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Abstract—Solving uncertainty issues is a challenge for decision-
making. Soft set theory aims to aid complex decision-making
when multiple uncertainty variables are involved. We introduce
a game-theoretic soft set model to handle the fusion of uncertain
data from different information resources and resolve conflicts
among parameters in a soft set. The model is utilized to solve
three-way classification problems by establishing measurement
thresholds for parameters. The experiment shows that the model
can strike a balance among different parameters, resulting in a
decrease in misclassification error in classification. Furthermore,
the extent of the decrease can be fine-tuned by adjusting the
ratio between the cost for misclassification error and the cost for
undecided error.

Index Terms—soft sets, decision-making, game theory, uncer-
tainty, three-way classification

I. INTRODUCTION

It is challenging to make decisions in an environment
involving uncertainty. To handle this challenge, several the-
ories have been proposed and widely used in the fields of
economics, engineering, social science, social contexts and
others [10]. These include the theory of probability, the theory
of fuzzy sets [20], the theory of rough sets [19] and others.
However, they all face the difficulties due to the inadequacy
of parametrization tools [10]. In other words, the subsets of
the universe cannot be conveniently specified by parameters.
Molodtsov initiated the theory of soft sets to solve these
difficulties [10]. The theory has been widely employed to solve
decision-making problems in various real-life domains, includ-
ing forecasting [14], uncertainty measure [3], classification [9],
and so on. The optimal object was recognized based on a set of
inputs from multi-observers [13]. A significant portion of soft
set research, as we have mentioned so far, has been dedicated
to calculating score values or choice values for objects by
aggregating evaluations of parameters. We address conflicts
among different parameters by games without forming score
values or choice values. Our aggregation operates on sets
instead of real numbers.

We aim to solve three-way classification problems by recon-
ciling conflicting opinions from multiple experts. Game theory
has demonstrated its ability to address such complex situations
where multiple entities engage in cooperative or competitive
interactions [18]. It has been utilized to analyze the trade-off
between node lifetime and communication reliability, as well
as the impact of jamming on these factors [11]. Additionally,
game theory is employed to analyze the behaviors of mobile
users and service providers in a network constrained by
limited resources [8]. Moreover, when it comes to determining

region inclusion thresholds, game has been proven to be
effective. Game-theoretic rough sets (GTRS) study the trade-
offs between classification approximation measures as well
as between region inclusion parameters to determine optimal
thresholds [2] [7]. GTRS find applications in diverse domains
such as image classification for medical diagnosis [15], spam
email detection [21], classification of news articles into satir-
ical, legitimate, or questionable content [23], and sentiment
analysis [4]. The model has also proven effective in handling
missing values, particularly in clustering corticosteroid respon-
siveness [6]. Another game-theoretic model, game-theoretic
shadowed sets, focuses on adjusting initial thresholds by strik-
ing a balance between elevation error and reduction error [22].

Existing research on combining soft sets and game the-
ory mainly uses soft sets as a representation of games by
parametrizing strategy sets. For instance, N-soft set theory
is combined with game theory to address missing ratings
in classification, achieving a trade-off between classification
effectiveness and generality [1]. Intuitionistic neutrosophic soft
sets are employed to aid decision-making in a game [5].
However, the resolution of conflicts among parameters of a
soft set by forming a game has not been thoroughly addressed.
We propose game-theoretic soft sets (GTSoft) to fill the gap.

In data mining, information is often collected from various
sources, exhibiting inconsistencies and conflicting opinions.
Consequently, the process of decision-making encounters sig-
nificant challenges. Our model addresses this issue by effec-
tively consolidating these different data sources and facilitating
decision-making in a classification context.

The rest of the paper is organized as follows: the background
knowledge of soft sets and game theory is discussed in Sec-
tion II. Section III provides details about GTSoft. Section IV
elaborates on the game formulation and an iterative learning
process. Section V shows an experiment and its results.
Section VI summarizes this study.

II. PRELIMINARIES

A. Soft Sets

The effective parametrization tools of soft sets empowers
us to represent data from various perspectives, with each
perspective defined by a parameter.

