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Abstract—In this paper, a point-to-point communication system
with low latency and high reliability is studied. A fast hybrid
automatic repeat request (HARQ) protocol is applied, where some
HARQ feedback is omitted and the associated channel uses are
incorporated for data transmission in fast HARQ. Based on relevant
results on the decoding error probability over finite blocklength
(FBL) codes, a long-term bit energy minimization problem is for-
mulated in the presence of feedback delay and reliability constraints.
Considering the non-convexity of the optimization problem and
small decoding error probabilities, a finite-episode Markov Decision
Process (MDP) with a double-layer penalty reward is formulated.
An actor-critic based deep reinforcement learning (DRL) algorithm
is subsequently designed. Through numerical evaluations, it is shown
that compared with the conventional HARQ and the existing fast
HARQ protocol, the proposed scheme is more energy efficient
especially when the packet size is large.

I. INTRODUCTION

Different from the typical human-centered communication
traffic which prioritizes high throughput, the Internet of Things
(IoT) networks in Fifth Generation (5G) wireless communication-
s of numerous critical industries such as industrial automation,
smart manufacturing, healthcare, and virtual reality have strict
requirements for delay and reliability [1]. As one of the cru-
cial application scenarios in 5G, ultra-reliable and low-latency
communication (URLLC) is anticipated to provide reliable and
low-latency communication services [2].

Combining forward error correction (FEC) and automatic
repeat request (ARQ), hybrid ARQ (HARQ) is an essential pro-
tocol applied in wireless networks to enhance data transmission
performance [3]. Nonetheless, it is also characterized by high
latency with latency arising from multiple retransmissions and
feedback [4]. The performance of HARQ protocols has been
extensively studied in various works. The authors in [6] have
designed strategy to improve the performance of a delay-sensitive
communication system via finding adaptive transmission rates.
In order to reduce transmission delay, short packet transmissions
were considered in [7], where the Shannon capacity with infinite
code length was no longer applicable and finite blocklength
(FBL) analyses can provide more accurate characterizations.

Regarding the analyses in the FBL regime, some key works
have considered HARQ for URLLC. In [8], different HARQ
schemes, i.e., HARQ with incremental redundancy (HARQ-IR)
and HARQ with chase-combined, were analyzed in URLLC
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systems, respectively. A trade-off between energy and latency
in a HARQ-IR scheme for URLLC communication was studied
in [9]. Besides, to further reduce the delay, the authors in [4]
proposed an improved HARQ strategy in FBL regime without
waiting for feedback on the basis of channel condition. Note
that these models are commonly complicated due to non-convex
optimization problems. High computing overheads are generally
required to execute the algorithms.

Faced with challenges, deep reinforcement learning (DRL) has
shown great potential for the analysis of URLLC systems. In [10],
a DRL-based framework was developed for downlink URLLC
systems to obtain maximum long-term throughput constrained
by latency in NR-Unlicensed and WiFi coexistence systems.
The authors in [11] studied a resource allocation problem in
a joint eMBB and URLLC system, where a multi-agent DRL-
based algorithm was proposed satisfying the reliability constraint
and QoS requirement of URLLC and eMBB, respectively. The
authors solved the spectrum measurement problem in an uncer-
tain environment by combining a model-free DRL-based solution
with a proactive dynamic spectrum sharing (PDSS) scheme in
[12]. Nonetheless, the above works rarely involve transmission
events with small transition probabilities.

In this paper, we consider a fast HARQ protocol in the
finite blocklength regime with low transmission delay constraints,
where the feedback delay is integrated. Compared with the
conventional HARQ protocol, some feedback is omitted, where
the associated channel uses among the feedback not utilized
before can be involved for data transmission. Then, we formulate
the problem as a long-term bit energy minimization problem in
the presence of reliability, delay, and peak power constraints.
We model the non-convex problem as a finite-episode MDP
with a double-layer penalty reward function and propose an
Advantage Actor-Critic (A2C) based algorithm to solve it. Partic-
ularly, considering the transmission events with small transition
probabilities, a term related to transition probabilities is added to
the reward function to facilitate better training results. Numerical
results show that the proposed scheme can achieve better perfor-
mance in terms of energy efficiency compared to the conventional
HARQ and the existing fast HARQ protocol, especially when the
packets carry considerable information bits.

II. PRELIMINARIES

In this section, we briefly discuss the system model, the fast
HARQ scheme and the decoding error probability. Additionally,
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Fig. 1. Schematic of the packet transmission in the fast HARQ approach in comparison to the HARQ scheduling.

the problem formulation is given.

