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Abstract—In multiple federated learning schemes, a random
subset of clients sends in each round their model updates to
the server for aggregation. Although this client selection strategy
aims to reduce communication overhead, it remains energy and
computationally inefficient, especially when considering resource-
constrained devices as clients. This is because conventional
random client selection overlooks the content of exchanged
information and falls short of providing a mechanism to reduce
the transmission of semantically redundant data. To overcome
this challenge, we propose clustering the clients with the aid of
similarity metrics, where a single client from each of the formed
clusters is selected in each round to participate in the federated
training. To evaluate our approach, we perform an extensive
feasibility study considering the use of nine statistical metrics
in the clustering process. Simulation results reveal that, when
considering a scenario with high data heterogeneity of clients,
similarity-based clustering can reduce the number of required
rounds compared to the baseline random client selection. In
addition, energy consumption can be notably reduced from
23.93% to 41.61%, for those similarity metrics with an equivalent
number of clients per round as the baseline random scheme.

Index Terms—federated learning, similarity metrics, cluster-
ing, client selection

I. INTRODUCTION

The edge computing paradigm has become a breakthrough
solution that allows certain processing resources to be allo-
cated close to the data sources rather than relying only on
cloud computing centers. However, edge-computing devices
have limited computational and energy resources, which makes
training complex machine learning (ML) models challenging.
Recently, federated learning (FL) has emerged as an alterna-
tive for performing ML tasks in a distributed and privacy-
preserving manner by having multiple clients collaborate with-
out sharing their data [1]. This is because local learning clients
share their parameters with a central server, which aggregates
them to create a proper global model after a series of rounds.

Despite the privacy and computational sharing benefits of
FL across devices, the use of multiple clients can create a
communication bottleneck [2]. This may be further exacer-
bated by the energy consumption spent training FL models on
such resource-constrained devices. Therefore, several studies
have proposed techniques to select, at every round, a subset of
clients to participate in training the global model. However, de-
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ciding how many and which clients to choose is not straightfor-
ward, therefore a random selection method is usually adopted.
In turn, this may inadvertently lead to the selection of similar
and redundant information for aggregation, which requires a
higher commitment of resources to obtain a global model
suitable for all clients [3]. Random selection may thus have a
negative impact on learning efficiency, fairness, convergence
and, eventually, energy consumption. Apart from this, data
on client devices may not be evenly distributed in real-world
FL tasks, and non-iid solutions need to be considered. The
distribution divergence of non-iid data introduces significant
challenges in FL [4] such as lower accuracy, delays in model
communication, and slower model convergence.

Motivated by the challenges mentioned above, we hereby
advocate for using similarity metrics [5] as a means of
grouping FL clients with similar information. To achieve this,
we consider scenarios with a skewed label distribution, and we
perform cluster formulation with the aid of the following simi-
larity metrics: cosine function; mean squared error; Euclidean,
Manhattan, and Chebyshev distances; maximum mean discrep-
ancy; Kullback-Leibler and Jensen-Shannon divergences; and
Wasserstein distance. The incorporation of such metrics allows
us to leverage correlations in the local information to form
semantically informative clusters. Selecting clients from these
clusters minimizes the transmission of redundant information
by harnessing the underlying heterogeneity of local training
datasets. Consequently, it accelerates FL training efficiently.
Our twofold contribution can be summarized as follows:

• We explore the feasibility of applying different statistical
similarity metrics on local data to perform informative
client clustering. The incorporation of similarity metrics
in client selection allows FL training to be performed
in a way that promotes dissimilarity of selected clients.
Our goal resides in not only reducing redundancy in the
FL training phase, but also in quantifying the potential
energy-efficiency gains.

• We perform an elaborate comparison between similarity-
based clustering and random client selection with the aid
of multiple FL performance indicators, such as accuracy,
number of rounds, and energy consumption, for different
degrees of skewness in label distributions. Key observa-
tions stemming from the trade-off between the number of
rounds and energy consumption in FL training are made.
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This work is organized as follows. Section II presents rel-
evant work on non-iid data distribution and client selection
strategies in FL. System model considerations are provided
in Section III. Section IV introduces the statistical similarity
metrics (IV-A), the client selection strategy (IV-B), and the
energy consumption model (IV-C) used in this work. Perfor-
mance results pertaining to the evaluation of similarity-based
clustering against random selection are provided in Section V.
Section VI is reserved for conclusions and discussion of the
path forward.

