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Abstract—Scheduling plays a crucial role in allocating re-
sources to tasks in various domains, including healthcare. Nurse
scheduling, in particular, presents significant challenges due to
the limited number of nurses. This paper illustrates how a novel
meta-heuristic model known as Dragonfly Algorithm (DA) is
used to efficiently solve the nurse scheduling problem faced by
a major hospital in Belgium. The DA, inspired by the swarming
behaviours of dragonflies, offers a new approach to solving
this problem. The algorithm’s effectiveness is evaluated using
Shift Scheduling Benchmark Datasets, and the results show its
potential for generating nurse schedules with reduced penalties.

Index Terms—roster scheduling, dragonfly optimization,
swarm intelligence

I. INTRODUCTION

Scheduling involves assigning resources to tasks [1]. These
resources could be machines in a workshop, processors in a
computer or employees in the industry. The tasks can range
from manufacturing jobs to threads or waiting tables at a
restaurant. However, the availability of resources and tasks
often does not match the desired level of operation. Developing
a roster focuses on optimal work schedules for employees,
obtaining the conditions of the organization, employees, and
labour laws, to meet the organization’s labour demand [2].
Certain sectors, such as social emergencies (medical care,
fire department services, police), require 24-hour services and
preparation of optimal timetables for work shifts and job ro-
tations. These timetables must consider employee well-being,
including satisfaction, health, stress level, and motivation, as
they can significantly impact employee performance. This
paper specifically addresses healthcare personnel’s scheduling
challenges, primarily focusing on nurses.

The global pandemic in 2020 put immense pressure on
the healthcare system worldwide. The efficient allocation of
healthcare resources has become crucial during such situa-
tions. Healthcare personnel scheduling, particularly for nurses,
gained increasing significance [3], [4]. Scheduling the right
nursing staff improves the performance and quality of the nurs-
ing units, benefiting multiple parties. It enhances operational
efficiency, and resource allocation, ensures the safety and
satisfactory experiences of staff and patients, and alleviates the
workload of the hospital management and administration [5].

Nurse Scheduling Problems (NSP), also known as roster
scheduling of nurses, pose challenges due to the relatively

limited number of nurses compared to the number of patients
in hospitals [6]. Effective nurse scheduling aims to distribute
the workload fairly among nurses while adhering to schedul-
ing restrictions. However, fulfilling all scheduling restrictions
becomes challenging as meeting one constraint may lead to
the violation of others. Efficient scheduling involves assigning
nurses to shifts to maximize hospital benefits while consid-
ering hard and soft constraints such as duty hours, hospital
regulations, and more. Finding combinatorial solutions to
satisfy multiple constraints is a delicate task. NSP establishes
a periodic schedule for a number of nurses by allocating
one out of a possibly infinite number of shift schedules to
each nurse. The roster must consider different contracts, nurse
requirements (varying ranks), and nurse preferences. Addition-
ally, management’s desire to minimize cost or maximize profit
influences the scheduling outcomes; therefore recognizing
NSP as an NP-hard optimization problem [7].

Scheduling methods have evolved over the decades, transi-
tioning from the traditional manual self-scheduling or cycli-
cal scheduling to Dynamic Programming and Reinforcement
learning. Other models such as the Liner Model and Genetic
Programming have also emerged. This paper explores using
the Dragonfly algorithm (DA) for solving the NSP.

II. LITERATURE REVIEW

Scholars across the globe have dedicated considerable atten-
tion to studying the nurse rostering problem. Early research
in this field explored various aspects, including personnel
scheduling, financial costs, and nurse management issues [8].
In addition to traditional methods like manual self-scheduling
and cyclical scheduling, mathematical programming and op-
timization techniques gradually emerged [8]. However, devel-
oping a generic model for this problem occurred later through
international competitions, such as INRC in 2010 [9]. This
model considers nurses’ assignments in relation to shifts while
respecting hard constraints and minimizing violations of soft
constraints. The violations of constraints lead to penalization,
and thus the solution aims to optimize the assignment with
minimal penalties [10]. This topic has gained even more at-
tention in recent years with the emergence of new optimization
methods and algorithms.
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This NSP problem can also be formulated as a Multiple-
Choice Knapsack Problem [11]. In this formulation, the knap-
sack represents the requirements of shifts, and the number of
staff for a valid scheduled day, while nurses can fill in their
personal preferences. Hard and soft constraints are associated
with rewards and penalties in the final cost function.