Definition 1. Let U be the universe and E a set of parameters.
Let P (U) denote the power set of U and A ⊂ E. A pair (S,
A) is called a soft set over U, where S is a mapping given
by [10]:
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S : A→ P (U).

In other words, a soft set over U is a parametrized family
of subsets of U.

B. Three-way Classification

When addressing classification problems involving uncer-
tainty, the information accessible to a single expert is often
incomplete, and objects with identical information available
to the expert may belong to opposing classes. Due to the
incompleteness and non-deterministic nature, it is difficult
for experts to determine whether certain objects are positive
or negative. A boundary class is introduced for objects that
cannot be assigned to either category due to a high degree
of uncertainty [19]. Objects in the universe are classified into
three distinct regions: positive, negative, and boundary regions.
These regions are disjoint, and their union encompasses the
universe. We refer to this type of classification as three-way
partition or three-way classification [19].

Experts translate their information and knowledge into a
measurement function and a pair of thresholds, based on which
they can derive three-way classification according a set of
rules.

Definition 2. Let F (x) be the measurement function F : O →
[0, 1] where O is the object set. A three-way classifica-
tion/partition over O induced by a pair of thresholds (α, β)
with 0 ≤ β < α ≤ 1 can be expressed by:

POS(α,β)(F ) = {x ∈ O|F (x) ≥ α}, (1a)
BND(α,β)(F ) = {x ∈ O|β < F (x) < α}, (1b)
NEG(α,β)(F ) = {x ∈ O|F (x) ≤ β}. (1c)

C. Game Theory

Game theory is a mathematical tool to structure and ana-
lyze complicated decision-making problems involving multiple
entities competing against or cooperating with each other
in an interactive environment [18]. We confine this study
to non-zero-sum competitive games. One entity’s payoff not
only depends on its own choice but also depends on other
entities’ choices. Moreover, all entities are considered as
rational players [16]. They compete to reach their maximum
possible benefits. A game provides an analytical tool to reach
a trade-off among different entities. The formal definition of
a game gives a clear picture of the players, the choices that
are available to the players and how the associated payoffs are
calculated [16].

We can use G=(P, S, U) to denote a game,
• P is a set of players and P = {p1, p2, . . . , pn}.
• Si is a set of strategies that are available to player pi and
i = 1, 2, . . . , n.

• Each player pi chooses a strategy si ∈ Si where i =
1, 2, . . . , n. The combination of strategies chosen by all
players, denoted as (s1, s2, . . . , sn), is referred to as a
strategy profile.

• S is a strategy profile set which is the Cartesian product
of all strategy sets, and S = {S1 × S2 × . . .× Sn}.

• ψ is a set of payoff functions and ψ = {u1, u2, . . . , un},
where ui : S → R and it specifies the numerical payoff
for player pi with respect to a strategy profile.

In a game, player pi chooses a strategy si ∈ Si and his
payoff ui is not only depending on si but also depending on
all the choices sj’s made by other players where j ̸= i, j =
1, 2, . . . , n. Moreover, each player aims to achieve the largest
possible payoff by choosing a strategy. To settle the conflicts
and competition among players, we analyze the payoffs of all
possible strategy profiles and find the best one so that all the
players can benefit the most or reach a balanced trade-off.

In non-cooperative games, the goal is to find the best fit for
all players—a Nash equilibrium solution. A Nash equilibrium
is defined as follows [12]:

ui(s
∗
1, s

∗
2, . . . , si, . . . , s

∗
n) ≤ ui(s

∗
1, s

∗
2, . . . , s

∗
i , . . . , s

∗
n) (2)

for i = 1, 2, . . . , n and si ̸= s∗i .

The strategy profile (s∗1, s
∗
2, . . . , s

∗
i , . . . , s

∗
n) is the most bal-

anced trade-off among all players, and no player can achieve
a better payoff by unilaterally deviating to another strategy.
There can be more than one Nash equilibrium strategy profile
in a game.

