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Abstract—Modulation recognition is a fundamental task in
communication systems as the accurate identification of modu-
lation schemes is essential for reliable signal processing, interfer-
ence mitigation for coexistent communication technologies, and
network optimization. Incorporating deep learning (DL) models
into modulation recognition has demonstrated promising results
in various scenarios. However, conventional DL models often fall
short in online dynamic contexts, particularly in class incremental
scenarios where new modulation schemes are encountered during
online deployment. Retraining these models on all previously seen
modulation schemes is not only time-consuming but may also
not be feasible due to storage limitations. On the other hand,
training solely on new modulation schemes often results in catas-
trophic forgetting of previously learned classes. This issue renders
DL-based modulation recognition models inapplicable in real-
world scenarios because the dynamic nature of communication
systems necessitate the effective adaptability to new modulation
schemes. This paper addresses this challenge by evaluating the
performance of multiple Incremental Learning (IL) algorithms
in dynamic modulation recognition scenarios, comparing them
against conventional DL-based modulation recognition. Our re-
sults demonstrate that modulation recognition frameworks based
on IL effectively prevent catastrophic forgetting, enabling models
to perform robustly in dynamic scenarios.

Index Terms—Modulation Recognition, Incremental Learning,
Deep Learning, Online Learning.

I. INTRODUCTION

Modulation recognition is vital in wireless communications
for its role in enabling efficient communication, spectrum shar-
ing, and RF fingerprinting. It ensures reliable data transmission,
facilitates spectrum allocation in shared environments, and
helps identify and secure wireless networks by distinguishing
unique RF signatures, making it an indispensable tool in mod-
ern wireless systems. In the recent years, deep learning (DL)
has led to substantial progress in various fields. Its exceptional
ability to derive meaningful information from complex datasets
has been particularly influential [1]. This capability has also
found effective utilization in communication systems, notably
in modulation and signal recognition tasks. In modulation
recognition, DL models have demonstrated higher accuracy
than traditional methods, particularly in scenarios character-
ized by significant noise, fading, and impairments [2]. This
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underscores the invaluable role of deep learning in enhancing
modulation detection within communication systems, even in
challenging operational conditions.

While DL-based techniques have yielded notable outcomes
in signal recognition, their practical adoption within com-
munication systems remains limited due to several signifi-
cant challenges. One of the main obstacles, is the lack of
generalization and adaptability of the DL models in varying
scenarios, which necessitates continuous retraining and re-
finement to accommodate new tasks or classes. Furthermore,
the requirement for fresh and relevant data adds complexity,
leading to computational constraints and time limitations for
the retraining process. Addressing these challenges is essential
to fully harness the potential of DL methods and integrate them
effectively into communication systems.

Most of the previously proposed DL-based solutions for
modulation recognition are based on an isolation paradigm,
meaning that given a dataset, the DL model is trained, and
then tested on the same dataset. This approach does not
aim at preserving the acquired knowledge for future learning
endeavors and only focuses on the end result. The assump-
tions used in this paradigm makes it only suitable for static
tasks in closed environments, which is far from the dynamic
nature of communication systems with a multitude of varying
parameters.

In this paper, we are specifically focusing on a proposing
a capable DL-based modulation detection model for a more
realistic and dynamic scenario where the receiver encounters
signals with new types of modulation (i.e. new classes) as
the time grows. In such as scenario, a conventionally trained
DL-based modulation detection model has three options, not
adjusting the weights for the new classes, retraining on just
the new classes, and retraining on all previously seen classes
plus the new ones. Option one will simply cause the model
to not be able to correctly classify the new classes, and
thus, lower its accuracy. Option two will result in catastrophic
forgetting [3], drastic degradation of accuracy on previously
learned information when new information is introduced to
the model.Lastly, option three is not efficient as it is time
and resource consuming and requires memory to keep all
the previously seen data, which might not be possible at
all depending on the application and circumstances. None of
these options are suitable which renders conventional DL-based
modulation detection models inapt for the mentioned scenario.
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IL is a machine learning approach designed to continually
update and enhance a model’s knowledge and performance as
it encounters new data over time. Its primary purpose is to
enable models to adapt to changing environments and evolving
datasets without the need for complete retraining and without
losing previously learned information. To overcome the afore-
mentioned issues in highly dynamic communication systems
with memory-constrained receivers, utilization of incremen-
tal learning (IL) for modulation detection has been recently
studied [4]–[6]. Although IL has shown promising results in
modulation detection in these recent studies, many aspects have
still remained unanswered due to limited experiment settings,
which are further discussed in detail in the related work section.
These limited experiments have resulted in a research gap in
the topic of IL-based modulation detection which we aim to
fill.

