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Abstract—There is no standardized way to deploy applications
in the cloud. The suitable deployment strategy depends on the
application type and the business’s specific requirements. We
tested five deployment architectures and evaluated metrics such
as reliability factor and cost per month to determine which best
suits school timetabling business, requiring relatively high system
reliability and a low-performance cost model.

Index Terms—cloud deployment, deployment architectures

I. PROBLEM INTRODUCTION

The timetable is such an important part of school function-
ing that some school administrators spend months or weeks
trying to timetable the curriculum using Post-it notes [1].
This directly affects institutions with multiple and varied
constraints in their timetabling. Since the onset of COVID-
19, educational leadership roles have changed dramatically,
with one of the largest challenges being time management
given increasing demands [2]. Providing effective timetabling
solutions could return to these administrators weeks or months
of their valuable time. There are a few standalone educational
timetabling software products like aSc Timetables [3] and
Lantiv [4]. Over decades, these applications have attempted
to accommodate the growing constraints. However, there is
still a gap with timetabling being usable only by experts [5].

The long-term vision of this project is to further bridge
the gap between research and industry by developing a cloud-
based timetable application for schools. Cloud-based solutions
can offer a range of features with varying costs, which makes
it imperative to explore and find a balance between features
that meet our use case most cost-effectively. To address ac-
cessibility and a larger number of consumers, we also explore
in this paper various scalability strategies in cloud computing
and use metrics to determine a cost-effective solution.

In this paper, we compare different microservice architec-
ture patterns using Amazon Web Services (AWS) by moni-
toring and measuring specific metrics that are important for
our timetabling software. The overall goal is to find the best
deployment pattern.

II. RELATED WORKS

In building an end-to-end pipeline application for scheduling
software, we considered two different approaches about the
application’s environment. The first approach would be a

desktop-based application running on the client side that would
be locally installed. The second would be a cloud-based
approach where the software would run on remote servers
accessible to users via a web browser.

One of the most important factors in cloud service per-
formance is architecture. It is crucial to cloud applications’
availability, consistency, scalability and security [6]–[8]. A
monolithic architecture has vertical scale benefits, but a single
change in the system will impact all users [9]. In a large on-
demand application, the system must handle multiple users’
load without downtime. With microservices, the services each
fulfill a single function in the application [10]. Microservices
scale well because they can horizontally scale and are loosely
coupled, so they are fault-tolerant and isolated [9]. Although
they are recommended for large-scale applications, incorporat-
ing them into smaller ones will bring ease to future scaling.

Moreover, there are several patterns to deploy a microser-
vice where each pattern comes with its tradeoffs and cost struc-
ture [11]. Traditionally, developers are responsible for man-
aging and scaling when deploying microservices on servers.
A serverless framework allows deployment without managing
infrastructure, where cloud providers allocate resources on
demand without any user overhead.

To further clarify the gap we are exploring, in the next
sections, we discuss how to select the best way of deploying
microservice models and developing metrics that meet our
particular, school-based, business needs.

III. PROBLEM STATEMENT

Timetabling applications have been mostly algorithm-
centric and developed as a single unified unit, described as
monolithic architecture. When applications with monolithic
architectures grow too large, scaling becomes a challenge
because individual services cannot be scaled in isolation [12].
The development speeds become slower as any change to one
component would require testing the whole application as they
are in a unified codebase. Also, an error in one module might
affect the availability of the entire application [12].

As referenced in the related works section, microservice
architecture solves these issues when the application has to
scale. Even though microservices have become the standard
practice in most software architectures, they can be deployed
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in multiple ways. We discuss monolithic architecture as a
baseline solution, as well as different deployment patterns of
microservices below.

A. Pattern 1: Monolithic

The monolithic architecture is a traditional model of soft-
ware program that generally has one large codebase that
couples all parts of the application together, as shown in
Fig. 1. Sometimes this architecture is preferred due to ease
of installation, more straightforward configuration, and less
cross-service debugging [13].

