
Multi-Objective Cognitive Routing in Space DTNs

Ricardo Lent
University of Houston

Houston, Texas, USA

Email: rlent@uh.edu

Abstract—In space networking and other challenging environ-
ments, optimizing bundle routing is crucial. Traditional routing
objectives focus on finding the shortest path or achieving the
earliest delivery time. However, with the growth of these networks
in size and diversity of applications, there is a need to expand
the scope of routing objectives. In this paper, we explore a
decentralized bundle routing method with multiple objectives.
These objectives include bundle response time, loss ratio, and
a general cost that reflects the monetary cost rate associated
with the utilization of network links. We also consider that
certain links may be offered as on-demand or reserved services.
To address these challenges, we propose a combined routing
objective and study its performance. We then apply this objective
to determine learning rewards for a reinforcement learning agent.
Our results, based on a proof-of-concept using a standard Delay-
Tolerant Networking (DTN) implementation, demonstrate the
effectiveness of the proposed method. By accommodating multiple
objectives, the method offers a flexible and adaptive solution for
online routing optimization.

Index Terms—Delay-Tolerant Networking, Space Communica-
tions, Routing Optimization, Cognitive Networking, Reinforce-
ment Learning

I. INTRODUCTION

The performance of communication networks in space and

other challenging environments is constrained by various fac-

tors. Among these, significant propagation delays and dynamic

edge conditions arise from relative node mobility, solar activ-

ity, atmospheric conditions, and scheduling decisions made by

mission control. These factors induce considerable variability

in the channel performance over time, and certain links may

be rendered unavailable for extended periods. Routing in this

delay-tolerant networking (DTN) context is a difficult task

but widely addressed by Contact Graph Routing (CGR) and

provided as Schedule-Aware Bundle Routing by the Consul-

tative Committee for Space Data Systems (CCSDS, 734.3-

B-1). Given that in most cases it is possible to predict the

node proximity (e.g., from orbit calculations or ephemeris), the

knowledge of the future contact opportunities allows defining a

contact graph where the nodes represent the possible contacts

with edges linking the feasible contacts having the same end

and start node respectively. The link feasibility depends on the

timing of the contacts. A graph traversal yields the next-hop

for a bundle in this approach.

CGR finds paths with the nearest delivery time, but its

effectiveness is curbed by network congestion, which is not

fully included in the computation. As such, the approach is

mainly suitable for light network traffic. To deal with the

problem, extensions to the basic CGR have been suggested,

such as CGR-ETO [1], which adds local queueing delays

to the transmission time estimations. However, no routing

customization exists that could prevent bundles from going

through high-loss links. Losses that could not be recovered

from or avoided by the lower layers are mitigated by the

custody transfer mechanism of the Bundle Protocol (BP). As

the network evolves and the commercialization of outer space

continues, price-related metrics become relevant, i.e., how to

customize routing to achieve the best out of the net monetary

cost. In addition to whether metrics other than the delivery

time should be considered when routing bundles, the question

is how to formulate multi-criteria routing objectives that can

achieve the optimal trade among multiple metrics. This study

offers two main contributions:

1) Formulation and analysis of a multi-objective routing cost

that includes the bundle response time, loss ratio, and

other costs expressed as the monetary cost rate of links, as

needed. We examine the Pareto fronts and the relevance

of the proposed formulation to identify suitable trade-offs

among the metrics of interest.

2) We applied the proposed formulation to cognitive DTN

routing by suggesting and implementing extensions to the

Cognitive Space Gateway (CSG) [2]. The CSG applies re-

inforcement learning and spiking neural networks (SNN)

to the bundle routing optimization based on the minimum

response time, and our proposed formulation enables

the achievement of multi-criteria objectives. Experimental

results using an implementation of the CSG for NASA’s

HDTN [3] demonstrate that the method can effectively

identify a suitable trade-off among the selected metrics.

II. RELATED WORKS

Close research to the current work is related to Schedule-

Aware Bundle Routing (SABR), which is rooted in CGR.

CGR has been designed to minimize bundle delivery times

[1]. However, the lack of congestion information renders

the outcome similar to hop-count routing. Variations of this

idea have been proposed involving the partial inclusion of

local queueing delays [4] and the allowance of opportunistic

contacts modeled via a confidence metric [5]. Energy capacity

concerns for nanosatellites have also been raised [6] along

with scalability concerns [7] and the possibility of routing

for multigraphs [8]. While CGR is designed for decentralized

operation, several studies indicate a potential performance

gap compared to a centralized approach (e.g., see [9], [10]),

especially in scenarios allowing for immediate forwarding [11]
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or utilizing mixed-integer linear programming [12]. This work

stands apart from prior research through its application of

machine learning and multi-objective routing.