A. System Model

Throughout this paper, we assume a point-to-point block
fading channel with single-antenna nodes with perfect channel
state information (CSI) at the receiver only, where the fading
coefficients stay constant for a coherence block of N symbols and
change independently from one block to another. The relationship
between the output and the input in the ith block is given by

yj = hixj + zj j = 1, 2, . . . , N, (1)

where xj and yj are the channel input and output, respectively,
in the jth symbol duration of the ith block, hi denotes the fading
coefficient, and zj is the additive white Gaussian noise with zero
mean and variance n0, i.e., zj ∼ CN (0, n0). In the following,
we define gi = |hi|2 as the channel gain and G = E[g(i)] as the
expectation of the channel gain.

B. Fast HARQ

The comparison between the conventional HARQ scheme and
the fast HARQ protocol is depicted in Fig. 1. Firstly, we consider
a conventional fixed-rate HARQ scheme which requires a maxi-
mum number M of transmissions. Each packet of B information
bits are encoded into a codeword of overall length MN channel
uses, divided into M subcodewords. If the maximum number of
transmissions is not reached, the receiver will respond with an
ACK or NACK signal, depending on whether the decoding is
successful or not. At this point, a NACK signal prompts another
transmission. When the maximum transmission round is reached,
the message will be dropped without requiring feedback. As a
stark difference from most of prior works, we take the feedback
delay in terms of D channel uses into account in this paper. Then,
the traditional scheme would wait D(M − 1) channel uses for
feedback, which are not utilized for data transmission.

Alternatively, for the fast HARQ scheme, it is assumed that
the transmitter sends m0 (m0 ≤ M) subcodewords that would
take m0 transmission rounds in the conventional HARQ scheme
together in the first transmission round. Then, the channel uses of
length (m0 − 1)D waiting for feedback can be incorporated for
data transmission without affecting the transmission delay. Thus,
for the fast HARQ, each packet of B information bits is encoded
into a codeword of overall length MN+(m0−1)D channel uses.

In the first transmission round, the subcodeword of length L1 is
sent to the receiver, where L1 = m0N+(m0+1)D. If decoding
fails, the receiver sends a NACK signal, and another round
of retransmissions is requested. In subsequent retransmission
rounds, a subcodeword of length N is sent each time until the
message is successfully decoded or the maximum number of
transmission rounds is reached. Note that when m0 = 1, the
fast HARQ scheme reduces to the conventional HARQ scheme.

C. Decoding Error Probability

For the considered fast HARQ protocol, the subcodeword will
pass through multiple fading blocks in the first transmission
round. We assume that each time the feedback signal is transmit-
ted through d fading blocks, where d is an integer and D = dN .
Thus, during the first transmission round, the subcodeword is
transmitted over m0+(m0−1)d blocks. Note that, if d = 0, the
transmitter can receive the ACK/NACK signal from the receiver
instantaneously without any feedback delay. It is worth noting
that any other values of feedback can be quantized into integer
multiples of N without affecting the subsequent analysis.

Define the transmit power of the kth transmission round as
pk and the received signal-to-noise ratio of the specific block
i duration of the kth transmission round as γki . γki can be
expressed as

γki =
pkgi
n0

. (2)

In the case of a single antenna and perfect CSI at the receiver
only, the achievable coding rate is given by [13]

R ≈ C −
√

V (γ)

L
Q−1(ϵ), (3)

where L denotes the sum number of channel uses which are used
for coding, ϵ is the decoding error probability, and Q−1(.) is
the inverse function of the complementary Gaussian cumulative
distribution function Q(.). We have

C(γ) = E{log2(1 + γ)}, (4)

V (γ) = NV ar(log2(1 + γ)) +
1

log2e 2
(Vavg(γ) + V ar(

γ

1 + γ
)), (5)
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with V ar(X) representing the variance of random variable X ,
and

Vavg = E
{
γ(2 + γ)

(1 + γ)2

}
. (6)

Considering the normal approximations [14], the decoding
error probability of transmission round k can be approximately
expressed as

ϵk ≈ Q

∑k
l=1 nlCl −B√∑k

l=1 nlVl

 k ∈ [1,K], (7)

where

Cl =

{
1

m0+(m0−1)d

∑m0+(m0−1)d
i=1 log2(1 + γki

), l = 1,

log2(1 + γki
) else.

