
International Conference on Computing, Networking and Communications (ICNC 2024)

Edge computing that utilizes in-network CPUs to

achieve high capacity and interruption tolerance

with fewer edge servers

Koki MURAMATSU

Graduate School of Science and

Technology

Keio University

Kanagawa, Japan

koki.muramatsu@yamanaka.ics.keio.ac

.jp

Yoshihiko UEMATSU

Graduate School of Science and

Technology

Keio University

Kanagawa, Japan

yoshihiko.uematsu@yamanaka.ics.keio

.ac.jp

Naoaki YAMANAKA

Graduate School of Science and

Technology

Keio University

Kanagawa, Japan

yamanaka@keio.jp

Satoru OKAMOTO

Graduate School of Science and

Technology

Keio University

Kanagawa, Japan

okamoto@ieee.org

Abstract— We have proposed AMec (Access-Metro edge

computing), an edge computing system that utilizes surplus

computing resources in access metro networks. Although the use

of CPUs on network devices was expected to reduce the number

of edge servers, there were concerns about frequent interruption

and pod's relocation due to executing their main job such as

information gathering and routing reconfiguration, unlike

MEC （ Multi-access Edge Computing), which only uses

dedicated edge servers. To avoid the pod's relocation, in this

paper, we propose an allocation method that calculates the

interruption occurrence rate when each pod of the application

is placed in each node by using the usage duration

characteristics of the application and allocates the pods in a way

that the value is below a threshold. Under conditions where a

certain level of interruption can be acceptable, it is confirmed

that AMec with the proposed method can reduce the number of

edge servers by 62.5 % ~ 66.7 % compared to MEC.

Keywords— MEC, Edge computing, Kubernetes, White-box

Network device

I. INTRODUCTION

Today, demand for edge computing is increasing and the

number of applications that require low latency or large

resources on user devices is also increasing [1]. Besides, the

traffic to clouds is more and more being enlarged. In addition,

today's network devices are equipped with multicore CPUs

(Central Processing Units) and they are being White-boxed [2].

So, products that can execute user applications on their surplus

resources originally for their main job such as information

gathering and routing reconfiguration are becoming popular

[3][4].

Based on the above, we have proposed AMec (Access-

metro Edge Computing), a concept of edge computing that

uses surplus in-network computing resources such as CPUs on

network devices [5][6] (Fig. 1). It can be one of the solutions

to reduce CAPEX (Capital Expenditure) to install edge servers.

Although the use of CPUs on network devices was

expected to reduce the number of edge servers, there are

concerns that a node becomes unavailable while a pod is

running due to unavailable time for executing their main job

(referred to here as "interruption"), unlike MEC which uses

dedicated edge servers.

We have proposed the pod relocation method for when a

node becomes unavailable in [6] and their working has been

confirmed by experiments in [7], but relocations caused by

interruptions should be avoided as much as possible, because

the relocation of pods reduces the efficiency of resource

utilization, increases the workload on the AMec controller,

and requires migration if it is state-full pods.

To avoid the pod's relocation, in this paper, we propose an

allocation method that calculates the interruption occurrence

rate when each pod of the application is placed in each node

by using the usage duration characteristics of the application

and allocates the pods in a way that the value is below a

threshold. Then, we prove that AMec with the proposed

method can reduce the number of edge servers in simulation

compared to MEC, keeping a low interruption rate.

Our contribution is to show the following two points by

simulation. We proved that our idea of AMec, which is edge

computing using surplus computing resources such as

network equipment, can significantly reduce the number of

edge servers compared to MEC, which only uses dedicated

edge servers. We also show that the proposed allocation

algorithm can reduce the occurrence rate of "interruption", a

problem inherent to AMec.

This work is partly supported by the R&D of innovative optical network

technologies for supporting new social infrastructure project (JMPI00316)

funded by the Ministry of Internal Affairs and Communications Japan and

JGN (TB-A22001).

2024 Workshop on Computing, Networking and Communications (CNC)

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 344

This paper is organized as follows: In section 2, we outline

the research goals and architecture of AMec. Section 3

presents the system sequence of AMec. Three important

situations in AMec are described: when a worker joins a

cluster, when accepting processing from a user, and when

workers become unavailable. Section 4 describes the proposed

allocation algorithm, details of the simulation, and the result

which indicates that AMec can reduce the number of edge

servers compared to MEC.

II. AMEC (ACCESS-METRO EDGE COMPUTING)

A. Research Goals

Ordinary MEC (Multi-access Edge Computing) needs to

install dedicated servers for MEC at edge sites. However, as

targets of computing resources in AMec, we assume CPUs on

network devices such as OLTs (Optical Line Terminations),

routers, switches, ROADMs (Reconfigurable Optical

Add/Drop Multiplexers), etc. owned by telecommunication

carriers. Then in the future, we are also considering utilizing

underutilized home game consoles and IoT devices.