III. SYSTEM MODEL AND ROUTING OBJECTIVES

A delay-tolerant network can be represented as a dynamic

graph G(t) = (V(t), E(t)), where both the set of nodes V(t)
and the set of edges E(t) are time-dependent. This dynamic

graph is utilized to facilitate the transmission of one or more

bundle flows, which may experience delays due to intermittent

connectivity and network disruptions.

We are addressing the problem of a routing agent i that

autonomously selects the next hop j for a bundle (or set

of bundles) to reach a destination d with a minimum cost

that depends on time-varying characteristics of the path P =
(s, . . . , i, j, . . . , d) that the bundle follows. Here, s represents

the source of the path. The cost of the path is subject to

fluctuations due to the dynamic network, which the routing

agent must take into account while making routing decisions.

The routing agent i does not have control over or the ability

to modify the preceding path (s, . . . , i), but it can influence

the selection of the subsequent path to the destination d by

choosing the next node j from the available set of current

or future contacts with other nodes, denoted as j ∈ 1, . . . , J .

The remaining path cost φj is of particular relevance from the

perspective of the routing agent i.

When considering the macroscopic behavior of a bundle

flow traveling towards the destination d and passing through

node i, the routing decisions made by the agent result in the

flow being divided into J parts. Specifically, let λj denote

the flow fraction sent to node j, and λT represent the total

flow. Then, we have λT =
∑

j λj and pj = λj/λT is the

fraction of traffic directed towards node j. It is important to

note that a routing agent may choose to send a bundle to a

node that is not currently reachable. In this case, the bundle

is buffered until transmission, contingent on available storage

capacity. The objective is to minimize the average cost from

i by defining a policy P , where pj ∈ P is the fraction for

traffic sent to j with a class of service (CoS) q:

Φ
(q)
i = min

P

∑

j;(i,j)∈E

pjΦ
(q)
j (λj + Fj) (1)

Here, Φ
(q)
j is the cost function associated with sending the

desired bundle’s class-of-service q to the destination via node

(or link) j with E denoting the union of E(t) for all t. Each

cost Φ
(q)
j depends on the traffic to be applied λj and the total

traffic Fj produced by other flows.

A. Multi-objective Costs

When multiple metrics are of interest, expressing the cost

function Φ
(q)
j becomes a challenge. A usual approach is to

obtain the weighted average of all metrics. However, this

approach is not suitabled for loss or reliability metrics. To

address this limitation, we formulate a multi-objective routing

cost Φ
(q)
j as follows for action j and CoS q:

Φ
(q)
j = φ1φ2(1− β) + φ4β (2)

The term φ1 establishes the base cost considering the

response time. Alternatively, φ1 may be given by the hop

count φ0 instead if needed. The term φ2 introduces a loss

(or reliability metric) that proportionally magnifies the cost

φ1. Additionally, an additive penalty term φ4 is included to

address miscellaneous costs, such as the monetary expense

associated with link usage.

Depeding on the selected CoS, certain terms may not be

relevant in the cost calculation. As needed, it is possible to

set φ1 = 1, φ2 = 1, or φ4 = 0 to nullify their effect. A

possible encoding for a CoS field of the bundle is presented

in Table I. The approach can be easily extended to include

additional metrics of interest. To achieve multiple routing

goals, different CoS bits can be set, with their associated costs

given by equation (2). We note that all the individual terms

in (2) are ratios, i.e., unitless and β is the interest weight

factor, 0 ≤ β < 1, given to the latter cost. This is achieved by

normalizing the individual metrics with respect to a reference

value.

TABLE I
INDIVIDUAL ROUTING GOALS AND THEIR POSSIBLE COS ENCODING.

Label Encoding Routing goal

φ0 000 Path length

φ1 001 Response time

φ2 010 Loss

φ4 100 Monetary cost

Related to φ4, numerous link pricing models exist but they

generally fall into two categories: pay-as-you-go or reserved

services. In the pay-as-you-go model, the cost is usage-

dependent and is often expressed as a rate of dollars per unit

time, denoted by moρ, where ρ represents link utilization.