III. GAME-THEORETIC SOFT SETS

We aim to solve three-way classification problems involving
multiple experts, each offering distinct three-way classification
outcomes. Relying solely on one expert inevitably results in
high classification error or cost. However, by consolidating
all opinions, we aim to reduce error or cost. Our approach
involves representing classifications as a soft set. We then in-
troduce a set of rules and a pair of thresholds (α, β) for three-
way classification using soft sets. Notice that, determining
values for (α, β) introduces conflicts among parameters. To
resolve these conflicts, we employ a game-theoretic framework
and an iterative learning process to find the optimal values.

A. Three-way Classification Using Soft Sets

Let O be the set of objects that need to be classified
and the universe U be all possible three-way classifications
over O. The parameter set is denoted as A, where each
parameter ϵi ∈ A represents an expert. Parameter ϵi is
associated with a measurement function Fϵi(x) and a pair of
thresholds (αϵi , βϵi). Therefore, for each parameter ϵi, there
exists a corresponding three-way partition induced by Fϵi(x)
and (αϵi , βϵi). We define a soft set (ϕ, A) over U, where
ϕ(ϵi) corresponds to a subset of U that contains a three-way
partition.

Based on a pair of thresholds (α, β) with 0 ≤ β < α ≤
1, three-way classification using soft set (ϕ, A) is defined as
follows:

(P ) POS = ∩{x|Fϵi(x) ≥ α, ϵi ∈ A}, (3a)
(N) NEG = ∩{x|Fϵi(x) ≤ β, ϵi ∈ A}, (3b)
(B) BND = ∪{x|β < Fϵi(x) < α, ϵi ∈ A}. (3c)
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TABLE I
THREE-WAY CLASSIFICATIONS FROM DIFFERENT EXPERTS

αei βei POS NEG BND
e1 0.6 0.2 {h2, h6} {h1, h3, h5} {h4}
e2 0.65 0.3 {h6} {h1, h3, h5} {h2, h4}
e3 0.8 0.1 {h2, h3, h4, h6} {h1} {h5}
e4 0.7 0.2 {h2, h6} {h1, h3, h4, h5} ∅

The objects with measurements of all parameters, as given
by measurement functions, greater than or equal to α are
assigned to the positive region, the objects with measurements
less than or equal to β are put into the negative region, and
the remaining objects are assigned to the boundary region.
Consequently, a final three-way partition {POS, NEG, BND}
is obtained.

B. An Example of Three-way Classification Using Soft Sets

An example is given for illustration. Let O be a set of six
candidates under consideration, and A be a set of parameters
that characterize the evaluation of candidates from a group of
experts, represented as ei for i = 1 to 4. We have:

O = {h1, h2, h3, h4, h5, h6},
A = {e1, e2, e3, e4}.

Expert ei uses a measurement function Fi(x) and a pair of
thresholds (αi, βi) for three-way partition. Function Fi(x)
assigns evaluation scores to the candidates and is defined as
follows:

Fe1 = {h1 : 0.2, h2 : 0.7, h3 : 0.2, h4 : 0.3, h5 : 0.2, h6 : 0.9} ,
Fe2 = {h1 : 0.2, h2 : 0.6, h3 : 0.1, h4 : 0.6, h5 : 0.2, h6 : 0.7} ,
Fe3 = {h1 : 0.1, h2 : 0.8, h3 : 0.8, h4 : 0.8, h5 : 0.7, h6 : 0.9} ,
Fe4 = {h1 : 0.2, h2 : 0.8, h3 : 0.1, h4 : 0.2, h5 : 0.0, h6 : 0.8} .

For each parameter, the three-way classification derived based
on rules in Definition 2 are shown in TABLE I. Specifically,
for expert e1, with αe1 = 0.6 and βe1 = 0.2, candidates h2 and
h6 are assigned to the positive region as their scores provided
by e1 are greater than αe1 , h1, h3 and h5 to the negative
region, h4 to the boundary region.

A soft set (ϕ, A) is defined over all possible three-way
classifications {POS, NEG, BND}, where A is the parameter
set and ϕ is the mapping function. For each ei ∈ A,
ϕ(ei) specifies a single-element set with a particular three-
way classification. For instance, ϕ(e1) = {a} where a =
{{h2, h6}, {h1, h3, h5}, {h4}}.