Genetic Algorithms (GAs) have gained popularity for solv-
ing complex optimization problems, and several researchers
have used them to solve staff-scheduling problems. GAs
are probabilistic search algorithms which mimic biological
evolution to produce better offspring solutions gradually [12].

Linear programming is another common approach for solv-
ing scheduling problems. It is a mathematical model that
maximizes or minimizes a linear function, often known as
an objective function subject to constraints. Lorraine Trilling
et al. (2006) proposed a solution to maximize shift fairness
of anaesthesiology nurses in a French public hospital subject
to several constraints [13]. They utilized an Integer Linear
Programming (ILP) approach and a Constrained Programming
(CP) approach. The ILP approach outperformed the CP ap-
proach in terms of speed and performance. Despite conducting
an experiment over a 12-hour period with a sample of 20
nurses, they were unable to achieve the optimal value. It is
important to note that meta-heuristic algorithms do not guar-
antee an optimal solution. However, they provide faster and
more efficient solutions than Linear Programming techniques.

To the best of our knowledge, this is the first paper that
introduces the DA to the nurse scheduling problem.

III. PROBLEM DESCRIPTION

A. Problem Statement

NSP involves finding an optimal way to assign shifts and
days off for nurses. Each nurse or physician has their own
desired schedule. The task is to create weekly schedules for
nurses on specific wards by assigning one of many possible
shift patterns to each nurse. These schedules must satisfy
contract requirements and meet the demand for a given number
of nurses on each shift while being perceived as fair by the
staff. Achieving fairness involves accommodating as many
nurses’ requests as possible and evenly distributing unsatisfied
requests and unpopular shifts. This problem also has a unique
day-night structure, as day and night shifts may have different
requirements. For example, nurses may require longer breaks
after night shifts. These characteristics make the problem chal-
lenging for local search algorithms, as finding and maintaining
feasible solutions is extremely difficult.

In this paper, we work on Shift Scheduling Benchmark
Data Sets provided by the KU Leuven University website,
specifically instance 6. This data set contains realistic and
straightforward instance data, including information about
nurses, schedules, and constraints over 28 days. Our instance
assumes that all nurses possess the same skill type and work
on a 3-shift schedule (early/late/night shift).

B. Description of Constraints

We aim to assign shifts to nurses over 28 days, subject
to several constraints. The constraints are divided into two
categories: hard and soft constraints. Hard constraints must
be satisfied by all feasible solutions and are related to ad-
ministrative and union contract specifications. Soft constraints
are desirable but not obligatory and can be violated. Violating
a hard constraint renders the schedule invalid and incurs a
penalty, while violations of soft constraints also result in
penalties but do not invalidate the schedule. The goal is
to minimize the penalty and find a valid schedule. A shift
represents a block of time during work duty. Shift types in
our data include early, day, and night shifts. A sequence is a
series of shifts for a nurse that happen on consecutive days.
A schedule consists of multiple sequences and the day-off
periods between them, and it is designated for each nurse
individually. The constraints are as follows.

Let Nur = {1, 2, . . . , n} represent the set of nurses, and let
Day = {1, 2, . . . , 28} represent the set of days in the schedul-
ing period. Define M as a matrix where Mi,j represents the
shift assigned to nurse i on day j, with Mi,j ∈ {E,D,N,O}
representing Early, Day, Night shifts, and Off respectively.