By using those heterogeneous devices, AMec plans to

achieve the common MEC benefits such as reduction of

latency, traffic, and processing load on user equipment while

reducing CAPEX for edge server installations.

• Executing third-party applications offloaded by user

devices / distributed from clouds

• Managing computing devices that join and leave the

resource pool

• Providing optimum edge resources according to the

situation of available resources, users, and applications

B. System Architecture

As described above, AMec makes the resource pool with

surplus computing resources. The AMec Overall

Architecture is shown in Fig. 2.

AMec Controller works with the master of each cluster to

manage multiple clusters, providing functionality that is

difficult to achieve with the master alone (i.e. complicated

allocation algorism). The front end is the point of contact for

users.

When a user asks the frontend to offload some processing,

the frontend takes instructions from AMec Controller and

offloads them to optimum clusters and resources. Basically,

the user interacts only with the front end and is unaware of

where the requested processing will be offloaded.

Due to container-based system configuration, third-party

containers can be pulled from docker-hub and run on AMec.

We have already confirmed application pods can be run on a

white-box switch [7].

Because of utilizing surplus computing resources, there

are times when resources on network devices are reclaimed

for their original tasks, such as information gathering and

routing reconfiguration, and then are not available for AMec

tasks. Therefore, computing devices join and leave the

resource pool and it is a key feature of AMec.

Fig. 3 shows the internal structure of the resource pool.

The clusters are built using Kubernetes. In the future, one

cluster will be built for each prefectural unit, consisting of

network devices and edge servers in carrier buildings. The

AMec controller collaborates with Kubernetes masters and

assigns processing requests from users to the optimum node

in the clusters according to the situation of available resources,

users, and applications.

As connections to external services, VMs (Virtual

Machines) on physical machines managed by OpenStack can

also join AMec clusters, and this was used in collaboration

with ARCA [7][8].

In past research, we have conducted an experiment where

a pod on AMec at Keio Yagami received live streaming from

Fig. 2 AMec Overall Architecture

Fig. 3 Architecture of Resource Pool

Fig. 1 Image of resource pool consisting of xPUs

on heterogeneous devices

2024 Workshop on Computing, Networking and Communications (CNC)

345

a smartphone at NICT Koganei via JGN [7][9]. Specifically,

we have made an original web server docker image and

uploaded it to Docker-Hub. AMec pulled the image and ran a

web server to stream the video received from the smartphone.

We have proved that AMec can run multiple third-party

applications and can collaborate with applications in external

networks.

III. SYSTEM SEQUENCE

In this section, we present three system sequences of

AMec. These sequences were proposed in [6] and their

working has been confirmed by experiments in [7].

A. When workers join clusters

As described above, computing devices join and leave the

resource pool because AMec does not use dedicated

computing resources. Fig.4 shows the AMec system sequence

when a worker joins a cluster.

The section highlighted in red shows that the worker is

marked as unavailable, being preoccupied with its primary

function. After a while, the worker becomes available and asks

to join the AMec cluster. This request is fielded by the AMec

controller and it returns information to join the clusters to the

worker.

We have implemented a mechanism to automatically join

the AMec cluster by executing a script file for AMec

participation after the white-box switch detects its own

availability [7].

Specifically, when a white-box switch notifies the AMec

controller that it is ready to join AMec, the AMec controller

returns the IP of the master node in the cluster where the

white-box switch should join, and the token required to join.

These exchanges are done by HTTPS.

Then, the white-box switch joins the cluster using the

information received from the AMec controller.

B. When accepting processing from a user

Fig.5 shows the system sequence when accepting and

allocating processing from a user.

Basically, users communicate only with front ends in

AMec. A front end receives an offloading request from a user

and the AMec controller judges which node the pods in the

apps should be processed in. Then, the user offloads their

processing to the cluster via the front end.

To judge which nodes the pods in the apps should be

processed in, the AMec controller gets information of each

node in the clusters from its master. The allocation algorithm

used in this step is described in section 4.

C. When workers become unavailable

Fig.6 shows the system sequence when workers become

unavailable, entering unavailable time due to their main job.

The most important point is we aim for proactive dealing

to prevent service disconnections from occurring. If the

worker that is processing a pod is to be unavailable, the worker

notifies the AMec controller in advance of entering

unavailable time.

Then, the AMec controller makes a master of cluster

duplicate pod on another available node. Specifically, the

master of the cluster renews the deployment file for the

application.

Experiments have shown that it takes about 7 seconds for

the AMec controller to deploy a pod on a new node after

receiving the notification.