To this end, in this paper we provide an extensive analysis
on the performance of IL-based modulation detection methods
using multiple different IL algorithms on a large number
of modulation schemes, in different continues and dynamic
scenarios where new signals with new modulation types are
encountered by the receiver. Moreover, we provide a memory
study to determine the performance of IL-based modulation
recognition models under extremely limited memory budgets.

The rest of this paper is structured as follows: Section
II discusses previous papers related to DL-based modulation
recognition and incorporation of IL in modulation recognition.
Section III formulates the DL-based modulation recognition
task in a dynamic class incremental scenario and provides
a brief introduction to incremental learning. In Section IV,
experiment settings are explained and evaluations are provided.
Finally, Section V concludes the paper.

II. RELATED WORK

Modulation and wireless signal detection using DL has
gained a lot of attention over the last few years. Many different
DL architectures have been utilized and tested for modulation
classification such as convolutional neural networks (CNNs)
[2], [7], long shortterm memory (LSTMs) [8], Autoencoders
[9] with competitive accuracy results. While many modulation
recognition papers based on conventional DL models have
been proposed, some papers have focused on providing non-
conventional DL frameworks to improve adaptability and gen-
eralization of the DL-based modualtion recognition models.
In [10], the authors proposed a meta learning framework for
modulation classification to increase generalization and make
the model adaptable to new tasks with a few shots of new
data. In [11], a semi-supervised modulation recognition model
was proposed for domain adaptation to environments where
the datasets are not well-labeled.

In the more recent works, there are some papers that
have applied IL for signal recognition. The authors in [4],
briefly discussed the utilization of incremental learning for
signal classification in a task incremental learning scenario
where the first task contained five types of signals and the
second task contained three new types of signals. In [12],
an IL scheme based on channel separation was proposed for
IoT device identification which was evaluated on automatic-
dependent surveillance-broadcast data. In [13], the authors
applied IL for electromagnetic signal classification by using an

IL algorithm based on class exemplar selection and a multi-
objective linear programming classifier. The authors in [5],
proposed a complex-valued IL framework for signal recogni-
tion, and evaluated their framework in a scenario where the
signal recognition model encounters a second group of signal
types which were unseen in the initial classes. In [6], the
authors utilized an exemplar-based IL algorithm to classify
constellation images of eight signal classes.

Although all these studies have provided valuable results
regarding incorporation of IL in modulation recognition, there
are shortcomings in these papers which we aim to improve.
Some studies have grouped different modulation schemes into
separate tasks in a task incremental scenario [4], which does
not correctly reflect how a modulation recognition module at
the receiver encounters new modulation schemes in dynamic
environments. In some other studies limited number of incre-
mental tasks or classes have been considered [4], [5], which
does not effectively demonstrate the efficacy of utilizing IL
for modulation detection. Other papers have evaluated limited
number baseline and IL algorithms [6].

In this paper, we are conducting a thorough examination
of modulation detection methods based on the IL framework.
We assess their effectiveness by employing a variety of IL
algorithms and subjecting them to a comprehensive evaluation
involving a large number of modulation schemes. These eval-
uations are carried out in two dynamic scenarios, replicating
situations in which the receiver must contend with new mod-
ulation schemes in a class incremental way. Furthermore, we
conduct a memory analysis to assess the performance of IL-
based modulation recognition models when operating under
highly constrained memory sizes.

III. METHODOLOGY

A. Problem Formulation

Fig. 1. Incremental learning modulation classification scenario. Red rectangles
and blue rectangles represent classes of newly and previously learned modula-
tion schemes. After each sequence and observing new modulation schemes, the
incremental model expands its last layer (referred to as head) to accommodate
for the newly encountered modulation schemes.

