little
opportunity to be selected in the routing path. To assist the
MEA, three spy nodes are scattered around the compromised
node to monitor the network. As shown in Fig. 2, the spy area
for each spy node is marked by a blue dash circle. The spy
node will only record the amount of traffic traveling through
its spy area and report to the attacker periodically. The attacker
will use it to indicate the energy consumption in this spy
area. Similar to the compromised node, the spy node does
not interact with the network in any way other than passive
monitoring. The attacker doesn’t know the location of each
specific EHN but knows the area of the entire network instead.
The attacker will evenly divide the network so that each cell
only contains 0-2 EHNs. The energy harvest rate of each cell
will be recorded before launching the attack.

Fig. 2. IoT Network with 90 EHNs [9]

2024 Workshop on Computing, Networking and Communications (CNC)

418



With all the information collected, the attacker can roughly
estimate the average energy level of each spy area during
the attack. And then train a reinforcement learning model to
help select the 5 optimal attack nodes based on the average
energy level of all spy areas. After training, the model should
accommodate the highly dynamic network environment and
select the most appropriate 5 victim nodes in each time
slot. By providing extra energy to those 5 victim nodes, the
routing path that includes the compromised node is preferred
during the attack. To optimize the attack performance, the
reinforcement learning-based method we used called PG-IEA
that is developed in our previous work [9] to help the attacker
intelligently select victim nodes.

To be noticed, the selection of the compromised node is not
restricted. The attacker can crack any node as the compromised
node. In our simulation, we select a node that most deviated
from the main path just to verify the effectiveness of the
attack. And the strategy to deploy the spy node is just near
the compromised node. With very less information the attacker
knows about the network, we believe the energy status near
the compromised node is more important.

There is no information interaction with the network during
the entire attack process. The spy node is the extra node that is
deployed by the attacker. The only interaction with the network
is energy, the desired resources of the network, which makes
it difficult for the network owner to be aware of.

B. Dataset Construction

To build the dataset, the REL information of the entire net-
work (1x90) is recorded at each period. Eventually, the dataset
comprises Nx90 data points, representing the normalized RELs
of the network over N consecutive periods. The ground truth
is also an Nx90 binary matrix that indicates the attack behavior
for each period by the attacker. In this matrix, value 1 denotes
a victim node, while 0 signifies a normal node. For SR-Net,
the ground truth can be simplified to an Nx1 vector, in which 1
represents that the network is under attack in the corresponding
period, and 0 indicates no attack.

To train the proposed model, we require datasets for both
the attacked network and the normal network. The network
owner can collect normal network dataset without attack right
after network deployment. Subsequently, the network owner
can initiate an attack themselves to collect data from the
attacked network. The resulting dataset consists of a total of
40,000 samples, with the training set, validation set, and test
set distributed in proportions of 7:2:1, respectively.

III. THE DEEP LEARNING NETWORK FOR MEA
DETECTION

A. MEA Detection Process

The basic process of MEA Detection is depicted in Fig. 3.
The input data would be a vector that contains the REL of 90
nodes at each observation period. The output of SR-Net is a
binary results in which 1 represent the network is under attack
and 0 represent no attack happened. If no MEA detected, the
process concludes. Otherwise, input data are further processed

through the SL-Net model. A 1x90 binary vector is produced,
in which the index of value 1 indicates the corresponding
victim node is under attack.

Fig. 3. The Process of MEA Defense

B. Deep Learning Model Design

Fig. 4 depicts the detailed structure of the MEA detection
deep learning network, which comprises two sub-networks: an
SR-Net that classifies whether an IoT network is under MEA,
and an SL-Net that identifies the specific victim nodes.

a) SR-Net b) SL-Net

Fig. 4. Deep Learning-based MEA Detection Model

The parameters of each layer in SR-Net are shown in
TABLE I. The core component of SR-Net is the residual
connection, a powerful skip link method widely recognized for
addressing the challenges of gradient dissipation and explosion
that occur with increasing network depth [12, 13]. The batch
normalization (BN) layer and Max Pooling (MaxP) layer are
also included to facilitate easier convergence during training.
SR-Net is structured with three blocks using a Pooling-Conv-
BN configuration and a flatten layer before the output layer.
The convolution layer utilized here is one dimension, meaning
that the kernel size height is fixed at 1. The kernel number in
TABLE I only reflects width. The ‘same’ padding strategy is
applied to all convolution layers.