Hard Constraints
1) One Shift Per Day:

∀i ∈ Nur, ∀j ∈ Day,
∑

s∈{E,D,N}

1{Mi,j=s} ≤ 1

2) No Back-to-Back Shift Sequences:

∀i ∈ Nur, ∀j ∈ Day\{1},Mi,j = O =⇒ Mi,j−1 = O

3) Maximum Consecutive Shifts ≤ 4:

∀i ∈ Nur, ∀j ∈ Day,

min(j+3,28)∑
k=j

1{Mi,k ̸=O} ≤ 4

4) Minimum Days Off After Shifts ≥ 2:

∀i ∈ Nur, ∀j ∈ Day,Mi,j = O =⇒
min(j+2,28)∑

k=max(1,j−1)

1{Mi,k=O} ≥ 2

5) Maximum Working Weekends:

∀i ∈ Nur,
∑

j∈Day
j is Sat or Sun

1{Mi,j ̸=O} ≤ 4

Soft Constraints
1) Preferred Shift Types:

Minimize
∑

i∈Nur,s∈{E,D,N}

1{Mi,j ̸=s} × PrefShifti,s

2) Days Requested Not to Work:

Minimize
∑

i∈Nur,j∈Day

1{Mi,j ̸=O} ×RequestOffi,j
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C. Objective Function

In our dragonfly algorithm, the position vector represents
Nur×Day matrix M . Each nurse’s schedule (row mi,∗) rep-
resents a single dragonfly, and each element (mi,j) represents
the position of the dragonfly which corresponds to the shift
type. We also define a cost function for our NSP to return a
total weighted cost value. We mark the cost function as:

Total Weighted Cost =∑
i∈Nur,j∈Day

(
Covviolationi,j

+ Schviolationi,j

)
This function considers weighted shift coverage costs Cov and
schedule requirement costs Sch. The coverage cost considers
the coverage situation within the ward; for instance, a certain
number of nurses must fulfill all shift duties. The schedule
requirement costs consider the other constraints required to
ensure feasible schedules, such as the requirement of day-off
shifts after a night shift. As all penalties from the violation
of soft and hard constraints are under consideration in the
cost function, lower costs indicate less violation of constraints.
Therefore, we aim to find a roster schedule with the lowest
overall penalty (minimum total cost).

IV. ALGORITHM DESCRIPTION

A. Overview of DA

The Dragonfly algorithm (DA) is a new swarm intelligence
optimization algorithm that Mirjalili proposed in 2015 [14]. It
is a new optimization technique for solving single-objective,
discrete, and multi-objective problems. The DA is inspired by
two unique clusters of natural dragonflies: foraging groups
(also known as static groups) and migratory groups (known
as dynamic groups).

The key idea of DA is mimicking the swarming behaviours
of a dragonfly. For a group of dragonflies, there are only two
reasons for them to swarm - migration or hunting. In a foraging
group (static group), dragonflies form a small group and move
over to a small area to hunt other insects. Local motion and
mutation of the moving path are the foremost features of a
static group. However, in a migratory group (dynamic group),
many dragonflies will be going on long-distance migration in
one specific direction.

There are three principles for every dragonfly group: Sep-
aration, Alignment and Cohesion. Separation is to avoid
collision when dragonflies are in the same neighbourhood.
Alignment is a habit of a search agent that adjusts its velocity
to the other agents in the same neighbourhood. Cohesion is
a habit of dragonflies that flies toward the center of search
agents. For any group, the final target is survival; everyone
tends to be attracted to food and distracted from the enemy.
Hence, 5 factors affect individuals’ positions in a group.

B. Math Model

As we mentioned before, to direct artificial dragonflies to
various paths, five weights were used, which are separation
weight (s), alignment weight (a), cohesion weight (c), food

factor (f ) and enemy factor (en). This section will present
how to express and calculate those factors.

Separation stands for individuals that would maintain an
appropriate distance between each other to avoid a collision.
It could be calculated as:

Si = −
N∑
j=1

X −Xj (1)

Where X indicates the position for the current dragonfly, Xj

is the position for the jth neighbouring dragonfly, N is the
number of individual neighbours of the dragonfly swarm, and
S indicates the separation motion for the ith individual.

