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Abstract—Heart rate monitoring is crucial for detecting
possible changes in human health. Therefore, in recent years,
the development of applications and devices that monitor
vital signs has evolved significantly. This work proposes a
non-contact approach to heart rate monitoring through the
processing of channel state information from a commodity Wi-
Fi network. Various settings for signal processing parameters
were evaluated. The experimental analysis counted on over
50 participants, each performing 17 different positions and
activities. Results confirm that it is possible to achieve accurate
heart rate detection for each position or activity, provided
proper parameter configuration.

Index Terms—Channel state information, CSI, Wi-Fi, Heart
rate.

I. INTRODUCTION

In the last decade, health monitoring systems have evolved
rapidly, demonstrating significant potential to change the way
healthcare is provided [1]. As a result, contact-free vital
signs monitoring, such as heart rate and respiration, has
been receiving significant attention [2]. These vital signs can
explain medical conditions such as cardiovascular disease,
sleep disorders, or health abnormalities. Most traditional
methods of monitoring vital signs require a person to wear
special devices such as a capnometer [3] or a pulse oxime-
ter [4]. However, these technologies are not practical and
uncomfortable to use. Wi-Fi technology is widespread, and
applying this technology to health monitoring can be contact-
free, non-contact, and low-cost [2].

Most Wi-Fi transmissions utilize Orthogonal Frequency
Division Multiplexing (OFDM) modulation. OFDM divides
the transmission channel into subcarriers, and Channels State
Information (CSI) could be collected from some OFDM
subcarriers. CSI data can express the distortions caused by
the human body in transmitted Wi-Fi signals. Section III will
present how CSI data can be processed and used to estimate
heart rate.

In this article, we evaluate the accuracy of heart rate moni-
toring through Wi-Fi networks. Our proposal involves tuning
the parameters used to process the collected CSI data of 59
participants submitted to 17 different positions/activities. Ex-
periments are based on an early version of the publicly avail-
able eHealth CSI dataset [5]. Although this dataset has over
120 participants to this date, at the time this work started,

only 59 participants were available. The dataset creation was
previously submitted and approved by the Research Ethics
Committee, affiliated with the National Health Council of the
Brazilian Ministry of Health. Data collection was authorized
under CAAE reference number 54359221.4.0000.5243 [5].
In addition to the CSI data, the dataset also contains heart
rate measurements obtained with a smartwatch.

The major contributions of this work are summarized as:

• Propose a Wi-Fi signal processing pipeline consisting
of (i) a moving average filter to achieve better signal
cleanup, (ii) a bandpass filter to obtain the frequency
range where the heart rate is present, (iii) a Principal
Component Analysis (PCA) to reduce the dimension
of the CSI data, (iv) a Fast Fourier Transform (FFT)
to obtain the amplitude peaks in the signal used to
estimate the heart rate, and finally (v), the estimation
of the heart rate as an average of the frequency peak
values corresponding to the highest intensities.

• Find the set of parameter configurations for the filters
utilized in the Wi-Fi signal processing pipeline that
provide the most accurate heart rate measurements for
each of the 17 different positions/activities — the ref-
erence heart rate value is obtained with a smartwatch.
Namely, we tune (i) the sliding window parameters
for the moving average filter, (ii) the maximum and
minimum cutoff frequencies of the bandpass filter, and
(iii) the number of frequencies in the FFT.

• Analyze the feasibility of accurately measuring the heart
rate through Wi-Fi signal processing for a wide range
of positions/activities, identifying possible limitations of
the technology.

• Compare the best parameter settings for each posi-
tion/activity to identify similarities and discrepancies.
Positions/activities sharing the same (or similar) param-
eters broaden the application scenarios of this technol-
ogy.

The remainder of the text is organized as follows. Sec-
tion II presents recent related work. In Section III, we present
the proposed methodology. Section IV presents the obtained
results. Finally, Section V provides some conclusions and
final remarks.
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II. RELATED WORK

Several studies have considered using CSI for heart rate
monitoring in the literature. The CardioFi system [6] pro-
poses a new selection of subcarriers that allows to amplify
and detect the heart rate in subcarriers that are less affected
by multipath propagation. However, this work must be ex-
tended to enable its use in real-time medical applications.

PhaseBeat [2] estimates the heart rate using the phase
difference of two or more receiving devices. In the proposal,
the authors experiment with different distances and obtain
a phase difference according to its stability and periodicity.
However, heart rate monitoring still needs optimization in
these scenarios. More recently, PhaseBeat has been extended
[7] and showed that the CSI phase difference is more
robust in scenarios with varying distances, obstacles, and
orientations. Dynamic time-warping has also been explored
to detect changes in the movement of the Wi-Fi wave affected
by heart rate [8].