Reserved services entail a fixed cost independent of usage,

expressed as a rate of dollars per second, denoted by mr.

Typically, mr is less than mo. While a detailed taxonomy

of pricing models is beyond the scope of this study, it is

important to note that different pricing models can lead to

different routing decisions depending on their associated costs.

The proposed approach provides a framework for simultane-

ously optimizing multiple objectives in routing decisions that

can be directly used to express rewards for a learning agent

as the rewards can be expressed as the negative or inverse

cost. The precise expressions for the various cost terms are

provided in equations (3), (4), (5), and (8). In a later section,

these expressions will be applied to a DTN testbed to illustrate

their practical use and relevance.

B. Analysis of the Individual Costs

The stationary probability distribution π for a DTN link

subject to random disruptions was determined in a prior study
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[13] using the matrix geometric method. Building on this

approach, it is possible to evaluate the theoretical cost of

multi-objective routing when the source and destination are

connected through N non-overlapping overlay paths. Specifi-

cally, each path can be modeled as a continuous-time Markov

chain (CTMC) X(t), t ≥ 0 with a two-dimensional state space

(a, b) : a ∈ 0, 1, . . . ,K, ; b ∈ 0, 1. Here, a represents the num-

ber of customers in the system, and b denotes the path state,

where b = 1 indicates a disrupted path, and otherwise it is

normal. Importantly, this CTMC has a homogeneous quasi-

birth-and-death (QBD) process structure, which allows for

further analysis and insights into the system’s behavior.

In addition to the buffer size K (which removes the head-

of-line bundle only after transmission), the model includes the

bundle arrival rate λ, the service rate µ (calculated as the

reciprocal of the average service time S), the average contact

duration C, and the average disruption duration V . The cost

associated with bundle loss ratio φ
(2)
j through j is:

φ
(2)
j = [(1− Lj)(1− li,j)]

−1 (3)

with Lj = πKe is the overflow probability with πK the

probability of an arrival to a full system and e a column vector

of ones and li,j is the channel i, j corruption probability that

depends on the channel bit-error rate and bundle length. Both

πK and e are of length two as they model the probabilities for

both the normal and the disrupted link state. The denominator

in (3) gives the probability of successfully delivering a bundle.

The loss-related cost φ
(2)
j is given by the inverse of that

quantity.

The cost associated with path length is defined as

φ
(0)
j = Hj/Hm (4)

where Hj denotes the average length of the path from node

j to the destination and Hm represents the maximum path

length in the network, which for this basic analysis is just

φ
(0)
j = 1. In contrast, the response time cost φ

(1)
j is calculated

using Little’s law, which takes into account the average number

of bundles in the system. Specifically, this cost is given by:

N =
∑K

n=1 nπne:

φ
(1)
j =

Nj

pjλj(1− Lj)
(5)

The normalization factor is assumed to be one. It is worth

noting that in practical applications, precise information about

many of the model parameters may not be readily available.

However, the costs outlined above can still be implemented

effectively without such detailed knowledge. For instance, an

estimate of Hm can be obtained based on the average path

length across various next-hop options. Similarly, the average

response time can be estimated using measurements obtained

from the system in question. These practical implementation

strategies will be discussed later.

The kind of pricing models determine the network monetary

cost. The links associated with the reserved pricing model

contributes to the total cost according to :

m
(r)
j =

{

fmr λj(Cj + Vj) < fCj/Sj , 0 ≤ f ≤ 1
mr otherwise

(6)

where f is the fraction of the contact times using reserved

pricing. On the other hand, the on-demand pricing model

contributes with an amount that depends on their utilization

ρj = 1− π0e, which gives:

m
(o)
j = ρjmo (7)

It is worth noting that, when it comes to agents making

independent routing decisions, only on-demand links are rele-

vant. This is because reserved links incur a constant cost that

is independent of the agent’s routing decisions. As a result,

the agent can assume that m
(r)
j = 0. Cost φ

(4)
j is then given

by:

φ
(4)
j = m

(o)
j /M (8)

where M is the maximum cost that as in the case of the

response time, can be estimated practically thorough obser-

vations. If the CoS bit for the monetary cost is not enabled,

then this cost is zero in 2. It should be noted that while routing

decisions are made based on (8), the assessment of the network

monetary cost requires both (6) and (7).