Fig. 1. Pattern 1: Monolithic Architecture

B. Pattern 2: One Host, Multiple Services

In this pattern, as shown in Fig. 2, all the service instances
are deployed on a single host on multiple ports. The host
can either be a Virtual Machine or a physical server [11].
This approach has certain benefits and drawbacks. Scaling up
would require us to copy the service to another host and start
it [14], and it is also relatively fast to start as it has very little
overhead. The resource utilization is also fairly efficient as all
the services share the server and its OS [14]. One drawback
of this approach is that there is no isolation of the service
instances, as we cannot limit the resources each instance uses.

Fig. 2. Architecture Pattern 2: One Host, Multiple Services

C. Pattern 3: One Host, One Service (Virtual Images)

In this pattern, as shown in Fig. 3, instead of having all
the services in a single host, we package each service in
its host [15]. Each host machine will run a single service
packaged in the form of virtual images. This allows greater
isolation between services and overcomes the drawback of
services competing for common resources. Deployment in this
pattern is reliable and robust, as each service is interoperable,
immutable and easy to monitor. One drawback of this approach
is that deployment is slow, as virtual images contain operating
system and is slower to deploy.

Fig. 3. Architecture Pattern 3: One Host, One Service

D. Pattern 4: One Host, One Service (Containers)
In this pattern, we have one service running on one host,

as shown in Fig. 4. The service environment inside the
host is completely isolated by running the service inside a
container [16]. While running services packaged as virtual
images works, they are heavy to deploy as they contain an
operating system along with the code. A container wraps
the service and all its dependencies but does not contain an
operating system. It shares the kernel with the host machine,
which makes deployment extremely fast [17].

Fig. 4. Architecture Pattern 4: One Host, One Service, with Container

E. Pattern 5: Serverless Deployment
All the abovementioned patterns require manual cloud

infrastructure management after deployment [18], [19]. For
example, suppose there is a sudden spike in the number of
users for the timetable service. This is particularly visible for
timetabling applications because of the seasonal load. There
are a lot of schools using the timetable service in the summer
before the school term starts and very little load in other
periods. In that case, we need to manually scale up the number
of servers to accommodate the increased demand. To avoid
this, the serverless architecture pattern provides a scalable and
reliable approach to deployment that does not require any
manual involvement in infrastructure management [18]. As
shown in Fig. 5, the services are deployed as functions.

Fig. 5. Architecture Pattern 5: Serverless Deployment
Once the application is deployed, the responsibility of

managing the cloud infrastructure falls on the cloud provider
and not on the developers. One drawback of this approach is
the limited runtime of each service and cold starts.
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IV. EVALUATION

Each microservice architecture pattern is different and has
its own set of drawbacks. We will compare them and see
which is suitable and meets the criteria for the timetabling
application. We need a common evaluation metric to compare
these different architectural patterns. We believe the important
parameters to compare are the cost per user and the system’s
reliability. All cloud providers charge based on the number of
hits the server receives. More hits imply that we have more
users of our application. To compute the cost per user, we
divide the total cost incurred by the number of users of our
application. The system is said to be reliable if it is always
available to perform the services it is designed for. Reliability
is an important factor to consider because it ensures that the
application is available to the users when needed and there is
no downtime [20]. Reliability in cloud computing is measured
by comparing the failure rate of all the components in the
architectural pattern. To compute the reliability factor, we will
send n requests to the servers and check how many of those
requests are responded to efficiently by the system. The value
for the reliability factor is computed using (1). For example,
if the architecture can only respond to 5 out of 10 requests
within the stipulated time, the reliability factor will be 0.5.

reliabilityfactor =
responded requests

sent requests
(1)

The reliability factor should be high for serverless architec-
ture and low for single-server architecture. Considering these
two factors, the evaluation metric we wanted to compare will
be measured using (2).

Metric =
total cost

number of users
∗ 1

reliability factor
(2)

In the next sections, we identify the architectural pattern
and the cloud provider that yields the lowest metric value.

V. SYSTEM DESIGN

To test the deployments, we developed a cloud-based auto-
mated timetabling application that generates a master school
timetable. The system design of the application is shown in
Fig. 6. The frontend of the application is built with React. The
communication to the backend happens through REST APIs.