WiHeath [9] estimates the heart rate using CSI samples
collected from the Intel 5300 NIC. They used a median
filter to mitigate samples that have a significant difference
from the other neighboring ones, and a low-pass filter to
remove high-frequency noise that cannot be caused by chest
movement. They achieved average estimation error under 0.6
bpm and 6 bpm, but the experiment was conducted with just
3 participants.

CSI has been also used to track the heart rate during sleep
[10]. The algorithm utilizes information from the channel in
the temporal and frequency domains to estimate the heart
rate. Later, the work evolved to estimate the heart rate in
scenarios with extended distances between the Wi-Fi device
and the access point, non-line-of-sight situations (NLOS),
and 6 different sleep postures [11].

Note that most previous works focus on varying distances
of the Wi-Fi device and the presence of obstacles. While
some works consider subjects sleeping in a few different
postures, there is no work investigating the influence of
many different human positions/activities on the accuracy of
heart rate estimation. The present work fills this gap in the
literature.

III. PROPOSED METHODOLOGY

The architecture of our solution consists of three phases:
CSI data collection, processing pipeline, and parameter
tuning. Fig. 1 depicts the wireless scenario and proposed
methodology. The following details each of the steps involved
in the process.

A. Collection

In this section, we briefly recall the CSI data capture
process used to create the publicly available eHealth CSI
dataset [5]. The reader can refer to the original publication
for a detailed description of the construction of the dataset.
The present work uses an early version of this dataset
which contains only 59 participants; this is a highly active
project and the number of participants rapidly grows over

Fig. 1. Proposed methodology.

time. We emphasize here that all participants are anonymous
and that the dataset creation was previously submitted and
approved by the Research Ethics Committee, affiliated with
the National Health Council of the Brazilian Ministry of
Health.

As can be seen in Fig. 1, our CSI data collection setup
consists of a Wi-Fi transmitter (a laptop), a Wi-Fi receiver (a
router), and a CSI collector (a Raspberry Pi 4B). The distance
between the participant and all equipment was approximately
maintained at 1m.

A traditional Wi-Fi network was used to collect CSI data,
in which a Wi-Fi client sends pings to the router. The network
was configured in the 5GHz band and used a channel with
80MHz bandwidth, resulting in a total of 256 subcarriers.
Of these, only 234 subcarriers are considered, since the
rest are intended for signaling and band separation. Then,
a Raspberry Pi 4B with its network card in monitor mode,
running the Nexmon-CSI firmware [12] was used as a CSI
collector, and it captures and collects data in an interval of
0.12 seconds.

Each participant performed a predefined protocol with 17
different positions and/or movements, for 1 minute in each
position, during the CSI data capture. The positions and/or
movements are:

1) sitting facing the collector and the Wi-Fi devices on
each side of the participant.

2) sitting in front of the device alternating breathing.
3) alternating the position of sitting and standing in front

of the picker.
4) back to the collector and with the Wi-Fi devices on

each side of the participant
5) with their back to the device alternating breathing
6) standing facing the collector and the Wi-Fi devices on

each side of the participant.
7) standing in front of the device and alternating breath-

ing.
8) standing with back to the collector and the Wi-Fi

devices on each side.
9) standing with back to the device and alternating breath-

ing.
10) lying on the stretcher with the belly on top and side of
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the collector.
11) lying on the stretcher with the belly on top and alter-

nating breathing.
12) lying on the stretcher face down and side to the

collector.
13) lying on the stretcher face down and alternating breath-

ing.
14) alternating lying on your back on the side of the

collector and standing facing the collector.
15) walking position (act of walking in place) facing the

collector.
16) running position (the act of running in place) in front

of the collection.
17) sweeping position (the act of sweep) in the indicated

area.
During the CSI data collection, the heart rate was also

measured in parallel using a Samsung Galaxy Watch4 smart-
watch. This device was used to measure and compare the
estimated results through Wi-Fi CSI signals. Specifically, in
this work, the measurements obtained via the smartwatch
are considered as ground truth (GT); that is, the estimated
measurements are compared to the smartwatch measurements
so that it is possible to assess how far the values obtained
from CSI are from the smartwatch reference.

Notice, however, that even such smartwatch devices are
not completely accurate. According to a study reported in
[13], these devices can reach up to 95% accuracy compared
to the results generated by an electrocardiogram.

It should be mentioned that the data obtained from the
smartwatch are also available in the eHealth CSI dataset.

B. Processing pipeline

In order to improve the performance of the proposed
system, signal processing techniques are used [14] to reduce
noise and remove outliers. In Fig. 1, the diagram with the
main stages of the processing is presented in summary form.