C. Numerical Evaluation of the Multi-objective Routing Cost

To assess the effectiveness of the proposed multi-objective

routing cost expression (2), we examine a scenario where the

source agent must choose between two different paths for

individual or group of bundles. This simplification to just two

options helps to clarify the idea and provide a clear comparison

point. Path 1 offers twice the buffer capacity (K1 = 100,

K2 = 50) and is twice as fast as Path 2 (S1 = 1, S2 = 1),

but it is also twice as costly (m1 = 2, m2 = 1). Additionally,

due to random link disruptions Path 1 is available only 30%

of the time on average (C1 = 300, V1 = 700), while Path 2 is

available 60% of the time (C2 = 600, V2 = 400). The model

can predict the long-term performance of the system with a

traffic split (1− p) : p for the two paths. The optimal choice

for p depends on the metrics of interest and also the traffic

flow rate λ. We depict this observation in Figure 1, where we

plot the independent variable p against each of the metrics of

interest.

We present two scenarios to illustrate the dynamics and

impact of customizing the multi-objective routing function.

Figure 2 shows the case where the primary goal is to minimize

both the average bundle response time and the monetary cost

rate simultaneously. The left panel displays the Pareto front,

which is a parametric plot of these two metrics against the

hidden variable p. The right panel shows the values of the

proposed multi-objective routing goal for the same two metrics

versus p. Given that the second path is faster, the response

time component of the goal tends to favor this path. However,

Path 2 is the most expensive of the two, but also the one

with a highe loss ratio, which tends to reduce the monetary

cost. Notably, the scenario does not include bundle loss as
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(d) Bundle loss ratio

Fig. 1. Flow performance metrics for a case involving two disjoint paths of
different characteristics. Model parameters for path 1: S1 = 1, C1 = 300,
V1 = 700, K1 = 100, m1 = 2. Model parameters for path 2: S2 = 2,
C2 = 600, V2 = 400, K2 = 50, m2 = 1.

part of the multi-objective target. As a result, the optimal path

is Path 2. Figure 3 illustrates the simultaneous optimization

of monetary cost and bundle loss. In contrast to the previous

scenario, the two objectives are often in conflict. Lower loss

can be achieved by splitting the traffic between the two paths,

whereas lower monetary cost is best accomplished via Path 2.

Thus, the optimal path depends on the traffic rate.
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(b) Multi-objective cost function.

Fig. 2. Pareto front and the proposed multi-objective cost for response time
and monetary cost rate with β = 0.5.
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(b) Multi-objective cost function.

Fig. 3. Pareto front and the proposed multi-objective cost for monetary cost
rate and bundle loss with β = 0.5.

IV. PROPOSED METHOD FOR MULTI-OBJECTIVE ROUTING

The direct application of analytical results can be chal-

lenging due to the need for complete and precise knowledge

of the system at the time a new routing decision has to be

made. In response to this challenge, a Spiking Neural Network

(SNN)-based reinforcement learning method is proposed to

maximize the multi-objective function. This method involves

an independent agent making routing decisions based on the

Cognitive Space Gateway (CSG) method. The CSG represents

different outbound port alternatives for a bundle as an SNN

structure, which continuously trains its synapse strengths using

reinforcement learning and estimated rewards. In this way, it

provides a reliable indication of the best outbound port to be

used for each bundle. The CSG approach has been shown to

be effective in achieving low-delay goals and is extended to

achieve multi-objective goals.

A spiking neuron’s operation is determined by its membrane

potential u(t) following the Leaky-Integrate-and-Fire (LIF)

model: τ d
dt
u(t) = −u(t) + RI(t), where τ , R, and I(t)

are the time constant, leaky resistor value, and input current,

respectively. A spike occurs when u(t) reaches a certain

threshold, after which it drops to a refractory rest voltage

until recovery. The Cognitive Network Controller (CNC) uses

as many excitatory neurons as there are available actions,

each spike increasing the receiving neuron’s potential. To

regulate potential levels, inhibitory neurons connect to all

excitatory neurons and their spikes decrease potential levels.

The total input current to a neuron is given by I(t) =

ie(t) +
∑

f

∑

j

∑

k wjk.i
(f)
jk (t), where ie(t) is the external

stimulus and i
(f)
jk (t) represents the spike train of unit impulses

emitted at times f by presynaptic neuron j through the k-th

connection. The CNC determines the routing decision based

on the earliest emission of the second excitatory spike. The

subsequent two sections highlight the necessary modifications

for enabling multi-objective routing with the CSG.