To consolidate all three-way partitions, we set the thresholds
α = 0.6 and β = 0.2. According to partition rules in
Formula (3), the final partition contains the following three
sets:

POS = {h2, h6}, NEG = {h1}, BND = {h4, h3, h5}.

The challenge lies in determining the values for (α, β).
Since parameters of a soft set compete with each other to influ-
ence the final three-way classification decision. Game theory
is employed to find the optimal values for (α, β), by achieving

0

0.2

0.4

0.6

0.8

1

αϵ2

α

αϵ1

βϵ1

β

βϵ2

x

µ
(x
)

Fig. 1. A two-player game

a balance among parameters through data exploration. We will
discuss it in the next subsection.

C. Problem Decomposition

Each parameter ϵi ∈ A is represented as a player. For
simplicity, we use a two-player game to illustrate, where
A = {ϵ1, ϵ2}. The thresholds (αϵ1 , βϵ1) are associated with
ϵ1 and (αϵ2 , βϵ2) care associated with ϵ2. In the example,
we assume that αϵ1 < αϵ2 and βϵ1 > βϵ2 . This assumption
can be changed as long as the min{αϵ1 , αϵ2} is greater than
max{βϵ1 , βϵ2}.

Referring to Fig. 1, the dotted lines correspond to αϵ1

and βϵ1 , while the dashed lines correspond to αϵ2 and βϵ2 .
Additionally, the bold lines represent α and β. The consoli-
dation problem is decomposed into two parts—agreement and
disagreement.

We confine ourselves to the scenarios where both players
can only reach a consensus about region assignment under the
following conditions:

• if Fϵ1(x) ≥ max{αϵ1 , αϵ2} and Fϵ2(x) ≥
max{αϵ1 , αϵ2}, object x is assigned to the positive
region,

• if Fϵ1(x) ≤ min{βϵ1 , βϵ2} and Fϵ2(x) ≤ min{βϵ1 , βϵ2},
object x is assigned to the negative region,

• if max{βϵ1 , βϵ2} < Fϵ1(x) < min{αϵ1 , αϵ2} and
max{βϵ1 , βϵ2} < Fϵ2(x) < min{αϵ1 , αϵ2}, object x is
assigned to the boundary region.

We also assume that the conflicting zones consist of only two
parts:

• The upper shadowed area in Fig. 1, where {x|βϵ2 <
Fϵ2(x) < αϵ2 , Fϵ1(x) ≥ αϵ1 , βϵ2 < αϵ1}

• The lower shadowed area in Fig. 1, where {x|βϵ2 <
Fϵ2(x) < αϵ2 , Fϵ1(x) ≤ βϵ1 , βϵ1 < αϵ2}

Player ϵ2 prefers to assign the objects in the upper shadowed
area to the boundary region whereas ϵ1 advocates for these
objects to be placed in the positive region. Additionally, ϵ2
prefers to put the objects in the lower shadowed area into the

2024 Workshop on Computing, Networking and Communications (CNC)

351



TABLE II
THE PAYOFF TABLE FOR A GAME

ϵ1
no change ↑ α ↓ β

ϵ2

no change ⟨u1, u2⟩ ⟨u1, u2⟩ ⟨u1, u2⟩
↓ α ⟨u1, u2⟩ ⟨u1, u2⟩ ⟨u1, u2⟩
↑ β ⟨u1, u2⟩ ⟨u1, u2⟩ ⟨u1, u2⟩

boundary region whereas ϵ1 advocates for these objects to be
placed in the negative region.

IV. GAME FORMULATION AND EQUILIBRIUM LEARNING

To settle the conflict in the upper shadowed area, a new
upper threshold, α is introduced, which both players agree to
use for three-way classification. Consequently, objects in the
upper sliced area are assigned to the positive region and objects
in the upper dotted area are assigned to the boundary region.
In addition, each player desires the consolidated three-way
classification to closely align with their individually derived
three-way classification, indicating a preference for α to be
as close as possible to their original corresponding upper
threshold. This same rationale extends to the lower threshold,
β. Consequently, we can formulate a game in which players
compete to adjust the values for α and β. Thus, the strategy
set for player ϵ1 could be S1 = {no change, ↑ α, ↓ β} and
the strategy set for player ϵ2 could be S2 = {no change, ↓
α, ↑ β}. We use ↑ to indicate an increase in the following
threshold and ↓ to denote a decrease.