As outlined in the prior discussion Section II, following the
selection of a compromised node, an attacker typically chooses
just one spy node within a very shortly time. For efficiency
and convenience, the location of the spy node is generally not
too distant from the compromised node, which narrows down

2024 Workshop on Computing, Networking and Communications (CNC)

419



TABLE I
LAYER PARAMETERS OF SR-NET

Layer name Kernal and Filter Strides Padding
Input * * *

Conv1 Kernal = 1 * 3 and Filter = 8 1 same
BN1 * * *

MaxP1 Kernal = 1 * 2 2 *
Conv2 Kernal = 1 * 3 and Filter = 16 1 same
BN2 * * *

MaxP2 Kernal = 1 * 2 2 *
Conv3 Kernal = 1 * 3 and Filter = 32 1 same
BN3 * * *

MaxP3 Kernal = 1 * 2 2 *
Flatten * * *
Output Dense = 1 * *

the potential choices for spy nodes. Consequently, variations
in energy data collected over a certain period are primarily
manifested as increased energy level or high energy level
in certain specific nodes. A convolutional neural network
can be effectively employed to compress and extract these
distinctive changes in energy patterns, subsequently feeding
this refined feature to the final classification layer for analysis
and classification.

The parameters of each layer in SL-Net are shown in
TABLE II. SL-Net is primarily composed of LSTM lay-
ers and dropout layers. Compared with ordinary recurrent
neural network (RNN), LSTM can better preserve important
information from input sequences and solve the issues of
gradient disappearance and explosion during training with long
sequences [14]. To address potential overfitting, dropout layers
are included after each LSTM layer. Additionally, only the first
two ‘Return Sequence’ states of the LSTM layers are set to
‘TRUE’.

TABLE II
LAYER PARAMETERS OF SL-NET

Layer name Units Dropout Rate Return Sequence
Input * * *

LSTM1 128 * TRUE
Dropout1 * 0.3 *
LSTM2 100 * TRUE

Dropout2 * 0.3 *
LSTM3 90 * FALSE

Dropout3 * 0.3 *
Output Dense = 90 * *

Based on the operational traits of MEA in Section I, it’s
observed that it persistently supplies energy to the targeted
node, leading to a steady increase in energy over a brief time
slot (if a node already occupies the highest energy position,
charging will be made to sustain its energy level near this peak
position.). Utilizing this distinct behavior, the LSTM layer is
designed to monitor and capture the energy fluctuations from
time series data within a specified slot, allowing the detection
system to recognize and retain the unique pattern, enabling it
to identify and confirm which nodes are under attack.

The Fig. 5 present the energy fluctuation of a victim node.
We randomly select a victim node from the dataset to monitor

a) Attack mode diagram b) Energy change diagram

Fig. 5. Energy Fluctuation of Victim Node Under Attack

its energy fluctuations across 50 time slots. The Fig. 5.(a)
indicate the attack pattern dedicated for this node, where white
represent attack and black represent no attack. The Fig. 5.(b)
shows the energy level fluctuation over 50 slots of this victim
node, where the darker the color, the lower the energy level.

As shown, this node is subject to continuous under attack
throughout the two periods (slot 0 ∼ slot 20 and slot 40
∼ slot 50, which are marked by white), and one period
experiences no attack (slot 21 ∼ slot 39, which is marked
by black). In Fig. 5.(b), darker color slot indicate a decrease
trend. The figures clearly show that the energy level of node
is predominantly in a high level when it is under attack. In
the contrast, the node maintain or stay consistently decrease
to the lower energy level when it is not under-attack. By
comparing Fig. 5.(a) and Fig. 5.(b), we can observe a strong
correlation between these energy trends and the attack status
of the node. It’s important to note that the energy level of an
individual node is determined by its intrinsic characteristics
named harvesting rate. Hence, the criterion for identifying
whether a node is under-attack is based on the trend of energy
change within a specific time slot.

C. Training Parameters Setting

In SR-Net, the activation function used after each layer
is Gaussian Error Linear Units (GELU). The learning rate,
batch size, and number of epochs are set to 0.001, 8, and
10000, respectively. Considering that the output of SR-Net is
binary, the binary cross entropy (BCE) is employed as the loss
function.