Alignment is a habit of a search agent that adjusts its
velocity to the other search agents in the same neighbourhood.
Equation 3 is used for calculating the alignment:

Ai =

∑N
j=1 Vj

N
(2)

where Ai is the alignment motion for ith individual and V
is for the velocity of the jth neighbouring dragonfly.

Cohesion is a habit of dragonflies that flies toward the
center of search agents. It can be expressed as follows:

Ci =

∑N
j=1 Xj

N
−X (3)

where Ci is the cohesion for ith individual, N is the
neighbourhood size, Xj is the position of the jth neighbouring
dragonfly, and X is the position of current dragonfly.

Attraction is dragonflies staying as close as possible to
access their food. It could be computed as follows:

Fi = X+ −X (4)

where Fi is the attraction of food for ith dragonfly,X is the
position of the source of food, and X is the position of the
current dragonfly individual. Here, the food is the dragonfly
with the best objective function.

Distraction are outward predators which are calculated as
follows:

Eni = X− +X (5)

where Eni is the enemy’s distraction motion for the ith
individual,X− is the enemy’s position, and X is the position
of the current dragonfly individual.

For position updating in the search space, artificial dragon-
flies use step vector ∆X and position vector X. The step vector
is an analogy to the velocity vector in the PSO algorithm. The
position updating is also based mainly on the PSO algorithm
framework. The step vector is defined in Equation (7) as
follows:

∆Xt+1 = (sSi + aAi + cCi + fFi + enEni) + w∆Xt (6)

where Si represents the separation for the ith dragonfly, Ai

is the alignment for ith dragonfly, Ci represents the cohesion
for ith dragonfly, Fi represents the food source for the ith
individual, Eni represents the position of the enemy for ith
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dragonfly, w represents the inertia weight and t indicates the
iteration counter.

When the step vector calculation is finished, the calculation
for the position vectors starts as follows:

Xt+1 = Xt +∆Xt+1 (7)

where t indicates the current iteration.
The above math model could successfully handle many

scenarios; however, there are some restrictions for all the
above formulas. This math model cannot solve the problem
if no neighbours are updated around the current dragonfly;
the separation, alignment and cohesion calculation would
be meaningless. To provide a solution to this situation, we
assumed that every dragonfly would make a random move
if there were no neighbours. We will apply the Le’vy flight
rule to simulate the randomness of a dragonfly. A Le’vy flight
is a random walk in which the step lengths have a Lévy
distribution, a heavy-tailed probability. When a walk in a space
with far more than one dimension is established, the steps
taken are in an isotropic random direction. Le’vy flight rules
can be presented mathematically as:

Le′vy(x) = 0.01× t1 × σ

|t2|
1
β

(8)

where t1 and t2 are the random numbers between 0 and 1,
β = 0.5, and σ can be calculated as

σ =

Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β × 2

β−1
2


1
β

(9)

Then we can get our updated rule of dragonfly position with
random moves as follows:

Xt+1 = Xt + Le′vy(d)×Xt (10)

C. Algorithm Process

The DA starts with random initialization and then randomly
returns a new dragonfly’s step vector ∆X and position vector
X between the upper and lower bounds of the solution. In
order to find more neighbours, the neighbourhood radius of
the dragonfly will increase with the increase of iterations so
that the dragonfly eventually forms a big group and performs
a local search. To guarantee that the optimization process
is random and that the neighbourhood radius is large, the
following formula is used to update all the weight values from
Equation (7) in each iteration:

w = 0.9− iter ∗ ((0.9− 0.4)/Max−iter) (11)

s, a, c = 2 ∗ random ∗my c (12)

f = 2 ∗ random (13)

e = my c (14)

radius = (ub−lb)/4+((ub−lb)∗(iter/Max iter)∗2) (15)

my c = 0.1− iter ∗((0.1− 0)/(Max iter/2)) (16)

Where random is the random number between 0 and 1, and
radius stands for the neighbourhood radius of the dragonfly.