1) Moving average filter: Often, to eliminate or reduce
some undesirable noise in a signal, it is necessary to filter
it. The moving average filter aims to smooth and reduce the
noise present in the signal. It is not just an average of an
isolated set of values. By using fixed coefficients, the moving
average filter produces a smooth low-pass filter that reduces
undesired high-frequency signals.

2) Bandpass filter: After using the moving average fil-
ter, the bandpass filter is applied to delimit the frequency
bands of interest, removing the irrelevant part of the signal.
The bandpass filter used is directly related to the system
is intended application. For estimating the heartbeat, the
frequency range of interest for this project corresponds to
the range between 0.6Hz and 3.67Hz, i.e., between 36bpm
and 220bpm.

3) PCA (Principal Component Analysis): After the pre-
processing step, the amount of data represented in the signals
received on each of the 234 subcarriers represents a large
volume. To reduce the dimension of the CSI data, PCA is a
frequently adopted technique. When PCA is applied in a set

of received signals, a linear transformation (base change) is
performed on the data so that the first component represents
the dimension of the highest variance of the data. We used
only the first component obtained for the following steps.

4) FFT (Fast Fourier Transform): After the PCA, the fast
Fourier transform (FFT) converts the signal from the time
domain to the frequency domain. From the result of the PCA,
which transformed the collected CSI dataset into a single
component, the FFT will result in a discrete set of values
within the frequency range of interest filtered through the
bandpass filter.

5) Heart rate estimation: The previous step outputs a set
of frequency values and their respective intensity, represent-
ing the signal strength at that specific frequency. In order to
obtain the estimated heart rate value, an average is performed
between frequency peak values corresponding to the highest
intensities. Then, we obtain the frequency in Hertz of the
beats per minute (bpm) value by simply calculating the
conversion from Hz to bpm, given that 1Hz represents 60
bpm.

C. Parameter tuning

In order to increase the accuracy of the heart rate mea-
surement, we propose changing the limits of the cut-off
frequencies of the band-pass filter, the number of peaks
used in the estimation process, and also the moving average
window size. By doing this, we find the configuration that
yields the best results.

IV. EXPERIMENTS AND RESULTS

In this section, we propose and analyze the effect of using
different parameter configurations related to the processing
of the collected signal on heart rate measurements through
the CSI signal. The proposed procedure is described next.

A. Experiment setup

We propose sixteen different parameter configurations and
use them to find the best parameters to increase the accuracy
of the estimated heart rate when the individuals are perform-
ing each position/activity. The parameters tested are detailed
below:

• The minimum and maximum frequencies of the band-
pass filter that delimits the captured signal to be ana-
lyzed: some studies, such as [14], treat scenarios with
values between 0.6Hz to 3.67Hz, equivalent to the range
of 36 to 220 beats per minute. We have tested values
between 1Hz and 2.5Hz which is equivalent to the range
of 60 to 150 bpm, between 1.5Hz and 3.67Hz, and also
between 0.6Hz and 3.67Hz.

• Number of FFT peak frequencies (k): represents the
number of frequencies corresponding to the energy
peaks we found in the FFT processed signal, which we
use to calculate the average frequency that we convert
into beats per minute. We test 1, 2, 3, and 4 peaks.

• Moving average sliding window size: more significant
data smoothing can be obtained by increasing the value
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of this parameter, however, at the expense of a longer
processing time. We test values 3 and 10.

Table I shows the combinations of the abovelisted config-
urations parameters tried in this work.

TABLE I
PROPOSED CONFIGURATIONS

Parameters Bandpass Number of Moving Average
Config. frequencies [Hz] FFT peaks (k) Window size

1 0.6/3.67 1 10
2 0.6/3.67 2 10
3 0.6/3.67 3 10
4 0.6/3.67 4 10
5 1/2.5 1 10
6 1/2.5 2 10
7 1/2.5 3 10
8 1/2.5 4 10
9 1.5/3.67 1 10
10 1.5/3.67 3 10
11 1.5/3.67 1 3
12 1.5/3.67 3 3
13 0.6/3.67 1 3
14 0.6/3.67 3 3
15 1/2.5 1 3
16 1/2.5 3 3

The estimated BPM values were compared with those ob-
tained with the smartwatch (considered as ground truth - GT)
to evaluate the effectiveness of the proposed configurations.
The mean difference between the results of executing the Wi-
Fi CSI estimator and the data collected with the smartwatch
was taken as a performance measure. The smaller the mean
difference value, the smaller the estimation error.

B. Discussion of results

In this section, we present the results obtained using the
CSI data for each of the the 17 positions/activities available
in the eHealth dataset [5]. Table II summarizes the results.