A game G = (P, S, U) is formulated between the players
as follows:

• The player set P = {ϵ1, ϵ2}.
• The strategy profile set S = {(s1, s2)| s1 ∈ S1, s2 ∈ S2}.
• Payoff functions ψ = {u1, u2} where u1 : S → R and
u2 : S → R.

A. Analyzing Payoffs

A cost function is introduced to quantify the cost associated
with a three-way classification. The cost is associated with
classification error, specifically two types. Misclassification
error refers to the number of objects incorrectly classified in
the positive or negative region, while undecided error refers to
the number of objects classified into the boundary region. Let
λm be the cost of misclassification error for an object x and λu
the cost of undecided error for x. Let y denote the true label for
x and h(x) denote the assigned label derived from (αϵi , βϵi )
and measurement function Fϵi according Definition 2. The
total cost of the three-way classification are as follows:

C(αϵi , βϵi , Fϵi) =
∑
x∈O

1{h(x) ̸= y ∧ h(x) ̸= 2} · λm

+
∑
x∈O

1{h(x) ̸= y ∧ h(x) = 2} · λu. (4)

Where the first term sums the cost of misclassification error for
all objects while the second term sums the cost of undecided
error. The indicator function 1{condition} counts the number
of objects satisfying the given condition. Moreover, we label

the positive, negative, and boundary regions as 1, 0, and 2,
respectively. The players’ goal is to reduce their own cost
by adjusting the values of the thresholds. Therefore, we can
define the payoff functions as the reduced cost after seeking
the compromise, expressed as follows:

u1(α, β) = C(αϵ1 , βϵ1 , Fϵ1)− C(α, β, Fϵ1), (5)
u2(α, β) = C(αϵ2 , βϵ2 , Fϵ2)− C(α, β, Fϵ2). (6)

Where Fϵ1 and Fϵ2 are the measurement functions associated
with ϵ1 and ϵ2 respectively. The definition of payoff functions
manifests that each player aims for the consolidated three-way
classification to closely align with their individually derived
three-way classification.

B. Payoff Tables and Nash Equilibria

A payoff table is used to analyze the two-player game as
shown in TABLE II. Each column in the table corresponds to a
potential strategy for player ϵ1, drawn from his strategy set S1.
Likewise, each row represents a potential strategy for player ϵ2
from S2. We use u1 and u2 to denote payoffs for the strategy
profile corresponding to each row and column. Subsequently,
we input the payoff tuple ⟨u1, u2⟩ into the respective cell.

The equilibrium of the game can be obtained by analyzing
the payoff table. The strategy profile (s∗1, s

∗
2) satisfying the

condition in Formula (2) is the equilibrium. Both players
cannot find a better strategy within their strategy sets given
the other player’s choice. Notice that, there could be more
than one Nash equilibrium solution.

C. Iterative Learning

A game equilibrium can only identify the optimal strategy
profile within the currently defined strategy sets. The existence
of a global equilibrium may extend beyond the current strategy
sets. To address this, we can iterate the game to gradually
approach the most balanced solution. The iterative learning
process is as follows:

1) Set the initial values.
α = 1

2 (α1 + α2)
β = 1

2 (β1 + β2)
2) Calculate the payoffs for all the strategy profiles and

plug the results into the payoff table.
3) Obtain the equilibrium by analyzing the payoff table.
4) Reset (α, β) as the resulting thresholds from the pre-

vious equilibrium and update the strategy sets for both
players.

5) Iterate step 2 to 4 until the game equilibria meet the
stopping criteria.

The stopping criteria for a game vary with the application
context. The possible stopping criteria can be as follows:

• The new iteration of the game can not improve payoffs
further.

• The resulting values for α and β violate the constraint
0 ≤ β < α ≤ 1 or the original assumption αϵ1 ≤ α ≤
αϵ2 and βϵ2 ≤ β ≤ βϵ1 (in our example).