The Node.js server in the backend acts as the API gateway.
This conforms with the facade design pattern where the
client communicates with a single server. Node.js uses non-
blocking and event-driven architecture, making it efficient and
suitable for microservices [21]. This Node.js server interacts
with the timetable and authentication servers for the required
operations.

The frontend input is an Excel file with timetable structure
and constraints. This is converted to a JSON object and sent to
the Python server that generates the timetable and returns it as
a JSON object. The server sends this response to the frontend,
displaying it to the user. We used MongoDB for our database,
which better suited our needs due to its horizontal scalability,
absence of SQL normalization, and dynamic schema [22].

Fig. 6. Basic System Design

A. Pattern 1 Deployment

As a baseline, we run a single server on an EC2 instance
in our monolithic pattern, as shown in Fig. 7. We adapt our
basic system design to a monolithic pattern by combining the
functionalities from the authentication server (runs on Node.js)
and the Flask server to our main Node.js server. We ran our
Python timetabling code (previously on the Flask server) by
spawning a child process from the main Node.js server and
then called the Python code in the child process. This approach
was less straightforward than our basic system design and not
technology agnostic, so there may be a better approach with
other architectures.

Fig. 7. Deployment Pattern 1: Monolithic

B. Pattern 2 Deployment

In a one-host-multiple-services pattern, the system design
of this deployment pattern is very similar to our basic system
design. As shown in Fig. 8, we create an EC2 instance as
the host machine, and all services will be deployed and run
on a single host machine. There will be no overhead commu-
nication since they are all inside the same host machine. In
this deployment pattern, we also adopt an Application Load
Balancer (ALB) in case of future scaling. The ALB will route
requests to the desired server.

Fig. 8. Deployment Pattern 2: One Host, Multiple Services
In the backend, we keep the Flask server and Node.js

server separate to generate timetable service and perform
authentication service. We installed a Node.js server that acts
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as an API proxy. The API proxy server would intercept any
incoming requests, and based on the type of requests, it will
forward them to the respective services. Timetable and authen-
tication services listen to a different port and communicate
over the API proxy server. The master timetable generated
from the timetabling service and login token generated from
the authentication service will be stored in the MongoDB
database deployed to the same EC2 instance.

C. Pattern 3 Deployment

In this pattern, each microservice will be deployed on
Amazon EC2 by creating a virtual instance for each of
the microservices. The routing server, which is written in
Node.js, will act as the API Gateway or the proxy server
that communicates between the Authentication server and the
Timetabling server. For this deployment pattern, each host
machine will have its own image of the microservice that
responds to a designated feature required by the application.
The client accessing the tool will only communicate to the
API-Gateway (Node.js) server, ensuring incoming requests are
tokenized, thereby making the entire architecture a black-box.
The proxy server will also ensure each incoming request is
tokenized after properly being authenticated using a MongoDB
database before granting access to the time-tabling service. In
this way, each microservice is independently deployed and
remains scalable and responsive. This pattern architecture is
illustrated in Fig. 9.

Fig. 9. Deployment Pattern 3: One Host, One Service

D. Pattern 4 Deployment

In this pattern, microservices will be deployed using con-
tainers that provide the perfect environment for running small
independent services. Containers have the code, runtime, sys-
tem tools, libraries, and settings to run microservices. As
shown in Fig. 10, each virtual host machine will contain a
single container running a single microservice. We will use
Docker for building and managing containers. As containers
are an independent unit of software and do not contain
overheads of operative systems, they can be deployed to any
number of servers relatively fast. As the number of microser-
vices grows, so will the containers. Managing the number of
containers as the project grows manually will become harder.

We use Kubernetes - an open-source container orchestration
tool developed by Google to manage containerized appli-
cations. A Kubernetes cluster offers a high availability of
containers and provides provisions for scalability and fault
tolerance. The most important component inside a cluster

Fig. 10. Deployment Pattern 4: One Host, One Service (Containers)

is Nodes and Pods. Nodes are either physical machines or
virtual machines. Pods are the smallest units of Kubernetes
that provide a layer of abstraction over the container and
reside inside a node. In our architecture, each service will
be deployed inside a node with pods for application code
and database. The ingress component in Kubernetes acts as a
load balancer. A client will send the request to ingress, which
forwards the request to respective pods. Kubernetes cluster is
deployed on Amazon Elastic Kubernetes Service with nodes
running on EC2 instances.