In modulation recognition, the aim is to determine the
modulation scheme used in a transmitted signal based on the
the received signal. This task can be essentially formulated as
a n-way classification task where n is the number of possible
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distinct modulation schemes used at the transmitter. In a static
scenario where the modulation schemes do not change, the
problem can be formally written as:

Let X = {x1, x2, ..., xm} be a set of I/Q samples of the
received signals and C = {c1, c2, ..., cn} be a set of modulation
schemes. Given a training dataset D with pairs (xi, cj):

D = {(x1, c1), (x2, c2), ..., (xm, cm)}

Our objective becomes finding a classifier f : X −→ C that
accurately determines the modulation scheme used for a given
I/Q sample. However, in realistic scenarios, the receiver does
not have access to all modulation classes from the beginning,
and in different sequences, new modulation schemes are en-
countered at the receiver. This scenario, which is illustrated in
Figure 1, can be formally written as:

Let Dt1 be the training dataset available at the receiver at
sequence 1 :

Dt1 = {(xt1
1 , ct11 ), (xt1

2 , ct12 ), ..., (xt1
m, ct1m)}

where each ct1i belongs to Ct1, a set of m modulation schemes
observed at the first sequence. By training on Dt1, we find
the classifier f t1 which is able to classify between the m
modulation scheme in Ct1. In the next sequence, the receiver
has access to f t1 and a new training dataset Dt2:

Dt2 = {(xt2
1 , ct21 ), (xt2

2 , ct22 ), ..., (xt2
k , ct2k )}

where each ct2i belongs to Ct2, a set of k modulation schemes
observed at the second sequence. Here, our objective is to find
classifier f t1+t2, that is able to classify between the m + k
modulation schemes observed in Ct1 and Ct2, given f t1 and
Dt2. In another words, the model has to learn to classify the
modulation schemes Ct2 using Dt2, without the occurrence of
catastrophic forgetting on the modulation schemes in Ct1, as
Dt1 is no longer available to the model at sequence 2. This
problem was formulated for 2 sequences but can naturally be
extended for i sequences.

B. Incremental learning
Incremental learning (IL), also refereed to as Continual

Learning or Lifelong Learning, is a machine learning paradigm
designed to continuously update and expand a model’s knowl-
edge base over time, without undermining its previously ac-
quired information. The primary aim of incremental learning
is to achieve lifelong learning, where the model evolves to
accommodate new information while retaining its proficiency
in previously learned tasks [14], [15].

A major assumption in IL is unavailability of the whole
dataset at a given time, as new classes or tasks are introduced
to the model sequentially in time. This assumption represents
situations where we are dealing with systems with limited
memory and computation resources, such as IoT devices and
autonomous drones, very well. Another assumption that is
often considered in IL, is having unknown number of classes or
tasks, which makes IL models more flexible and especially suit-
able for applications with evolving and expanding class spaces.
Aside from these assumptions, one of the main challenges
that IL models have to deal with is the phenomenon known
as catastrophic forgetting, where the model’s performance on
previously learned tasks deteriorates significantly as it acquires
new knowledge.

All these assumptions and challenges essentially translate
into two fundamental characteristics of plasticity and stability
that need to be carefully balanced to create an effective and
adaptable IL model. Plasticity refers to the ability of an IL
model to rapidly adapt to new information or data points. A
highly plastic model can quickly incorporate new knowledge
and adjust its parameters to accommodate changing data dis-
tributions or new tasks. Stability, on the other hand, is the
capacity of an IL model to retain and consolidate previously
acquired knowledge. A stable model should resist forgetting or
overwriting existing information when exposed to new data.

The objectives and assumptions of incremental learning
align seamlessly with DL-based modulation recognition mod-
els designed for dynamic and adaptive environments. Firstly,
modulation schemes can fluctuate due to changing channels
and hardware impairments, necessitating adaptable modulation
recognition models. Additionally, the integration of DL models
at transmitters for communication optimization in the future
may introduce customized modulation schemes, further em-
phasizing the need for continuous online learning. Lastly, the
inherent constraints of memory and computational resources
may restrict access to the entire dataset for retraining at the
receiver, underscoring the value of incremental learning for
efficient model updates without catastrophic forgetting.