• No equilibrium exists in the game.
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• The times of iteration exceed the maximum count.
We compare the payoffs of the previous iteration with the
payoffs at the current equilibrium. We stop the game if both
players lose. Alternatively, if one player gains and the other
player loses, we check if the gain of one player cannot exceed
the loss of the other.

V. EXPERIMENTS

We use a generated dataset to demonstrate the GTSoft
model. Subsequently, we evaluate and analyze the experimen-
tal results.

A. Data Generation

We generated 600 objects with two parameters ϵ1 and ϵ2.
Assume (αϵ1 , βϵ1 ) for ϵ1 is (0.75, 0.4) and (αϵ2 , βϵ2) for ϵ2 is
(0.9, 0.25). For parameter ϵ1, we employ a normal distribution
to generate 300 measurement values centered near αϵ1 , and
use another normal distribution to generate 300 measurement
values centered near βϵ1 , the indices of values are used to
indicate the corresponding object. In a similar manner, we
generate 600 measurement values for parameter ϵ2. The data
is labeled based on certain probabilities. We set λu as 1 and
λm as 2. We split the entire dataset into a training set and a
test set with a ratio of 75% to 25%.

B. Learning α and β to Find Equilibria

After preparing the data and setting the cost parameters, we
initiate the game on the training set by setting the initial α to
0.825 and β to 0.325. We define a strategy set for ϵ1 as {no
change, decrease α by 1/2(α− αϵ1), decrease β by 1/3(β −
βϵ1) }. Likewise, the strategy set for ϵ2 is defined as {no
change, decrease α by 1/3(α− αϵ2), decrease β by 1/2(β −
βϵ2)}. Next, we use the payoff functions to calculate payoffs
for the entire strategy profile set and identify the equilibrium.
Afterward, we reset the α and β to the results obtained from
the previous iteration. We then update the strategy sets and
iterate the game. After each iteration, the equilibrium payoffs,
along with the resulting α and β values, and the corresponding
two types of error, are all recorded in TABLE III.

In the first 4 iterations, α remains unchanged, while β
decreases after each iteration. During this phase, the misclassi-
fication error decreases with each iteration, but the undecided
error increases. From the 5th to the 6th iteration, β begins to
decrease while α remains constant. During this period, the
misclassification error starts to increase, but the undecided
error decreases. After the 6th iteration, the game begins to
converge, and the payoffs cannot be further improved. This
marks the end of the game. The final values of α and β learned
from the training set are 0.8104 and 0.2546, respectively.

C. Results and Analysis

Then we use the learned α and β to classify the test set
based on rules in Formula (3). The misclassification error
and undecided error of GTSoft are 8 and 50 respectively.
In contrast, if the three-way classification decision is made
by a single expert based on rules in Definition 2, for ϵ1,

TABLE III
ITERATIVE LEARNING WITH THE INITIAL α = 0.825 AND β = 0.325.

Iter- u1 u2 α β Misclassification Undecided
ation error error

1 -4 -2 0.8250 0.2875 38 153
2 -1 -3 0.8250 0.2687 29 169
3 0 -2 0.8250 0.2593 26 174
4 0 -1 0.8250 0.2546 25 176
5 0 0 0.8125 0.2546 28 169
6 1 0 0.8104 0.2546 28 168
7 1 0 0.8104 0.2546 28 168

TABLE IV
PERFORMANCE ON TEST DATA WITH λm : λu = 2 : 1

ϵ1 ϵ2 GTSoft Change
Misclassification error 25 28 8 ↓ 69.8%

Undecided error 21 14 50 ↑185.7%
Cost 71 70 66 ↓ 6.4%

misclassification error and undecided error are 25, 21 respec-
tively. For ϵ2, misclassification error and undecided error are
28, 14 respectively. GTSoft reduces the misclassification error
by 69.8% while increasing the undecided error by 185.7%
compared to the corresponding average error of both experts.
We summarize these results in TABLE IV.

At the application level, users typically have a clear under-
standing of the extent to which they wish to reduce misclas-
sification error and the level of tolerance they can afford for
undecided error. It is often the case that no single expert can
meet the user’s specified targets precisely. Consequently, users
may opt for the adoption of GTSoft. To effectively utilize this
model, users should establish the appropriate ratio between
λw and λu. The average errors made by experts can be readily
computed, allowing us to ascertain the reduction or increase in
error rates that users aim to achieve. We employ percentage-
based measurements to guide users in making adjustments to
the λw : λu ratio to align with their desired targets.