Although this is how we deal with the situation when a

node becomes unavailable, it should be avoided as much as

possible to have a node become unavailable while a pod is

running. This is because the relocation of pods reduces the

efficiency of resource utilization, increases the workload on

the AMec controller, and requires migration if it is state-full

pods. Therefore, to avoid having a node which pods running

on become unavailable is one of the major research issues in

AMec.

Fig. 6 System sequence (When workers become unavailable)

Fig. 5 System sequence (When accepting processing from a user)

Fig. 4 System sequence (When workers join clusters)

2024 Workshop on Computing, Networking and Communications (CNC)

346

IV. SIMULATION AND RESULTS

A. Simulation conditions

We have performed simulations in order to show that

AMec can reduce the number of edge servers.

First, three types of applications consisting of multiple

Pods are generated (Table 1), and then they are assigned to

nodes in the cluster consisting of network devices and edge

servers in a carrier network of each prefectural unit (Table 2).

Application B is an application that has a long execution

time but can be executed on a low-performance CPU,

Application C is an application that has a short execution time

but requires execution on a high-performance CPU, and

Application A is an application in between B and C but

consists of one more Pod than them.

To calculate the number of each device in Table 2, we

assumed that a carrier network in each prefecture consists of

100 buildings [10]. Assuming that each building serves 5000

users and each OLT can accommodate 500 users, there will be

one router, one OXC, and about 10 OLTs in each building.

The start of the first unavailable time of OLT, Router, and

OXC varies from node to node, and after that, the unavailable

time occurs for 1 minute every 30 minutes.

TABLE I. APPLICATION CONFIGURATION

 The following are the requirements for nodes that pods

belonging to an application can assigned to.

• The node must be AMec Ready (The node is not in

Unavailable time).

• The node has free capacity

• The node's performance value must be greater than or

equal to the Pod's performance requirements.

TABLE II. NODE CONFIGURATION

Nodes that satisfy the above conditions are referred to here

as "suitable nodes". In MEC, nodes consist only of edge

servers, so we only need to pay attention to the capacity of

nodes. However, since AMec uses in-network CPUs, the other

two conditions must also be considered when creating the list

of "suitable nodes".

In AMec, our concern is which nodes we place the pods

from the list of "suitable nodes" in order to avoid having the

nodes become unavailable while the pods running on them.

We compared the following three, changing the number of

edge servers.

The first is MEC, which runs solely on edge servers. Since

the edge servers are always available as worker nodes for

AMec, there is no interruption due to unavailable time.

Second, AMec with a random selection algorithm. It is an

algorithm that randomly selects one node from "suitable

nodes", which meet the performance requirements of the pod

and are available for allocation.

The last one is AMec with the proposed allocation method.

The proposed allocation method is as follows.

𝑑𝐴𝑝𝑝 means the duration that the application works on

AMec, and 𝑟𝑁𝑜𝑑𝑒 means the remaining time of the node until

the next unavailable time. Interruption is defined as follows.

𝑑𝐴𝑝𝑝 > 𝑟𝑁𝑜𝑑𝑒 (1)

 AMec has past data of each apps as cumulative frequency

distribution of application working duration

𝐹(𝑡) = 𝑃(𝑑𝐴𝑝𝑝 ≤ 𝑡) (2)

 In this simulation, the application usage time 𝑑𝐴𝑝𝑝 is

given by a normal distribution with mean μ and variance 𝜎2

𝑑𝐴𝑝𝑝 ~ 𝑁 (𝜇, 𝜎2) (3)

 By using them, interruption occurrence rate is presented

as follows

𝑃𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛 = 1 − 𝐹(𝑟𝑁𝑜𝑑𝑒) = 1 − 𝑃(𝑑𝐴𝑝𝑝 ≤ 𝑟𝑁𝑜𝑑𝑒)
 (4)

 Calculate 𝑃𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛 for all nodes in "suitable nodes" to

each application, pick up nodes whose 𝑃𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛 is below

a threshold, and randomly select from the minimum-

performance nodes among them. In this case, we set the

threshold at 5%. EC2 (Elastic Compute Cloud) at AWS offers

100% service credit if the monthly utilization is less than 95%

[11]. The 5% set in this paper was learned from this value.

B. Result

The results are shown in Fig. 7.

First, MEC requires 150 ~ 160 edge servers to

accommodate the generated Apps (to achieve 100 %

allocation success rate).

Average

Duration

Composition

Pods

Performance

Requirements

Occurrences

per minute

A-1 1

A-2 2

A-3 3

B-1 1

B-2 2

C-1 2

C-2 3

20

20

20

A

B

C

10 min

15 min

5 min

OLT Router OXC Edge Server

Unavailable time period -

Unavailable time duration -

Performance 1, 2 2, 3 1 3

Quantity in the cluster 500, 500 50, 50 100 Variable

Capacity (pod) of each node 10

30 min

1 min

1

2024 Workshop on Computing, Networking and Communications (CNC)

347

On the other hand, AMec (Random) already boasts 100 %

allocation rate with only 60 edge servers, but it is not practical

due to the high interruption rate.