II. BACKGROUND AND RELATED WORK

The disadvantages of having all clients participating in the
FL training have led several studies to investigate the devel-
opment and improvement of techniques for selecting a portion
of clients to join in the FL training. However, the design of an
optimal selection strategy is not a straightforward task, mainly
due to the detrimental effects of non-iid data distribution
on the behavior of FL training [4, 6–8]. For example, an
experimental study is presented in [7] that investigates six non-
iid partitioning strategies for different FL algorithms. Non-
iid distributions are shown to have a significant impact on
the accuracy and stability of FL algorithms, and the authors
propose the implementation of client subgroups in each FL
round to deal with the instability caused by random sample
selection. In [8], on the other hand, the authors use the
distributions of the labels to deal with heterogeneity in a non-
iid medical scenario and focus on computing the marginal
distribution for each client as an optimization strategy.

In an effort to optimize the communication between the
clients and the server, different client selection strategies have
been proposed [3, 9–14]. In [13], client selection relies on the
sample size and various similarity methods. As such, clients
with more samples are weighted the most, which, in turn,
does not prevent the transmission of redundant information,
rendering this approach inefficient. It is also mentioned that
measuring client similarity enables better clustering and leads
to better performance. The considered similarity refers to the
representative gradient, i.e., the difference between the updated
model of a client and the global model, and is not extended
to cluster similar clients. In [14], hierarchical clustering is
implemented to group FL clients according to the similarity
of their model weight updates compared to the global joint
model. The authors apply only distance metrics to compute
the similarity between clusters.

A contextual client selection framework is proposed in [11]
for a vehicle-to-everything scenario. The solution comprises
information sharing, traffic topology prediction, and client
clustering at both data and network levels. The clients are
grouped at the data level using their gradient as a similarity
criterion. In [10], the authors used a probabilistic deep learning
model to create a personalized feature extractor integrated
into each client. To estimate client similarity, the server sends
the model of all other clients to each client to measure
the discrepancy between the two distributions. Based on the
resulting discrepancy, the server then clusters the clients. The

gradient is also used in [9] as an insight to estimate the
skewness of the client, using Hoeffding’s inequality. A dueling
bandit is then used to select the clients with the lower skewness
based on this estimate. In [3], the authors select a subset of
active clients in each FL round using the stochastic greedy
algorithm, which requires knowing the gradients from these
clients. For this reason, a round of local model updates is
performed before sharing the updates with the server.

Our study differs substantially from previous approaches.
First, rather than focusing on developing a strategy for client
selection that needs to be integrated into the training phase,
we propose a solution focusing on the client side that can be
more easily integrated into a federated system. This is because
our solution is centered on providing a client selection strategy
before the FL procedure starts. Second, although some works
have used similarity metrics to improve FL client selection,
they do not provide a rigorous comparative assessment of the
metrics themselves. As such, this work aims to compare a
broad set of similarity metrics to gain in-depth insights into
the FL performance under different degrees of skewness in
label distributions. Lastly, it is essential to obtain more efficient
and sustainable FL systems (i.e., without requesting more
computational, storage, or transmit power) and, at the same
time, maintain or reduce energy consumption. Thus, it may
not be enough to reduce the number of FL rounds in training,
especially when we do not quantify the impact on energy
consumption. This is a fundamental aspect that none of the
previous studies have addressed. To fill these gaps, in this work
we investigate the use of similarity metrics in the optimization
of FL training, using the clients’ data distribution to find
a trade-off between the number of rounds and the energy
consumption during this process. Relevant aspects which, to
the best of our knowledge, have not been investigated in a
similar study before.

III. SYSTEM MODEL

In this work, we have adopted the FedAvg algorithm for
distributed training [1], where a central server aggregates a
weighted average of the participating clients’ model parame-
ters. The weights are determined by the size of each client’s
training dataset. We denote the number of clients as N and the
local training dataset of client i as Di = {(xi,yi)}. Focusing
on multi-label classification as the learning task, xi stands for
the data instances available at client i and yi represents the
associated labels. The local model of client i in communication
round t is expressed as wt

i , and the global model as wt.
Aggregation is performed after each communication round,
as shown in Fig. 1. Consequently, the participating clients
optimize their local model before transmitting their model
parameters to the server afterwards [7].