GTSoft significantly reduces misclassification error while
only slightly decreasing the overall cost with a ratio of λm to
λu being 2:1. However, it substantially increases the size of
the boundary region, as illustrated in TABLE IV. Furthermore,
adjusting the ratio of λm to λu to 3:1 accentuates this trend, as
evident in TABLE V. In this case, the model not only further
reduces misclassification error and the overall cost, but also
further increases the size of the boundary region.

If we change the ratio to 1:1, the decrease in misclassi-
fication error becomes less significant compared to the 3:1
ratio. The increase in the size of the boundary region also
becomes more moderate, accompanied by a slight rise in cost,
as indicated in TABLE V. Additionally, we observed that
setting the ratio to 1:4 further reduces misclassification error
compared to the 1:1 ratio. However, It also leads to a further
increase in the size of the boundary region and cost.

In summary, GTSoft effectively decreases misclassification
error while increasing undecided error. The extent of this
reduction or increase can be adjusted by setting different
ratios for λm to λu. It is evident that the reduction in
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TABLE V
PERFORMANCE ON TEST DATA WITH DIFFERENT RATIOS

λm : λu Misclassification error Undecided error Cost
3:1 ↓ 96.2% ↑ 271.4% ↓ 29.9%
2:1 ↓ 69.8% ↑ 185.7% ↓ 6.4%
1:1 ↓ 13.2% ↑ 31.4% ↑ 4.5%
1:4 ↓ 43.4% ↑ 134.3% ↑ 85.5%
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Fig. 2. Two Types of Error with Respect to the Ratio of λm : λu

misclassification error is positively related to the increase
in undecided error, as shown in Fig. 2. Moreover, there is
a trade-off between the two types of error, and the model
cannot simultaneously decrease both. GTSoft is well-suited
for situations where there is a higher tolerance for undecided
error compared to misclassification error.

VI. CONCLUSION

We employed GTSoft to address three-way classification
problems characterized by conflicting opinions among mul-
tiple experts. By leveraging the robust parametrization ca-
pability of soft sets, we represented different classification
outcomes. To reach a consensus, we introduced a set of rules
and a pair of thresholds (α, β) for three-way classification
using soft sets. Determining the optimal values for (α, β) led
to conflicts among parameters, and we addressed this using
a game-theoretical approach. The iterative learning process
converges within a few iterations. GTSoft is capable of re-
ducing misclassification error, although this reduction comes
at the expense of increased undecided error. The experiments
also showed that by adjusting the ratio of cost parameters
associated with the two types of error, we can meet various
application specifications regarding these errors. GTSoft is
most suitable for situations with a high tolerance for avoiding
commitment to any decision but a very low tolerance for
making incorrect decisions. In data mining, GTSoft may serve
as a valuable tool for integrating data from diverse sources and
addressing the challenges inherent in managing inconsistencies
and conflicting opinions. Real-life applications need to be
explored in future studies. However, the persistent issue of
the increasing size of the boundary region remains unresolved.
Another concern is the potential occurrence of local minima.
Further research could explore more sophisticated models to
address these challenges.

REFERENCES

[1] S. M. Abbas, K. A. Alam, and K.-M. Ko, “A three-way classification
with game-theoretic n-soft sets for handling missing ratings in context-
aware recommender systems,” in 2020 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE). IEEE, 2020, pp. 1–8.

[2] N. Azam and J. T. Yao, “Analyzing uncertainties of probabilistic rough
set regions with game-theoretic rough sets,” International journal of
approximate reasoning, vol. 55, no. 1, pp. 142–155, 2014.

[3] N. Bhardwaj and P. Sharma, “An advanced uncertainty measure using
fuzzy soft sets: Application to decision-making problems,” Big Data
Mining and Analytics, vol. 4, no. 2, pp. 94–103, 2021.