(8)

Vl =


1

m0+(m0−1)d

∑m0+(m0−1)d
i=1

γki
(2+γki

)

(1+γki
)2

, l = 1,

γki
(2+γki

)

(1+γki
)2

, else.
(9)

Above, Cl and Vl represent the channel capacity and dispersion
of the lth transmission round, respectively, nl is the length of
the channel used for information coding in the lth transmission
round, and K = M −m0 + 1 denotes the maximum number of
transmission rounds in the proposed scheme.

D. Problem Formulation

Delay and reliability are two factors that should be taken into
account considering the URLLC scenarios. In the following, we
assume N ×∆T = TC , where TC represents the coherent time
and ∆T is the symbol duration. Dsum represents the delay of the
proposed transmission scheme, which indicates the sum number
of channel uses in each packet transmission period including
feedback. Denote ϵK as the decoding error probability of the
maximum transmission round. Considering that in the proposed
scheme, a transmission failure event only occurs in the maximum
transmission round, and hence the reliability of the system can
be represented by ϵK . Also, there exists a tradeoff between
energy consumption and transmission reliability. Specifically,
larger transmit energy can guarantee higher reliability, whereas
low energy consumption is desired but may not guarantee the
reliability constraints.

In view of the above considerations, we formulate the problem
as follows

min
p(t)

lim
T→∞

1

T

T∑
t=1

p(t)l(t)∆T (10a)

s.t. ϵK ≤ ϵmax, (10b)

Dsum ≤ Dmax, (10c)

0 < p(t) ≤ pmax. (10d)

Problem (10) is a long-term energy minimization problem,
where l(t) denotes the length of channel uses for data transmis-
sion in the tth step, the objective function in (10a) is the long-
term average energy consumption of the continuous packet trans-
mission process, (10b) and (10c) are the constraints of reliability

Fig. 2. The state transition model of Fast-HARQ.

and feedback delay, respectively, and (10d) is the peak power
constraint for each transmission round. Since this optimization
problem is non-convex and computationally intensive, we employ
a DRL-based approach to solve it.

III. DEEP REINFORCEMENT LEARNING BASED APPROACH

In this section, we first formulate the problem as an Markov
Decision Process (MDP) and then introduce an A2C-based
algorithm to solve it.

A. MDP Formulation

To solve the optimal transmission power allocation problem
of the fast HARQ scheme, we formulate a finite-episode MDP,
where each episode consists of T steps that correspond to T

subcodewords. The specific settings are as follows.
State space: The state space S is characterized by the number

of transmission rounds, limited to the maximum number specified
in the fast HARQ subsection. Thus, the state of each step can be
given as

s(t) = {k(t)|k(t) ∈ [1,K]}. (11)

Action space: The transmitter selects transmit power when
each transmission attempt happens in slot t. Accordingly, the
action of each step can be expressed as

a(t) = {p(t)}. (12)

Transition dynamics: The state transition model of the pro-
posed Fast-HARQ is depicted in Fig. 2. State 1 denotes the first
transmission round in a fresh packet period, and State k denotes
kth transmission round, where the state transfers from State k
to State k + 1 with the decoding error probability ϵk when the
maximum transmission round K is not reached. In accordance
with the proposed transmission principle, State K enters State 1
with probability 1. Thus, the state transition matrix is given by

P =



1− ϵ1 ϵ1 0 ... 0
1− ϵ2 0 ϵ2 ... 0

...
...

...
. . .

...

1− ϵK−1 0 0
... ϵK−1

1 0 0
... 0


, (13)

where Pij denotes the probability of state transition from State
i to State j.

Reward function: The reward function plays a crucial role
in learning performance and efficiency. It should be defined to
be consistent with the design objective of minimizing long-term
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average energy while satisfying the constraint of reliability. We
define the normalized energy of each step

e(t) =
p(t)l(t)

N
. (14)

Then, the reward function, including penalties for energy con-
sumption and transmission failures, is expressed by

r(t) =

{
−e(t) ∗m(t), else,
−e(t) ∗m(t)− v(t), S

′
(t) = failure, k(t) = K.

(15)

and

m(t) = min{− log ϵk(t),∆1}, (16)

v(t) = min{C(
f(t)

F
)α,∆2}, (17)

where S
′

denotes the decoding result of the current transmission
round.

Specifically, we propose a function m(t) related to the de-
coding error probability, which forms the penalty term of en-
ergy consumption combined with the normalized energy. For
some transmission events with small transition probabilities, even
though the relationships between transmit power and probabilities
are known, it is difficult to exploit them due to the overall small
values of the transition probabilities. In this section, the function
m(t) converts a small decoding error probability into a positive
number that is easy to handle, and the value of it increases with
transmit power until reaching the upper bound we set. To avoid
excessive energy consumption while ensuring high reliability,
m(t) is used to increase the weight of energy consumption in
reward function.