Since the data collected by an underlying system are usually
non-iid [4], we henceforth focus on the use of similarity
metrics to capture complex relationships among local datasets.
These metrics are essential to measure the similarity or dissim-
ilarity between data instances. Although their use is primarily
attributed to transfer learning tasks, such information measures
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Fig. 1. Overview of the considered problem setup in FL. Cluster formulation
takes place with the aid of similarity metrics. At each communication round,
client selection from clusters aims to harness the underlying heterogeneity of
local training datasets.

could be applied to a wide range of problems, such as feature
extraction, information reuse, and multi-task learning, to name
a few. In our case, these statistical measures are used to form
clusters, where client selection in each round of the federated
training is performed in a way that promotes dissimilarity of
selected clients, as illustrated in Fig. 1. This approach aims
at a more efficient version of FedAvg scheme by avoiding
the transmission of semantically redundant information to the
server. As a result, given a certain accuracy threshold, the
number of required rounds and the energy consumption to train
the global model are expected to be reduced. Consequently, the
pressure on the underlying connectivity can be alleviated by
saving network resources such as bandwidth and transmission
power. Moreover, non-selected clients at every round t may
not perform local training, thus saving computing power.

We assume skewed label distribution that results in hetero-
geneity of the local models. The label distribution at each
client is considered to be known. For clustering, we calculate
the number of samples per label for each client, ni,k, and we
divide by the total number of samples ni, as

pi,k =
ni,k

ni
, (1)

where pi,k represents the distribution of label k at client i. We
perform this calculation for all clients and we obtain PN×K ,
as

P =


p1,0 p1,1 . . . p1,K−1

p2,0 p2,1 . . . p2,K−1

...
...

. . .
...

pN,0 pN,1 . . . pN,K−1

 , (2)

where K denotes the total number of labels. Each row vector
pi, i ∈ [1, N ], in P is equivalent to the probability mass
function of the labels for client i.

IV. CLIENT SELECTION USING SIMILARITY METRICS

A. Statistical Similarity Metrics

This section presents the similarity metrics considered in
our approach and relevant studies that have employed them in
the past for other purposes.

a) Cosine function: It estimates the similarity between
two vectors by measuring the angle between them. The
“closer” the two vectors are, the smaller the angle between
them. This widely used metric is defined as

cosi,j =
⟨pi,pj⟩
∥pi∥ ∥pj∥

, for i ̸= j, (3)

where pi,pj represent two different rows in P , and ∥ · ∥
denotes the ℓ2-norm (i.e., magnitude) of the vector. In [15], a
cosine similarity function is used for original data recovery in
the context of text transmission.

b) Mean Squared Error (MSE): This metric measures the
average squared difference between each particular element in
two different rows in P . It is expressed as

MSEi,j =
1

K

K∑
k=1

(pi,k − pj,k)
2
, for i ̸= j, (4)

where values closer to zero represent higher similarity. In [16],
the metric is used for image quality assessment purposes.

c) Euclidean distance: It is a widely used metric that
represents the shortest distance between two elements. Con-
sidering two different rows in P , it is expressed as

DEi,j
=

(
K∑

k=1

(pi,k − pj,k)
2

) 1
2

, for i ̸= j. (5)

This metric was adopted in [14] to compute the similarity
between clusters in a hierarchical clustering algorithm.

d) Manhattan distance: This metric computes the abso-
lute distance between two elements in P , defined as

DMi,j =

K∑
k=1

|pi,k − pj,k| , for i ̸= j. (6)

The metric was adopted in [14] for the same purpose as the
Euclidean distance.

e) Chebyshev distance: This metric calculates the max-
imum of the absolute distance between two elements in P . It
is defined as

DCi,j =

K∑
k=1

max
k

|pi,k − pj,k| , for i ̸= j. (7)

In [17], the authors adopted this metric to detect whether im-
ages are similar or dissimilar in the context of dimensionality
reduction.

f) Maximum Mean Discrepancy (MMD): It quantifies
the distribution difference by computing the distance between
the mean values of the instances in a reproducing kernel
Hilbert space (RKHS) [18]. The calculation of MMD implies
finding the RKHS function that maximizes the difference in
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the expectations E(.) between two rows in P . In our case, we
consider a linear kernel (i.e., k(x, y) = ⟨x, y⟩) and MMD can
be calculated as

MMD2(pi,pj) = Epi [k(x, x)]− 2Epi,pj [k(x, y)]