E. Pattern 5 Deployment

In this pattern, the services are packaged and deployed on a
serverless platform as serverless functions. The responsibility
of configuring and managing the host machines falls on the
cloud provider as they automatically assign and scale the
required number of machines to handle the demand. Deploying
in a serverless architecture requires us to convert each of
the servers to serverless functions that are compatible to be
deployed. There are two approaches to deploying serverless
functions in AWS. The first approach is to create and deploy
the serverless functions directly. This can be done by exposing
the services as modules which are then hosted on the serverless
platform. The other approach is to convert these functions
to container images and deploy these container images as
serverless functions. Deploying the application as container
images incur additional costs as they have to be pushed in a
private ECR (Elastic Container Registry) repository for it to
be accessible by the serverless platform. For our analysis, we
wanted to pick the route that incurs a lower cost, so we chose
the former.

Fig. 11. Deployment Pattern 5: Serverless

For deploying the application as a serverless function, we
first converted the auth service and the timetable service into
serverless functions by exporting the server component as a
module (see Fig.!11. To access these functions, we wrapped
these modules using an API gateway so that we can send
get or post requests to the functions to perform the required
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operations. In addition to that, we also converted the Node.js
server, which acts as the proxy server, to a serverless function
so that the client has just a single server URL to keep track
of. This proxy server, along with the API gateway, forms the
API gateway function. This function communicates with the
other functions based on requests from the client.

VI. SIMULATIONS

We used the JMeter tool to run our simulations and compute
the reliability factor based on our architectures’ results. A test
plan consisting of two endpoints simulates load on all archi-
tectural patterns. In this test plan, the endpoint “Schedulett”
is used for timetable generation by timetable service and the
endpoint “Login” is used for signing a user in the platform by
authentication service. The simulation is run in a multithreaded
environment, allowing the simulation load on both endpoints
parallelly. For the simulation, we are sending a total of 100,000
requests to both the authentication service and the timetable
service to see how many of these requests are responded to
in a reasonable time. To account for the instability of the
network in access to these cloud deployments, we consider
it a successful response if the server is able to respond within
twice the average latency the server takes with less load. We
computed the average latency in ms by performing both the
scheduled timetable and login operations with the parameters
of 1 thread (users) and 1000 iterations. This average latency
is presented in Table I.

TABLE I
AVERAGE LATENCY (MS)

Pattern Login Schedulett

Pattern 1 302 750

Pattern 2 257 512

Pattern 3 253 544

Pattern 4 151 410

Pattern 5 1556 2740

We then multiplied this latency by two and set this as our
duration assertion (timeout) for the “Schedulett” and “Login”
services respectively. We ran simulations with 50 threads
(users) and 1000 iterations each. We then counted the number
of successful responses out of the total requests for both
timetable and authentication service. The number of successful
responses is specified in Table II. This information was used to
determine the reliability factor, using our formula mentioned
in the evaluation section.

We computed the cost using the AWS pricing calculator. All
patterns 1, 2 and 3 are running on t2.small EC2 instances. We
get the cost for these patterns by feeding the above-mentioned
configuration to the AWS pricing calculator, the results for
which are shown in Table III. The costs computed using the
AWS Pricing calculator take into account the number of users
accessing the services as well.

Once we have the reliability factor and the cost, we compute
the metric value (Table III). As the computed cost already

TABLE II
SUCCESSFUL RESPONSES (OUT OF 50,000 REQUESTS EACH)

Pattern Login Schedulett Total (100,000)

Pattern 1 400 33100 33500

Pattern 2 10600 2800 13400

Pattern 3 50000 2100 52100

Pattern 4 45600 1800 47400

Pattern 5 49600 49500 99100

takes into account the number of users accessing the service,
we need not divide the cost again by the number of users.
Therefore, the metric value will be the product of cost and the
inverse of the reliability factor.