Regarding SL-Net, the activation function after each LSTM
layer is rectified linear unit (ReLU), while sigmoid is used
between the last LSTM layer and the Dense layer. The learning
rate, batch size, and epochs are configured as 0.0001, 4, and
10000, respectively. Similar to SR-Net, the loss function in
SL-Net is BCE.

Both models were developed using Keras 2.11 with
Tensorflow-gpu 2.5. The model is trained on a workstation
with an Nvidia RTX A6000 GPU.

IV. EXPERIMENTS AND RESULTS

In our evaluation, we utilized the 90 EHNs IoT network
introduced in Section II. In this section, we evaluate the
detection accuracy of the proposed two-stage detection model
in different metrics. The experiment encompassed a total
of 4000 test samples for evaluation. The results illustrate
the proposed model achieves a high degree of accuracy in
detecting MEA.
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A. Evaluation Metrics

Due to the differences in the tasks performed by the two
models, we employed different evaluation metrics to present
the results. These metrics are as follows:

1) Binary cross entropy (BCE): In this study, we use BCE
to evaluate the accuracy of SR-Net. BCE is widely used
to assess the accuracy of the binary classification model. It
can describe the difference between the prediction value and
the ground truth label. The lower the BCE, the closer the
prediction is to the ground truth. The equation of BCE is
shown bellow.

Y = − 1

N

N∑
1

yi ∗ log (p (yi)) + (1− yi) ∗ log (1− p(yi))

(1)
The Y and N represent metrics and the number of samples,

respectively. The yi denotes the label types (it is either 0 or 1
in binary classification), and p (yi) is the probability that the
output belongs to the label yi.

2) Mean-square error (MSE): For SL-Net evaluation, the
MSE is used to describe the accuracy performance. MSE is
commonly used for regression problem to evaluate how well
the predicted value aligns with the ground truth. The equation
of MSE is as follows:

MSE =
1

N

N∑
1

(yi − ŷi)
2 (2)

In this equation, yi and ŷi represents the ground-truth and
predicted value, respectively.

B. Evaluation Result

Fig. 6. Numerical Analysis of SR-Net

We evaluate the accuracy against different samples size of
both SR-Net and SL-Net, and the result for SR-Net and SL-
Net are presented in Fig. 6 and Fig. 7, respectively.

From Fig. 6, it can be observed that the binary cross entropy
of SR-Net slightly increases as the sample size expands. This
is attributed to the increasing diversity of the test samples
with a larger size. However, the overall average BCE remains
below 0.0595, indicating that nearly 94% of the test samples

were correctly classified. A similar trend is observed for SL-
Net, as shown in Fig. 7, where the maximum mean squared
error is below 0.0215, indicating that 98% of the EHNs can
be accurately predicted as either under attack or not. These
results demonstrate that both SR-Net and SL-Net achieve a
high level of accuracy in detecting victim nodes in MEA.

Fig. 7. Numerical Analysis of SL-Net

To provide further insights into the detection performance
of the proposed model, the detection results from 10 randomly
selected tests are presented in Fig. 8 and Fig. 9. In Fig. 8, the
ground truth distribution of 10 samples is depicted, with victim
nodes represented by the color red. Fig. 9 shows the prediction
results on samples corresponding to Fig. 8, where blue blocks
represent the true detected victim nodes and yellow block
means falsely detected victim node. Although there were a few
instances of misjudgment and incorrect predictions, the global
prediction results for the 10 samples demonstrate a relatively
high accuracy.

Fig. 8. The MEA example of ground-truth

V. CONCLUSION

In conclusion, this two-stage deep learning model proposed
in this paper demonstrates a high degree of accuracy in
detecting the victim nodes in MEA, underscoring the potential
of our approach in fortifying the security of sustainable IoT
networks. Furthermore, the proposed model also offers a new
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Fig. 9. The MEA example of final detection

direction for MEA detection strategy to preserve the security
of sustainable IoT networks.

However, While the effectiveness of two-stage detection
method SR-Net and SL-Net contrary to MEA network attack is
commendable, the robustness and resistance under external or
internal threats need additional empirical validation in future
studies. In the future, our group will continuously improve the
proposed model and deploy it into a network to evaluate the
real-time performance in a more comprehensive experiment.
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