To sum up, the algorithm process to locate the neighbours
surrounding the current individual updated to use the Equa-
tions (2) to (6) to get S, A, C, F, E and the Euclidean distance
between the individual updated and all other dragonflies. If
there are neighbours, update ∆X using equation (7) and then
update the position vector X with equation (8); if there are
no neighbours, update X directly with equation (11). The
updating of the dragonfly position continues throughout the
optimization procedure until the iteration condition reaches the
maximum iteration number. Algorithm 1 depicts the pseudo-
code of our customized approach.

Algorithm 1 Dragonfly Algorithm
1: Init dragonflies Xi(i = 1, 2, ..., n), Init step vectors ∆Xi(i

= 1, 2, ..., n), Init max iteration Max
2: while current number of iterations is less than Max do
3: Calculate the objective values of all dragonflies
4: Update the food source and enemy
5: Update w, s, a, c, f and e
6: Calculate S, A, C, F and E using Eqs. (2) to (6)
7: Update neighbouring radius
8: if a dragonfly has at least one neighbouring dragonfly

then
9: Update velocity vector using Eq. (7)

10: Update position vector using Eq. (8)
11: else
12: Update position vector using Eq. (11)
13: end if
14: Check and correct the new positions based on the

boundaries of variables
15: end while

The overall time complexity of our approach is calculated
based on the most complex steps, which in the case of
DA algorithm is the neighbor checking and updating step
(neighboring dragonflies and updating velocity and position
vectors), resulting in quadratic time complexity of O(n2).

V. RESULTS AND DISCUSSION

We start with a random initialization of the dragonflies
position and the step vector of the dragonfly between the
upper and lower limits of the solution. Then we define the
calculation process of each search agent’s objective values
(different weights) and update them. The position updating
continues until the iteration condition reaches the maximum
iteration number. To respect the hard constraints, we assign a
cost of 999999 to each violation of the hard constraint. After
the algorithm is finished running, if the cost equals or exceeds
999999, we discard that result and perform the iteration again,
as the created schedule breaks the hard constraints.

In the first iteration, we included 20 agents and ran sim-
ulations for 10000 iterations, as shown in Figure 1. The DA
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Fig. 1. First run, 20 agents

Fig. 2. Second run, 100 agents

obtained close to optimal results at the end of the simulations.
In the second run, we had 100 agents and ran simulations for
10000 iterations (Figure 2). We stopped simulations at 8400
iterations, as we reached a global optimum with a cost of 0,
meaning that all hard constraints were met and we did not
violate any soft constraints.

We finally run different algorithms from the literature to
compare results with the tested DA, as shown in Table I. We
compared the DA with the Genetic Algorithm (GA), Moth
Flame Optimization (MFO) and Grey Wolf Optimizer (GWO).
As we can see, the DA reached the optimal result in the fastest
time. Both MFO and GWO achieved the optimal results as
well, while GA algorithm did not lower the cost to 0 in 10000
iterations. All simulations were performed on the AWS EC2
t3.medium instance in the cloud.

TABLE I
COMPARISON OF PERFORMANCE WITH OTHER ALGORITHMS

Algorithm Optimal result reached? # of iterations to reach optimal
DA YES 8400
GA NO -

MFO YES 8750
GWO YES 9200

VI. CONCLUSION

In this paper, we investigated the nurse scheduling problem
and proposed the use of the Dragonfly algorithm for optimiza-
tion. The algorithm demonstrates promising capabilities in
generating optimal schedules that meet the diverse constraints
and requirements of nurse scheduling. By mimicking the
swarming behaviours of dragonflies, the algorithm effectively
balances separation, alignment, cohesion, attraction to desir-
able shifts, and distraction from undesirable shifts. The experi-
mental evaluation using realistic benchmark data sets indicates
that the Dragonfly algorithm can generate feasible schedules
with reduced penalties compared to traditional scheduling
methods. This approach contributes to enhancing the perfor-
mance and quality of nursing units, benefiting both staff and
patients. Future research can explore further refinements of the
algorithm and its application to other scheduling problems in
healthcare and beyond [15].
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