What’s more, in terms of the penalty term for reliability, we
construct a double-layer penalty term. The first layer penalty re-
lies on the transmission result of the package, once a transmission
failure event occurs, the penalty term emerges. Nevertheless, only
focusing on this penalty will make the agent attempt to transmit
successfully rather than ensuring the constraint of transmission
reliability. Hence, the second layer penalty term in (15) is given,
where C is a positive penalty coefficient and F is the maximum
number of transmission failure events within the limitation of
reliability, which is equal to Tϵmax. α is a positive integer
controlling the increasing speed of the reliability penalty term
with respect to the cumulative number of transmission failures,
which is given by the function f(t)

f(t) =

t∑
i=1

I[S
′
(i) = failure&k(i) = K], (18)

where I{.} is the indicator function. Obviously, limT→∞
f(t)
t =

ϵK . v(t) increases sharply as f(t) increases to avoid transmission
failure when f(t) approaches or exceeds target number F .

In addition, ∆1 and ∆2 are constants which denote different
upper bounds for both m(t) and v(t) to avoid excessive values
for any penalty term. Hence, this reward function encourages the

Fig. 3. Framework of the proposed A2C algorithm.

agent to consume less energy while satisfying the transmission
reliability constraint.

B. A2C-based Algorithm

In this part, we introduce the actor-critic algorithm A2C to
solve the above MDP problem. In the following of this section,
st, at and rt are used to denote the state, action, and reward of
the agent in each step t.

The framework of the proposed A2C algorithm is shown
in Fig. 3. We can briefly summarize the algorithm into two
parts: interaction and training. During the interaction, the agent
receives the current state st ∈ S from the network environment
and selects a at ∈ A. Considering the transmission event with
small transition probabilities in this page, we propose a more
effective method for action exploration and evolution. Combining
traditional methods for action exploration and the idea of the
simulated annealing (SA) algorithm, we denote the dimension
of power space na, exploration random integer of each episode
nt ∈ [−na, na], random number a ∈ [0, 1], and the total training
episodes nT . Then, Te which indicates temperature in SA, is
given by

Te = b exp{−nepisodes

c
}, (19)

where b, c are constants. If a < Te, we obtain the probability
distribution of actions p(st, an) by feeding st into the actor
network π(st|θπ). Obtain the index i = argmax(p(st, an)).
Then, we add the exploration random integer of each episode to
the index and limit the value of i within [0, na−1]. If a ≥ Te, we
look for pavg corresponding to the maximum average reward of
T steps in the previous episodes. Round pavg and obtain index
value i in power space P . Finally, the agent chooses at in P
according to the index i.

Performing action at, the agent receives the reward rt and
reaches the next state st+1. The discount return reward at step t
can be defined as Gt =

∑∞
T=0 λ

T rt+T , where λ is the discount
factor. Define the action-value function Q(st, at) = E[Gt|st, at]
and the state-value function V (st) = E[Gt|st], which estimate
the expected return for selecting action at in state st and the
average expected return from state st, respectively. The objective
of the agent is to maximize the expected return from each state
st, which can be estimated by Q(st, at) and V (st). The A2C
has been proved to be an effective approach using only the state-
value function V (st), which reduces the number of parameters
and simplifies the learning process. Particularly, the actor network
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in A2C uses the advantage function to solve the gradient, which
is defined as At(st, at; θπ, θv) and can be substituted by the TD
error approximately, which is given by

At(st, at; θπ, θv) = Q(st, at)− V (st) = E[Gt|st, at]− V (st)

≈ rt + λV (st+1)− V (st) = δt.
(20)

In this way, the action is evaluated not only on how good the
behavior is but also on how much it can be improved.

The training part is essentially the update and iteration of
network parameters θπ and θv, which parameterize the actor and
critic networks, respectively. Adding average entropy to the loss
function of the actor network, we have

Lπ = − log π(at|st; θπ)δt(θv)− ρE(π(at|st; θπ)), (21)

where ρ is the weight of the average entropy. Then, the parameter
θπ is updated as

θπ ← θπ + βπ∇θπLπ, (22)

where βπ is the learning rate of actor network.
Considering the common MSE function as the loss function

of the critic network, we have

Lv = (rt + λV (st+1; θv)− V (st; θv))
2. (23)

Then, the parameter θv is updated as

θv ← θv + βvδt(θv)∇θvV (st; θv), (24)

where βv is the learning rate of critic network.
The A2C-based power adaptation algorithm can be summa-

rized as algorithm 1.