AMec with the proposed method (with a threshold of 5 %)

can achieve an allocation rate of 100 % with 50 ~ 60 edge

servers, and the interruption rate is 4 ~ 6 % regardless of the

number of edge servers.

Thus, AMec with the proposed method can reduce the

number of edge servers by 62.5 % ~ 66.7 % compared to MEC

under the condition that some interruption can be tolerated.

V. CONCLUSION

Although AMec was expected to reduce the number of

edge servers, there were concerns about frequent interruption

and pod's relocation due to executing their main job such as

information gathering and routing reconfiguration, unlike

MEC.

To avoid the pod's relocation, we proposed an allocation

method that calculates the interruption occurrence rate when

each pod of the application is placed in each node by using the

usage duration characteristics of the application and allocates

the pods in a way that the value is below a threshold.

As a result, under conditions where a certain level of

interruption can be acceptable, it is confirmed that AMec with

the proposed method can reduce the number of edge servers

by 62.5 % ~ 66.7 % compared to MEC.

This time, we were able to demonstrate that the AMec can

reduce the number of edge servers compared to the MEC,

even with a relatively simple algorithm that randomly selects

from nodes where the interruption occurrence rate is below a

certain threshold. However, it is hard to claim that the Pod

placement is strictly optimal.

As future work, we are considering an allocation algorithm

that solves an optimization problem aimed at maximizing the

allocation success rate and minimizing the interruption

occurrence rate for all apps generated every minute. It is

expected to achieve better allocation success rates and lower

interruption occurrence rates.

 Moreover, we have presently defined the application's

working duration using a normal distribution. In future

research, we aim to demonstrate that AMec can adapt to any

kind of distribution for the continuation time, including

distributions based on real data.

REFERENCES

[1] Q. -V. Pham et al., "A Survey of Multi-Access Edge Computing in 5G

and Beyond: Fundamentals, Technology Integration, and State-of-the-

Art," in IEEE Access, vol. 8, pp. 116974-117017, 2020, doi:

10.1109/ACCESS.2020.3001277.

[2] P. Gunning, "Bare-Metal Compute, Storage and Networking in Metro

Optical Access," 2019 24th OptoElectronics and Communications

Conference (OECC) and 2019 International Conference on Photonics

in Switching and Computing (PSC), Fukuoka, Japan, 2019, pp. 1-3.

[3] "Edgecore Wedge100BF-32QS," Apresia Systems, 2023, Accessed:

Sep. 27, 2023. [Online]. Available:

https://www.apresia.jp/products/whitebox/edgecore/wedge100bf-

32qs.html

[4] "F220 | Fitelnet," Furukawa Electric, 2023, Accessed: Sep. 27, 2023.

[Online]. Available:

 https://www.furukawa.co.jp/fitelnet/product/f220/index.html

[5] S. Okamoto, K. Sugiura, M. Murakami, N. Yamanaka, “Proposal of

Block-stream as a Service-based Access-Metro Edge Computing

Technologies”, Program of the 2020 IEICE Society Conference, 2020.

[6] K. Muramatsu, M. Murakami, Y. Uematsu, S. Okamoto, N. Yamanaka,

“Dynamic task assignment experiment for container-based in-network

heterogeneous distributed MEC environment”, iPOP (IP/ IoT &

Processing + Optical Network), May 2023

[7] K. Muramatsu, M. Murakami, Y. Uematsu, S. Okamoto, N. Yamanaka,

"Experiments of node's automatic participation and collaboration with

external services on AMec (Access-Metro Edge Computing),"

International Conference on Emerging Technologies for

Communications, Nov. 2023, P1-13.

[8] P. Martinez-Julia, V. P. Kafle and H. Harai, "Exploiting External

Events for Resource Adaptation in Virtual Computer and Network

Systems," in IEEE Transactions on Network and Service Management,

vol. 15, no. 2, pp. 555-566, June 2018.

[9] NICT, "JGN: High Speed R&D Network Testbed," Accessed: June 28,

2023. [Online]. Available: https://testbed.nict.go.jp/jgn/

[10] Y.Uematsu et al., "Future Nationwide Optical Network Architecture

for Higher Availability and Operability Using Transport SDN

Technologies," IEICE Transactions on Communications, 2018, vol.

E101.B, no. 2, pp. 462-475, Feb. 2018.

[11] Amazon Web Services, Inc., "Amazon Simple Workflow Service Level

Agreement," 2022, Accessed: Nov. 27, 2023. [Online]. Available:

https://aws.amazon.com/jp/swf/sla/.

Fig. 7 Result of MEC vs. AMec (with two types of allocation methods)

2024 Workshop on Computing, Networking and Communications (CNC)

348