Algorithm 1 Bundle routing

1: procedure BUNDLE ARRIVAL(B) ⊲ bundle arrives at agent x
2: if node x is not the destination then

3: Get end-point from B: destination d and CoS
4: y = get action(B) ⊲ from the SNN state
5: c = get cost(y, d, CoS) ⊲ reward r=c−1

6: Apply training step with y, r, d and CoS
7: forward bundle(B, y)
8: else

9: Forward B to upper layer
10: end if

11: if node x is not the source then

12: Report the local average observations to the predecessor node,
which include (all zero for x = d):

• Average transmission time to d: τx,d
• Average loss to d: lx,d
• Average hop count to d: hx,d

• Average money cost rate to d: mx,d

13: end if

14: end procedure
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Algorithm 2 Bundle forwarding

1: procedure FORWARD BUNDLE(B, y) ⊲ y is the link and next-hop node
2: if buffer y not full then

3: Append B to buffer y
4: Wait until B reaches the head-of-line
5: Send B once possible then remove from buffer
6: if transmission succeeds then

7: Measure the service time s
8: Update the averages sx,y , τx,d, hx,d, mx,d

9: else

10: Update the bundle error ratio ex,y and lx,d
11: end if

12: else

13: Drop B
14: Update drop overflow drop ratio ox,y , lx,d, mx,d

15: end if

16: end procedure

A. Cost Estimation

The proposed method for collecting the necessary infor-

mation is outlined in Algorithm 1–4. Beginning with a new

bundle arrival resulting from either a reception from another

node or origin from upper layers, Algorithm 1 performs two

tasks. For nodes other than the destination, the first task

determines the action and cost associated with the outbound

link decision. The SNN is then trained for one step before

forwarding the bundle to the next hop. The second task is

for nodes other than the source and involves sending four

pieces of information to the predecessor node. These metrics

include the average knowledge of the node’s performance to

the destination, i.e., the transmission time, loss ratio, hop

count, and money cost rate. The metrics are continually

updated using the new bundle transmission observations, as

described in Algorithm 2. As buffer overflows and channel

losses cannot be entirely eliminated, the agent tracks the

average loss observations along with the average service time

and hop count, and monetary cost rate. These updates are sent

as moving averages to the predecessor node, which replaces

the stored values, as described in Algorithm 3.

Algorithm 4 describes how the CSG agent estimates the

routing cost as indicated by the bundle’s CoS. If the CoS field’s

least significant bit is set to 0, the path length will be used to

compute the cost, otherwise, the response time. If the loss ratio

bit is set, the estimated loss to the neighbor is computed from

overflow and channel loss observations, and then combined by

multiplying the cost by the inverse of the success probability.

Similarly, if the monetary cost bit is set, the cost rate to the

neighbor is computed and added to the total cost by using

the β parameter. Only links billed with the on-demand pricing

model need to be included, as the reserved model’s cost does

not impact routing.

B. SNN Training

The regular delay-only reward of the CSG is replaced with

the inverse of a cost function (2) to enable multi-criteria

routing. This is used to express the reward for forwarding the

bundle over the chosen outbound link, with the value being

dependent on the required class of service. After selecting

Algorithm 3 Multi-objective cost estimation

1: procedure GET COST(y, d, CoS) ⊲ called by agent x
2: if CoS & 0x01 then ⊲ response time
3: φ = nx,ysx,y + τy,d +Wx,d, where

• nx,y : buffer occupancy of link x, y
• Wx,d: stall time to d from the contact plan

4: else ⊲ hop count
5: H = max(hj,d), for all neighbors j
6: φ = (1 + hy,d)/H
7: end if

8: if CoS & 0x02 then ⊲ loss
9: L = 1− (1− lx,y)(1− ly,d),

10: where lx,y = 1− (1− ox,y)(1− ex,y)
11: φ = φ ∗

1
1−L

12: end if

13: if CoS & 0x04 then

14: m = get monetary cost rate for link (x, y)
15: if (x, y) uses reserved pricing then

16: M(x, y) = 0
17: else ⊲ on-demand model
18: ρ = get link utilization (x, y)
19: M(x, y) = mρ
20: end if

21: M = max(Mj,d), for all neighbors j

22: φ = (1− β)φ+ β
M(x,y)+M(y,d)

M(x,y+M)
23: end if

24: Return φ
25: end procedure

Algorithm 4 Report arrival

1: procedure REPORT ARRIVAL(Br) ⊲ Br arrives at x from y
2: Store τy,d, ly,d, hy,d,my,d

3: end procedure

an action and obtaining the multi-criteria reward the agent

updates its knowledge of the average cost performance using

a moving average formula, which helps it to better adapt

to changing conditions. The training step adjusts the SNN

weights associated with the last routing decision by an amount

proportional to the difference between the latest cost and the

minimum value possible with all forwarding options [2].