+Epj [k(y, y)], for i ̸= j,
(8)

where x ∼ pi, y ∼ pj . In [19], MMD is incorporated in a
neural network model as a regularization technique to reduce
the distribution difference between source and target domains
in transfer learning.

g) Kullback-Leibler (KL) divergence: It measures the
statistical distance to minimize the divergence between two
probability distributions, as

DKLi,j
=

K∑
k=1

pi,k log
pi,k
pj,k

, for i ̸= j. (9)

This metric was adopted in [20] to measure the dissimilarity
between domains as a mechanism to deal with the domain
adaptation problem in transfer learning.

h) Jensen-Shannon divergence: This metric is a symmet-
ric version of the KL divergence, and aims to minimize the
difference between two distributions [21]. For pi, pj ∈ P
with i ̸= j, it is defined as

DJSD(pi ∥ pj) =
1

2
(DKL(pi ∥ q) +DKL(pj ∥ q)) , (10)

where q is a mixed distribution defined as q = 1
2 (pi + pj).

This metric was adopted in [21] to measure the similarity of
features in an activity recognition problem.

i) Wasserstein distance: This metric measures the min-
imal effort required to reconfigure pi in order to recover a
distribution pj , with i̸=j. In particular, we consider the 1-
Wasserstein distance, expressed as

W1 (pi,pj) = inf
γ∈Γ(pi,pj)

∫
R×R

|x− y| dγ (x, y) , (11)

where Γ(pi,pj) denotes the set of probability measures γ
on R × R. Elements γ ∈ Γ(pi,pj) are called couplings of
pi and pj , i.e., joint distributions on R×R with prescribed
marginals pi and pj . Intuitively, Eq. (11) implies that given
a γ ∈ Γ(pi,pj) and a pair of samples (x, y), the value of
γ(x, y) reveals the proportion of pi’s mass at x that has to be
transferred to y, in order to reconfigure pi into pj . In [22], the
authors adopted the Wasserstein distance to align the feature
distribution domains and capture the dissimilarity between the
outputs of task-specific classifiers.

B. Client selection

In this section, we integrate the similarity metrics into our
client selection strategy. As shown in Algorithm 1, based
on the selected similarity metric, the pairwise calculations
between rows in P are performed. Next, we leverage k-
medoids1 as the clustering scheme to group the N clients

1K-medoids is publicly available in the Python library scikit-learn-
extra: https://scikit-learn-extra.readthedocs.io/en/stable/modules/cluster.html#
k-medoids

into clusters. For all possible cluster numbers c ∈ [2, N − 1],
we calculate the silhouette value [23] for client i in order to
determine the input value for k-medoids. The silhouette value
is computed using

sc(i) =
dinter(i)− dintra(i)

max{dintra(i), dinter(i)}
, (12)

where dintra(i) denotes the mean intra-cluster distance, i.e.,
between the client i and all other clients in the same cluster and
dinter(i) denotes the smallest mean inter-cluster distance, i.e.,
between the client i and all other clients in any other cluster.
The higher the silhouette value, the higher the probability of
client i being clustered in the correct group.

Algorithm 1 Applying similarity metrics to cluster the clients
in a FedAvg algorithm.
Input: FedAvg inputs, metric m ∈ M = {cos, mse, mmd, Dkl,

Djsd, W1, DE , DM , DC , random}, fraction of clients ϵ
Output: The final model wt

1: Compute pi,k =
ni,k

ni
, ∀i ∈ N , k ∈ K

2: Construct P in Eq. (2)
3: if m ̸= random then
4: Calculate pairwise similarities of P rows using Eqs. (3)-(11)
5: for cluster number c= 2, . . . N − 1 do
6: Calculate sc in Eq. (12)
7: end for
8: Select c with max

c
sc and apply k-medoids for c clusters

9: end if
Server executes:
10: initialize w0

11: for each round t = 1, ..., Ttrain do
12: if m ̸= random then
13: St ← (random set of n clients in c clusters)
14: else
15: n← max(ϵ ·N, 1) clients
16: St ← (random set of n clients)
17: end if
18: end for

Once clustering using k-medoids is completed, the mapping
of clients per cluster is available. Based on this information,
the number of clients St that will participate in the training
rounds is determined. On the other hand, when random selec-
tion is adopted, a predetermined number of clients are selected
to join in each round (lines 15-16). After the client selection
process, the conventional FedAvg algorithm follows.