TABLE I
PARAMETERS OF NETWORKS

Parameters Values

Actor network size 128× 128
Critic network size 128× 128
Activation function ReLu
Training episodes 200

Batch size 128
Actor learning rate 10−6

critic learning rate 10−5

Reward discount factor λ 0.99

IV. NUMERICAL RESULTS

In the numerical results, we assume the fading distributions
experience Rayleigh fading with G = 1, n0 = 1 and TC = 1 ms.
Considering a target transmission probability 1−ϵmax = 99.99%,
we set T = 1×105 to ensure the constraint of reliability in each
training episode. We assume M = 3,m0 = 2 and N = D = 100

channel uses, unless specified otherwise. The upper bounds of
two penalty terms are ∆1 = 10 and ∆2 = 2000, respectively. The
penalty coefficient C = 50 and α = 10. The hyperparameters of

Algorithm 1 A2C-based power adaptation algorithm
1: Initialization: θπ and θv ;
2: repeat
3: Observe initial state st;
4: Choose action at according to the action exploration and evolution in

section III-B;
5: Receive the reward rt and the next state st+1;
6: Calculate V (st+1) by feeding st+1 into the value network;
7: Update
8: θπ according to (19);
9: θv according to (21);

10: until The predefined maximum number of training episodes has been
completed.

Fig. 4. Training curves of the network.

A2C networks are shown in table I. Hidden layers of the actor
network and the critic network are fully connected structure, and
the output layer of the actor network is set to softmax. The agent
selects discrete actions in power space P , where the elements in
P are evenly distributed between 0 dBw and 30 dBw.

In Fig. 4, we plot the training curves during training. We
assume B = 27 bits. From the figure, we can find that the training
achieves convergence and the proposed algorithm can eventually
satisfy the transmission reliability constraint.

In Fig. 5, we plot the comparison of bit energy as the
packet size increases. We compare the proposed schemes with
the conventional HARQ policy with power adaptation and the
existing fast HARQ protocol with constant power. In this figure,
we assume the same constraint of transmission reliability for
different protocols. We can find that the proposed fast HARQ
scheme is more energy efficient especially when the packet size
is large.

In Fig. 6, we plot the energy efficiency versus m0 under differ-
ent feedback delay D. We assume M = 5 and B = 211 bits. It is
interesting that in the presence of feedback delay, the fast HARQ
scheme can achieve higher energy efficiency, especially for the
case of m0 = 4, i.e., only one retransmission round is allowed.
Besides, we can see that the proposed scheme can achieve higher
energy efficiency in the presence of larger feedback delay, since
larger chunks can be expected for data transmissions whereas the
transmission power can be significantly reduced.

In Fig. 7, we plot the values of m0 that achieve optimal
energy efficiency for different M values. Assuming D = 100,
we find that the fast HARQ protocol can achieve optimal energy
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Fig. 5. Comparison of the bit energy.

Fig. 6. Bit energy versus m0.

efficiency when m0 = M − 1 for both B = 27 and B = 211

bits. Meanwhile, We can find that without any feedback delay,
the HARQ (m0 = 1) with power adaptation achieves best
performance in energy efficiency when M is large.

V. CONCLUSION

In this paper, we have investigated a power adaptation policy
under the constraints of feedback delay and reliability for a
communication system in the FBL regime. Particularly, we
have considered a fast HARQ scheme subject to the reliability
constraints and transmission delay constraints. We have proposed
to utilize the channel uses waiting for feedback delay in the

Fig. 7. Optimal m0 versus M .

conventional HARQ scheme for data transmission. Considering a
long-term bit energy minimization problem, we have formulated
a finite-episode MDP. Then, we trained a DRL agent to apply
the A2C based algorithm to solve the problem considering the
small decoding error probabilities. Numerical results have shown
the effectiveness of the DRL algorithm in solving the non-convex
problem. Additionally, compared with the HARQ and the existing
fast HARQ protocol, the proposed protocol can achieve higher
energy efficiency, especially when the packet size is large and
the feedback delay is large.

Future efforts should aim to address the limitations identified
in our study, including conducting further parameter simulations
to examine the performance of this strategy. Additionally, con-
sidering a more realistic channel model may offer more robust
or comprehensive results.
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