Within the realm of incremental learning, several types
of strategies have been proposed to mitigate catastrophic
forgetting. Regularization-based approaches employ various
regularization techniques to constrain the model’s parameters
when learning new tasks, reducing the interference with ex-
isting knowledge. Parameter isolation techniques isolate and
protect specific model components associated with previously
learned tasks, allowing new knowledge to be integrated while
safeguarding prior expertise. Additionally,Replay-based incre-
mental learning involves storing and periodically replaying
samples from previous tasks to maintain their influence on
the model and prevent degradation in performance. These
samples are often called exemplars and can be selected either
by chance or a predefined strategy to be better representative of
their corresponding tasks/classes while performing in a limited
memory budget.

In class incremental learning with a single incremental head,
the model tends to become biased towards the most recent
classes. This bias is less severe in task incremental learning
with multi-head models, as each task has its own head and
the updates for a new task does not update the others. Among
the mentioned IL approaches, Replay-based methods can use
exemplars to better negate the bias caused in class incremental
learning with a single incremental head. To this end, in this
paper we utilize three replay-based state-of-the-art IL methods
which are briefly introduced below:

1) iCaRL [15]: iCaRL proposes to save a memory buffer
based on the data similarities to the class prototypes,
and performs knowledge distillation between the old and
most recent model to prevent catastrophic forgetting.

2) BiC [14]: In addition to saving randomly chosen ex-
emplars for replaying on the previous tasks, BiC intro-
duces two new parameters to de-bias the unified classi-
fier. These new parameters greatly help the incremental
learner to reduce the number of erroneous predictions in
favor of the new classes.
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3) LUCIR [16] LUCIR normalizes the feature values right
before the final fully-connected layer. Moreover, a mar-
gin for each class is imposed on the embedding space
such that the features will be more linearly separable,
thus, helping the model to prevent interfering with the
previously learned embedding space. The memory buffer
in LUCIR is comprised based on random selection.

IV. EVALUATIONS

A. Experiment Settings

We are using the RADIOML 2018.01A [7] signal dataset for
our evaluations. This dataset includes over-the-air recordings
with synthetic channel effects of 24 types of modulations.
These modulations are: OOK, 4ASK, BPSK, QPSK, 8PSK,
16QAM, AM-SSB-SC, AM-DSB-SC, FM, GMSK, OQPSK ,
OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK, 16PSK, 32PSK,
16APSK, 32APSK, 64APSK, 128APSK, 16QAM, 32QAM,
64QAM, 128QAM, 256QAM, AM-SSB-WC, AM-SSB-SC,
AM-DSB-WC, AM-DSB-SC, FM, GMSK, and OQPSK. The
dataset includes I/Q samples from -20dB to 30dB with a step
size of 2dB. For each class at a specific SNR level there are
4096 I/Q samples of size 2 ∗ 1024.

To have a fair comparison among the baseline algorithms, we
are using the same neural network structure as the backbone
of all the algorithms. The structure of the backbone neural
network can be seen in Figure 2. The last layer of the displayed
structure is followed by an incremental head with the size of
the number of observed classes during training.

For our experiments, we are employing iCaRL, BiC, and
LUCIR, which we introduced previously, for our IL-based
modulation recognition models. Moreover, we are using two
non-IL baselines for our experiments so that we can better
evaluate the performance of modulation recognition based on
the IL framework. The two baselines are as follows:

• Conventional DL model: During each timestamp, the
backbone model updates itself by training on the available
dataset at that timestamp.

• Joint Learning: Training the backbone model with the
dataset of all observed modulation schemes at each times-
tamp. Joint learning essentially represents the ideal case
of not having any retraining or memory limitations as
we are assuming the dataset of all previously modulation
schemes are available for retraining at any point. Thus,
this baseline provides us with an upper bound on the
achievable accuracy for the other methods.

B. Accuracy experiment

Figure 3 presents the accuracy of IL-based modulation
recognition models and the baseline models in a 2 class
increment scenario in high SNR and low SNR cases. All
three IL-based modulation recognition models are using 2000
exemplars for this experiment. As it can be seen from the
figure, the conventional modulation recognition model suffers
from catastrophic forgetting and fails to preserve the learned in-
formation from previously observed classes. The performance
of IL-based models, specially BIC, on the other hand are
very close to the upperbound joint learning baseline. This
illustrates with an incremental learning framework, we can
effectively adapt to new classes while preserving previously

Fig. 2. Structure of the backbone neural network. kernel size= 3, padding= 1,
and ReLU were used for all layers.