C. Energy consumption
Besides efficient clustering, we also aim to derive energy

consumption insights related to the FL process. We focus
on the computational energy, being the highest component in
consumption, as concluded in our previous work [24]. To this
end, we evaluate the computational energy by considering a
predefined set of clients St. In particular, the energy consump-
tion for client i is defined as

ei = Phw,i · Ttrain,i, (13)

where Phw,i denotes the sum of the hardware power consump-
tion of the GPU, RAM, and CPU for client i during training
time Ttrain,i.
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Fig. 2. Client clustering (β = 0.05) with the aid of (a) 1-Wasserstein and (b) Chebyshev metrics. The principal component analysis (PCA) method was used
as a dimensionality reduction technique to allow the mapping of features into two principal components.

V. PERFORMANCE EVALUATION

A. Experimental setup

We implement and evaluate our approach by performing
experiments on the well-known MNIST dataset [25] of 28x28
images of handwritten digits, which comprises 60000 samples
as a training set and 10000 samples as a test set. For all
experiments, classification is performed with the aid of a
convolutional neural network architecture comprising two 5x5
convolutional layers, followed by a 2x2 max pooling layer and
two fully connected layers with ReLU activation. Experiments
are performed on a server equipped with a 16-core Intel
Xenon CPU and 2 NVIDIA GeForce RTX 3090 GPUs. We
consider an FL system with N = 100 clients. To generate a
set of non-identical label distributions with different levels of
skewness, we apply the Dirichlet distribution with a varying
concentration parameter β > 0 [7]. In this way, we can allocate
a diverse proportion of samples of label k to each client i. The
smaller the β, the more unbalanced the label distribution.

B. Performance results

For each similarity metric listed in Section IV-A, we eval-
uate the number of required rounds in the FL process and the
standard deviation of the achieved accuracy for 3 consecutive
rounds, considering a predetermined accuracy threshold of
97%. The computational energy during FL training is also
assessed with the aid of CodeCarbon2 library [26] to estimate
hardware power consumption according to Eq. (13). In addi-
tion, the baseline scheme of random selection with a varying
number of participating clients n ∈ [2, 5, 10, 15, 20, 25] is
evaluated. For all experiments, we consider 5 different seeds
and calculate the average value of the obtained results.

2CodeCarbon library is available at: https://github.com/mlco2/codecarbon

TABLE I
SIMILARITY-BASED CLUSTERING VS RANDOM SELECTION (β = 0.05,

ACCURACY=97%) IN FL TRAINING1

Metric Clients
per round

Number
of rounds

Energy
consumption

(Wh)
Acc (std)

1-Wasserstein 2 45.8 155.388 0.003542
JS-divergence 8.667 39.333 469.727 0.004051
KL-divergence 8.667 39.333 471.221 0.004051

Euclidean 10 45.8 329.746 0.002496
Chebyshev 10.2 45.8 328.94 0.001439
Manhattan 10.4 45.8 400.298 0.003918

MSE 10.4 45.8 427.103 0.005676
MMD 10.4 45.8 428.517 0.005676
Cosine 11 45.8 424.304 0.003945

Random
Selection

2 215.2 204.448 0.003261
5 113.40 377.386 0.003738
10 87.8 563.378 0.006298
15 63.80 621.135 0.001717
20 57.80 840.196 0.003119
25 49.4 726.045 0.002804

1 We ran the algorithm five times by changing the random seed and reporting
the averaged classification accuracy.

We first assess the FL performance with similarity-based
clustering and with random client selection in a highly het-
erogeneous scenario with β = 0.05. The experimental results
in Table I reveal that the number of rounds required to reach
convergence in the case of similarity-based clustering is lower
compared to the random selection for all metrics. It is worth
noting that the number of clients per round is not a priori
defined, but rather it is determined for each metric using
Algorithm 1 (line 8). A careful inspection of Table I reveals
that energy consumption can be remarkably reduced from
23.93% to 41.61% compared to the baseline random selection,
for those similarity metrics achieving equivalent number of
clients per round (n = 10).
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Fig. 3. Clients of a single cluster (β = 0.05, n = 10) formed with (a) Euclidean distance metric (b) random selection. For random selection, we select the
first out of 10 clients in each FL training round.