Table II presents the best configuration that achieves the
lowest mean error, considering each of the 17 positions.

For each position (first column - Position), the heart beat
value of each participant was estimated and we present the
mean of the BPM considering the 59 individuals in the fourth
column (Average BPM CSI). Also, we present in the fifth
column (Average BPM GT) the mean BPM obtained from the
smart watch (GT) considering the 59 individuals. Finally, in
the sixth column we present the mean error between the CSI
estimation and GT. The best configuration for each position
is shown in the third column.

As we can notice from the obtained results, it doesn’t
matter whether the person is facing forward or backwards
or whether breathing is alternated or not, whenever the indi-
vidual is sitting, the best parameters are from configuration
5. We can also identify the same behavior when it comes to
standing position, in which the best configuration is always
number 8. When it comes to lying positions, we can see that
the best configuration for the majority of the cases is number
4.

When walking position face the collector (position 15),
and also when alternating the position of sitting and standing
(position 3), configuration 8 is also recommended.

For moving positions 16 and 17, running and sweeping,
configurations 14 and 16, both with smaller moving average
window sizes, are recommended respectively.

As we can see, the smallest errors, highlighted in bold,
were obtained for positions in which the individual is in static
positions: either sitting or lying. In these cases, it is observed
that an adequate configuration of the parameters minimizes
the estimation error.

For a more detailed study, we can also analyze the obtained
results from a dispersion point of view in Fig. 2 and Fig.3.
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Fig. 2. Dispersion of position 11 configuration 3 Wi-Fi CSI and smartwatch.

For this, we compared the BPM obtained from the CSI
with that collected by the smartwatch for all participants. In
Fig. 2 we present the dispersion of the Wi-Fi CSI measure
and the smartwatch measure considering position 11 and
configuration 3.

In this case, the correlation index was −0.25. In addition,
in Fig.3 we present the dispersion of the Wi-Fi CSI measure
and the smartwatch measure considering position 13 and
configuration 4. The Pearson correlation index was −0.20.
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Fig. 3. Dispersion of position 13 configuration 4 Wi-Fi CSI and smartwatch.
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TABLE II
BEST CONFIGURATIONS MEAN ERROR OF EACH BPM FOR EACH POSITION.

Position Description Best Average Average Mean

configuration BPM CSI BPM
GT error[%]

1 Sitting facing the collector and the Wi-Fi devices on each side of the participant. 5 87.22 85.78 1.67
2 Sitting in front of the device alternating breathing. 5 86.61 86.32 0.32
3 Alternating the position of sitting and standing in front of the picker. 8 91.22 91.95 0.80
4 Sitting back to the collector and with the

Wi-Fi devices on each side of the participant.
5 88.15 89.36 1.35

5 Sitting back to the device and alternating breathing. 5 88.54 85.94 3.02
6 Standing facing the collector and the Wi-Fi

devices on each side of the participant.
8 90.83 95.12 4.51

7 Standing in front of the device and alternating breathing. 8 90.11 96.13 6.26
8 Standing with back to the collector and the Wi-Fi devices on each side. 8 89.69 96.06 6.62
9 Standing with back to the device, and alternating breathing. 8 90.23 96.97 6.94
10 Lying on the stretcher with the belly on top and side to the collector. 4 77.52 77.59 0.35
11 Lying on the stretcher with the belly on top and alternating breathing. 3 72.27 71.97 0.47
12 Lying on the stretcher face down and side to the collector. 4 75.59 76.83 1.61
13 Lying on the stretcher face down and alternating breathing. 4 72.13 74.99 3.81
14 Alternating lying on your back on the side of the

collector and standing facing the collector.
4 77.69 79.73 2.55

15 Walking position (act of walking in place) facing the collector. 8 89.71 93.67 4.23
16 Running position (the act of running in place) in front of the collector. 14 111.39 109.596 1.59
17 Sweeping position (the act of sweep) in the indicated area. 16 103.59 108.19 4.25

In most cases, CSI estimation errors occur when CSI
underestimates the BPM.

V. CONCLUSIONS

This work demonstrated the feasibility of accurately moni-
toring the heartbeat using CSI data from a conventional Wi-Fi
network operating at 5 GHz. The proposed system is non-
contact and low-cost. Experiments with 59 individuals in 17
distinct positions/activities made it possible to estimate the
heart rate with parameter configurations in the Wi-Fi signal
processing. The results showed that for each position/activity,
a distinct configuration of the parameters is recommended.
In future work, it is intended to adapt the system to detect
the individual’s position and then adaptively apply the ap-
propriate parameters to monitor their heartbeat in real time.
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