(a) SNR=0 (b) SNR=20

Fig. 3. Accuracy of modulation recognition models in 2 classes increment
scenario (12 tasks in total). Figure (a) and (b) depict results on SNR=0 and
SNR=20 respectively.

learned information and without the need of storing all the
previous datasets.

To further investigate the performance of IL-based modula-
tion recognition models, we also considered a case of 4 class
increment with 6 sequential tasks in total. Figure 4 provides
accuracy of compared models in the 4 class increment scenario.
As it can be seen in the figure, we can again clearly observe
catastrophic forgetting in the conventional DL model. For the
IL-based modulation recognition models, we can observe that
catastrophic forgetting is effectively negated in BiC, specifi-
cally in SNR=0, where BiC has a near-to-ideal accuracy of joint

(a) SNR=0 (b) SNR=20

Fig. 4. Accuracy of modulation recognition models in 4 classes increment
scenario (6 tasks in total). Figure (a) and (b) depict results on SNR=0 and
SNR=20 respectively.
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Fig. 5. Accuracy of IL-based modulation recognition model based on BiC in
a 4 class increment scenario, with different memory budgets.

learning. iCaRL and LUCIR also have a good performance in
SNR=0 with respect to the conventional DL model and the
joint learning model. In SNR=20, we can see that LUCIR’s
becomes less effective in comparison to the other IL models.
It should be noted that there are 4096 samples per modulation
and SNR level in the dataset we are using. This means there
are a total of 2000∗24 = 48000 samples in total that the Joint
Learning model has access to at the last stage of the scenario,
whereas all the IL-based modulation recognition models are
only storing 2000 samples in total in their memory while
performing nearly as good as the upperbound,specially BiC,
illustrating the effectiveness and efficiency of these models for
dynamic modulation recognition.

C. Memory experiment

In the previous section, we compared the accuracy of IL-
based modulation recognition models in a dynamic class in-
cremental scenario against conventional DL modulation recog-
nition and an upper bound baseline which was Joint learning.
The results showed us that by using an IL-based framework,
we can effectively negate catastrophic forgetting for the previ-
ously observed modulation schemes. Among the compared IL
algortihms used for modulation recognition, BiC provided the
best results. As the BiC takes the approach of selecting and
storing small proportion of samples (referred to as exemplars)
from the whole dataset of the previously observed classes, we
are interested in knowing the trade-off between the memory
usage and accuracy of IL-based modulation recognition model
using BiC.

Figure 5 provides accuracy of the IL-based modulation
recognition model using using BiC in five different cases
of exemplar memory size, from just 200 samples to 2000.
This experiment is done using SNR=0 data and in a 4 class
incremental scenario with 24 classes in total. For 200, 300, 500,
1000, and 2000 available number of exemplars, the accuracy
of the recognition model in the last stage is 33.64, 35.66,
38.22, 40.04 and 41.80 percent, respectively. As observed in
Figure 4 (a), the last stage accuracy of the joint learning model
(upperbound) and the conventional DL model in the same
scenario was 41.78 and 9.83 percent, respectively. These results
show that even in extremely limited memory cases where the
memory budget allows for storing 200 samples, utilizing IL
algorithms such as BiC can still effectively prevent catastrophic
forgetting to a good extent and thus, significantly improve
modulation recognition accuracy in dynamic online scenarios

V. CONCLUSION

In this paper, we demonstrated the efficacy of incremen-
tal learning-based framework for wireless signal modulation
recognition in dynamic online scenarios, where the receiver
encounter new modulation schemes over time. Our results
illustrated that while conventional DL-based modulation recog-
nition models are not capable of keeping information of past
observed modulation schemes, IL-based modulation recogni-
tion models are capable of both keeping past information
and also adapting to new modulation schemes. Among the IL
algorithms that we used for IL-based modulation recognition,
BiC provided the best results, with the near-to-ideal accuracy
in SNR=0 cases. Moreover, in another experiment done to test
the effectiveness of IL-based modulation recognition models
with differed memory sizes, we showed that even in extremely
limited memory cases where only 200 samples can be stored
by the model, we can still significantly improve accuracy
in dynamic scenarios by employing the IL framework for
modulation recognition.
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