V. PROOF OF CONCEPT

To accurately assess the effectiveness of a proposed method,

it was put to the test within NASA’s High-Rate Delay Tolerant

Networking (HDTN) architecture, a DTN implementation for

high-throughput that is compatible with RFC 5050 [3]. The

CSG approach described in the previous section was imple-

mented to add multi-objective routing services to HDTN.

A series of experiments were carried out using a network

topology depicted in Fig. 4. In this topology, nodes labeled

as 100 and 200 were designated as the source and sink of

the test traffic, respectively. This particular network topology

is representative of a space network, and it presents multiple

options for both the shortest and longer paths. Notably, it

provides two parallel shortest paths, making it an interesting

and relevant network for the experiments. To selected topology

was constructed using eight PowerEdge R220 servers, each of

which was equipped with multiple network interface ports. To

simulate the conditions of independent and full-duplex space

channels that handle concurrent bundle transmissions over

2024 Workshop on Computing, Networking and Communications (CNC)

380



D E F

G IH

A B

100

200

Fig. 4. Laboratory testbed topology. The circles represent extended HDTN [3]
nodes with multi-criteria CSG routing and the squares the traffic end-points.

different outduct ports, we utilized direct Cat 5 twisted pair

connections between the servers, without the intermediary of

a switch. Additionally, to emulate realistic propagation delays

for all physical links, we implemented Linux’s Traffic Control

(TC) tool, introducing a 100 ms delay. The use of uniform

propagation delays was crucial to simplify the interpretation

of the results. We assumed an on-demand pricing model for

all links, with the cost rates of 1 $/s for path B-E-H, 0.4 $/s

for path B-F-I-H, and 0.1 $/s for all other links.
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Fig. 5. Performance metrics with multi-objective routing. The baseline results
were obtained with CGR.

Additionally, the UDP-based convergence layer adapter

was used for the tests with the transmission rate limited to

about 100 Bundle/s through the udpRateBps value of HDTN

with 100 kB bundles. Other relevant parameters include an

exponential moving average factor α = 0.1, a learning rate

η = 0.01, and exploration probability ǫ = 0.1. By using

a standard DTN system, the validity and reliability of the

proposed method can be adequately demonstrated.

Fig. 5 shows the average observations for the test flow’s

response time and the network monetary cost rate, when the

CSG method is assigned either a delay-only routing goal or

a multi-objective goal of delay-loss-monetary cost rate. As

anticipated, the latter goal achieves higher delay but lower

monetary cost compared to the former goal. This outcome

provides confirmation of the effectiveness and suitability of

the CSG method in achieving multi-objective routing goals.

To provide a meaningful reference for the results obtained, we

included the results obtained with CGR, which is the standard

and sole method available in HDTN. Despite CGR achieving

slightly lower delay than CSG for low offered loads, as the

reinforcement learning of CSG involves the exploration of sub-

optimal paths, the results demonstrate the benefits of CSG over

the standard method for both high data rates and multi-criteria

routing, thus highlighting its fast convergence to the optimal

solution.

VI. CONCLUSION

In conclusion, this work addresses the challenge of multi-

criteria routing in space DTN and other domains. Through

our analysis of the system, we identified the complexities of

the solution space, which can lead to unexpected results if not

properly addressed. To overcome this challenge, we introduced

a multi-objective function that effectively balances response

time, loss, and generic cost. The monetary cost rate was used

as the generic cost metric in this paper.

We evaluated the proposed method by extending the CSG

to support routing with multi-objectives and the observation

of the required metrics. The laboratory results confirmed

that the proposed multi-criteria method can effectively guide

reinforcement learning by producing adequate rewards that

achieve a suitable trade-off among the metrics of interest.

Furthermore, although the evaluation primarily focused on the

CSG, the proposed multi-objective formulation is applicable

to other DTN routing contexts and domains.
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