Notably, for the 1-Wasserstein distance, the number of
required rounds for convergence is ≥ 4.5 times lower than
in random selection for the same number of participating
clients (n= 2). As illustrated in Fig. 2(a), a clear distinction
between the two Wasserstein-based clusters can be achieved.
In addition, the associated energy consumption in the training
process remains at significantly lower levels compared to the
random selection. On the other hand, clustering based on
the Chebyshev similarity metric results in rather overlapping
clusters3, as depicted in Fig. 2(b). The well-separated clusters
under the 1-Wasserstein metric can be attributed to the fact that
the Wasserstein space is able to subtly capture the geometry
of the domain of the distributions in P [27].

To demonstrate the efficacy of similarity-based clustering,
Fig. 3(a) depicts the resulting client agglomeration within a
single cluster when Euclidean distance is applied for n= 10.
It can be observed that similarity-based clustering allows
grouping together those clients having samples predominantly
of label 2, including the client having only 36 samples (client
#0). On the contrary, for random client selection, no relevant
criterion for the label distribution is applied, resulting in an
unstructured association of clients per cluster, as shown in
Fig. 3(b) for n= 10.

While the performance gains are noticeable for highly
heterogeneous scenarios (i.e., low β), we henceforth explore
the feasibility of similarity-based clustering in more homo-
geneous setups with higher β. Table II depicts the compar-
ative performance outcomes for similarity-based clustering
and random selection for β = 0.1. In this case, it is noted
that only Chebyshev and Manhattan metrics achieve superior

3Note that similar behavior is observable also when using the other
similarity metrics under study.

TABLE II
SIMILARITY-BASED CLUSTERING VS RANDOM SELECTION (β = 0.1,

ACCURACY=97%) IN FL TRAINING.

Metric Clients
per round

Number
of rounds

Energy
Consumption

(Wh)
Acc (std)

1-Wasserstein 2 127.2 97.725 0.004085
Euclidean 9.8 34.8 139.428 0.002823
Chebyshev 10 33.6 117.513 0.003242

MSE 10 36.6 157.028 0.004805
MMD 10 36.6 157.606 0.004805

Manhattan 10.2 31.4 122.535 0.002134
Cosine 10.2 31.4 140.241 0.001658

JS-divergence 12.2 60.8 149.1338 0.003624
KL-divergence 12.2 60.8 164.8476 0.003624

Random
Selection

2 106 83.027 0.002556
5 58.2 116.507 0.005039

10 34 133.574 0.002512
15 31.8 184.572 0.002197

performance in terms of both number of rounds and energy
consumption compared to random selection for n= 10. How-
ever, we remark here that even though the similarity-based
clustering approach does not present such high-performance
gains in more homogeneous data distributions, it does not
require a priori information on the number of clients to be
selected at every round, as in the random approach. This
feature represents an added value and poses elevated merit
for fast FL deployments in realistic applications. Finally, the
performance gains of similarity-based clustering compared
to random selection further vanish when β = 2, as shown in
Table III. It is noted, though, that such homogeneous settings
are not common in real-world FL scenarios.
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TABLE III
SIMILARITY-BASED CLUSTERING VS RANDOM SELECTION (β = 2,

ACCURACY=97%) IN FL TRAINING.

Metric Clients
per round

Number
of rounds

Energy
Consumption

(Wh)
Acc (std)

1-Wasserstein 2 14 11.712 0.003469
JS-divergence 4 15.8 28.468 0.002598
KL-divergence 4 15.8 28.707 0.002598

MSE 20 8.6 76.105 0.001238
MMD 20 8.6 77.53 0.000872

Chebyshev 22 8.6 88.689 0.001262
Manhattan 24 10.4 101.065 0.001792
Euclidean 24.8 8.6 97.8324 0.001689

Cosine 26.6 9 88.689 0.001262

Random
Selection

2 12.6 11.591 0.003823
5 8.4 19.098 0.003137
10 8.4 38.108 0.001083
15 7.8 53.406 0.002364
20 8 72.672 0.001717
25 8 92.24 0.001712

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a similarity-based client selection
approach to reduce the transmission of semantically redundant
data. To this end, we incorporated nine statistical similarity
metrics in the FL client clustering process. Experimental
results reveal that the more heterogeneous the local client data
are, the more effective our method is, capitalizing on the lower
number of required rounds and reduced energy consumption in
FL training compared to random selection. In the path forward,
we will direct our efforts towards integrating into our approach
the quality of communication links between the participating
clients and the server.
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