[4] Y. X. Chen and J. T. Yao, “Sentiment analysis using part-of-speech-based
feature extraction and game-theoretic rough sets,” in 2021 International
Conference on Data Mining Workshops (ICDMW). IEEE, 2021, pp.
110–117.

[5] S. Debnath, “Application of intuitionistic neutrosophic soft sets in
decision making based on game theory,” International Journal of Neu-
trosophic Science, vol. 14, no. 2, pp. 83–97, 2021.

[6] R. Hellali, Z. C. Dagdia, and K. Zeitouni, “Clustering corticosteroids
responsiveness in sepsis patients using game-theoretic rough sets,” in
17th FedCSIS, 2023, pp. 539–550.

[7] J. P. Herbert and J. T. Yao, “Game-theoretic rough sets,” Fundamenta
Informaticae, vol. 108, no. 3-4, pp. 267–286, 2011.

[8] C. A. Kamhoua, N. Pissinou, K. Makki, K. Kwiat, and S. S. Iyengar,
“Game theoretic analysis of users and providers behavior in network un-
der scarce resources,” in 2012 International Conference on Computing,
Networking and Communications (ICNC). IEEE, 2012, pp. 1149–1155.

[9] S. A. Lashari and R. Ibrahim, “A framework for medical images
classification using soft set,” Procedia Technology, vol. 11, pp. 548–
556, 2013.

[10] D. Molodtsov, “Soft set theory—first results,” Computers & mathematics
with applications, vol. 37, no. 4-5, pp. 19–31, 1999.

[11] C. Pielli, F. Chiariotti, N. Laurenti, A. Zanella, and M. Zorzi, “A game-
theoretic analysis of energy-depleting jamming attacks,” in 2017 Inter-
national Conference on Computing, Networking and Communications
(ICNC). IEEE, 2017, pp. 100–104.

[12] S. Rao, “Game theory approach for multiobjective structural optimiza-
tion,” Computers & Structures, vol. 25, no. 1, pp. 119–127, 1987.

[13] A. R. Roy and P. Maji, “A fuzzy soft set theoretic approach to decision
making problems,” Journal of computational and Applied Mathematics,
vol. 203, no. 2, pp. 412–418, 2007.

[14] S. Sabeena Begam and J. Vimala, “Application of lattice ordered multi-
fuzzy soft set in forecasting process,” Journal of Intelligent & Fuzzy
Systems, vol. 36, no. 3, pp. 2323–2331, 2019.

[15] S. Singh and J. T. Yao, “Pneumonia detection with game-theoretic rough
sets,” in 2021 20th IEEE International Conference on Machine Learning
and Applications (ICMLA). IEEE, 2021, pp. 1029–1034.

[16] T. Turocy and B. Von Stengel, “Game theory. encyclopedia of informa-
tion systems, vol. 2,” 2002.

[17] T. L. Vincent, “Game theory as a design tool,” J. Mech. Des., vol. 105,
no. 2, pp. 165–170, 1983.

[18] J. Von Neumann and O. Morgenstern, Theory of games and economic
behavior (60th Anniversary Commemorative Edition). Princeton uni-
versity press, 2007.

[19] Y. Y. Yao, “Three-way decisions with probabilistic rough sets,” Infor-
mation sciences, vol. 180, no. 3, pp. 341–353, 2010.

[20] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp.
338–353, 1965.

[21] Y. Zhang, P. F. Liu, and J. T. Yao, “Three-way email spam filtering
with game-theoretic rough sets,” in 2019 International conference on
computing, networking and communications (ICNC). IEEE, 2019, pp.
552–556.

[22] Y. Zhang and J. T. Yao, “Game theoretic approach to shadowed sets:
a three-way tradeoff perspective,” Information Sciences, vol. 507, pp.
540–552, 2020.

[23] Y. Zhou, Y. Zhang, and J. T. Yao, “Satirical news detection with semantic
feature extraction and game-theoretic rough sets,” in Foundations of
Intelligent Systems: 25th International Symposium, ISMIS 2020, Graz,
Austria, September 23–25, 2020, Proceedings. Springer, 2020, pp.
123–135.

2024 Workshop on Computing, Networking and Communications (CNC)

354