TABLE III
EVALUATION RESULTS (LOWER EVALUATION METRIC IS BETTER)

Pattern Reliability factor Cost/month (USD) Evaluation Metric

Pattern 1 0.335 9.27 27.67

Pattern 2 0.076 9.27 69.18

Pattern 3 0.521 42.86 82.27

Pattern 4 0.474 147.37 310.91

Pattern 5 0.991 22.52 22.73

The initial results in Table III emphasize too much on the
cost as the cost matters a lot for the smaller companies. For
much larger companies, the reliability of service would take a
higher priority than the cost. To reduce the impact of cost, we
normalized it using an inverse logarithmic function so that all
the lower values of cost converge to a small number, but the
higher cost values are exponentially high. These results are
specified in Table IV.

TABLE IV
NORMALIZED METRIC VALUE (LOWER EVALUATION METRIC IS BETTER)

Pattern Reliability factor Normalized Cost/month (USD) Evaluation Metric

Pattern 1 0.335 1.018 3.041

Pattern 2 0.076 1.018 7.602

Pattern 3 0.521 1.089 2.091

Pattern 4 0.473 1.343 2.833

Pattern 5 0.991 1.046 1.055

A. Analysis

Pattern 1 (Monolith Architecture) is easy to maintain and is
extremely useful in the early stages of application development
when the number of users is not high. When the number
of users becomes higher, the monolith becomes less reliable.
Pattern 1 is still more reliable than Pattern 2 (Multiple servers
in 1 Host) because Pattern 1 does not require any inter-service
communications. This additional time, along with the fact that
all services share the same processing resources, makes Pattern
2 the least reliable.
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Having just a single service running in a host improves
the reliability of Pattern 3 and Pattern 4 as the services are
not clashing for the same system resources. However, this
improved reliability does not compensate for the increased
cost. For our use case, deploying using containers for Pattern
4 seems like an overkill which can be inferred from the high
metric value for this pattern. Even though this pattern seems
like a bad option for our business needs in smaller companies,
it can still be used by larger companies where cost does
not matter much. Using container images for the deployment
makes it the easiest to scale. The higher reliability of these
patterns makes it a much better option than Pattern 1,2 for
larger companies as the metric value indicates in Table IV.

Pattern 5 (serverless architecture) seems to be the most
reliable as the deployments are scaled automatically to handle
incoming requests. The cost for serverless is not as high as
the other patterns; AWS Lambda charges just for the time the
function is actually running and not for the entire duration
the server is active. This high reliability and intermediate cost
make it the most suitable option for our deployments. The only
drawback of this architecture is that it has a lower timeout
and higher latency than EC2 instances. Based on our results,
Pattern 5 seems to be the most preferred deployment pattern as
the higher latency is not a large factor for our business needs.

VII. CONCLUSION

This paper explored five different architectures for deploy-
ing timetabling software on AWS to find the one that best
suits our business needs. For this purpose, we developed a
metric formula based on cost-per-performance and reliability
factors, and our goal was to find the architecture that produced
the lowest metric value in the simulation plan. As the results
of our simulations show, Pattern 5, the serverless mode, has
clear advantages due to its high reliability and elastic cost per
performance. We believe this pattern is the best choice for
timetabling application businesses.

Our deployment simulations were conducted exclusively
on the Amazon Web Services (AWS) cloud platform, which
means that the performance metrics we measured—such as
cost, uptime, and speed—are inherently tailored to the charac-
teristics and limitations of AWS’s infrastructure. This includes,
for instance, data on EC2 instance performance, S3 storage
reliability, and the latency of AWS’s global content delivery
network. If interested, this approach can be applied to other
cloud platforms to explore the differences. On the other hand,
our metrics and simulation plans are designed to meet the
business needs of start-up timetabling companies that have
smaller customer bases. For companies with larger customer
bases and functional endpoints, factors such as scalability,
maintainability, and fault tolerance can be added to the metric
formula and simulation plans can be adjusted accordingly to
the business needs.
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