
International Conference on Computing, Networking and Communications (ICNC 2024) 

Edge computing that utilizes in-network CPUs to 

achieve high capacity and interruption tolerance 

with fewer edge servers 
 

Koki MURAMATSU 

Graduate School of Science and 

Technology 

Keio University 

Kanagawa, Japan 

koki.muramatsu@yamanaka.ics.keio.ac

.jp 

 

 

Yoshihiko UEMATSU 

Graduate School of Science and 

Technology 

Keio University 

Kanagawa, Japan 

yoshihiko.uematsu@yamanaka.ics.keio

.ac.jp 

Naoaki YAMANAKA 

Graduate School of Science and 

Technology 

Keio University 

Kanagawa, Japan 

yamanaka@keio.jp 

 

Satoru OKAMOTO 

Graduate School of Science and 

Technology 

Keio University 

Kanagawa, Japan 

okamoto@ieee.org 

Abstract— We have proposed AMec (Access-Metro edge 

computing), an edge computing system that utilizes surplus 

computing resources in access metro networks. Although the use 

of CPUs on network devices was expected to reduce the number 

of edge servers, there were concerns about frequent interruption 

and pod's relocation due to executing their main job such as 

information gathering and routing reconfiguration, unlike 

MEC （ Multi-access Edge Computing), which only uses 

dedicated edge servers. To avoid the pod's relocation, in this 

paper, we propose an allocation method that calculates the 

interruption occurrence rate when each pod of the application 

is placed in each node by using the usage duration 

characteristics of the application and allocates the pods in a way 

that the value is below a threshold. Under conditions where a 

certain level of interruption can be acceptable, it is confirmed 

that AMec with the proposed method can reduce the number of 

edge servers by 62.5 % ~ 66.7 % compared to MEC. 

Keywords— MEC, Edge computing, Kubernetes, White-box 
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I. INTRODUCTION 

Today, demand for edge computing is increasing and the 

number of applications that require low latency or large 

resources on user devices is also increasing [1]. Besides, the 

traffic to clouds is more and more being enlarged. In addition, 

today's network devices are equipped with multicore CPUs 

(Central Processing Units) and they are being White-boxed [2]. 

So, products that can execute user applications on their surplus 

resources originally for their main job such as information 

gathering and routing reconfiguration are becoming popular 

[3][4]. 

Based on the above, we have proposed AMec (Access-

metro Edge Computing), a concept of edge computing that 

uses surplus in-network computing resources such as CPUs on 

network devices [5][6] (Fig. 1). It can be one of the solutions 

to reduce CAPEX (Capital Expenditure) to install edge servers. 

Although the use of CPUs on network devices was 

expected to reduce the number of edge servers, there are 

concerns that a node becomes unavailable while a pod is 

running due to unavailable time for executing their main job 

(referred to here as "interruption"), unlike MEC which uses 

dedicated edge servers. 

We have proposed the pod relocation method for when a 

node becomes unavailable in [6] and their working has been 

confirmed by experiments in [7], but relocations caused by 

interruptions should be avoided as much as possible, because 

the relocation of pods reduces the efficiency of resource 

utilization, increases the workload on the AMec controller, 

and requires migration if it is state-full pods. 

To avoid the pod's relocation, in this paper, we propose an 

allocation method that calculates the interruption occurrence 

rate when each pod of the application is placed in each node 

by using the usage duration characteristics of the application 

and allocates the pods in a way that the value is below a 

threshold. Then, we prove that AMec with the proposed 

method can reduce the number of edge servers in simulation 

compared to MEC, keeping a low interruption rate. 

Our contribution is to show the following two points by 

simulation. We proved that our idea of AMec, which is edge 

computing using surplus computing resources such as 

network equipment, can significantly reduce the number of 

edge servers compared to MEC, which only uses dedicated 

edge servers. We also show that the proposed allocation 

algorithm can reduce the occurrence rate of "interruption", a 

problem inherent to AMec. 

This work is partly supported by the R&D of innovative optical network 

technologies for supporting new social infrastructure project (JMPI00316) 

funded by the Ministry of Internal Affairs and Communications Japan and 

JGN (TB-A22001). 
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This paper is organized as follows: In section 2, we outline 

the research goals and architecture of AMec. Section 3 

presents the system sequence of AMec. Three important 

situations in AMec are described: when a worker joins a 

cluster, when accepting processing from a user, and when 

workers become unavailable. Section 4 describes the proposed 

allocation algorithm, details of the simulation, and the result 

which indicates that AMec can reduce the number of edge 

servers compared to MEC. 

II. AMEC (ACCESS-METRO EDGE COMPUTING) 

A. Research Goals 

Ordinary MEC (Multi-access Edge Computing) needs to 

install dedicated servers for MEC at edge sites. However, as 

targets of computing resources in AMec, we assume CPUs on 

network devices such as OLTs (Optical Line Terminations), 

routers, switches, ROADMs (Reconfigurable Optical 

Add/Drop Multiplexers), etc. owned by telecommunication 

carriers. Then in the future, we are also considering utilizing 

underutilized home game consoles and IoT devices. 

By using those heterogeneous devices, AMec plans to 

achieve the common MEC benefits such as reduction of 

latency, traffic, and processing load on user equipment while 

reducing CAPEX for edge server installations. 

• Executing third-party applications offloaded by user 

devices / distributed from clouds 

• Managing computing devices that join and leave the 

resource pool 

• Providing optimum edge resources according to the 

situation of available resources, users, and applications 

B. System Architecture 

As described above, AMec makes the resource pool with 

surplus computing resources. The AMec Overall 

Architecture is shown in Fig. 2.  

AMec Controller works with the master of each cluster to 

manage multiple clusters, providing functionality that is 

difficult to achieve with the master alone (i.e. complicated 

allocation algorism). The front end is the point of contact for 

users. 

When a user asks the frontend to offload some processing, 

the frontend takes instructions from AMec Controller and 

offloads them to optimum clusters and resources. Basically, 

the user interacts only with the front end and is unaware of 

where the requested processing will be offloaded. 

Due to container-based system configuration, third-party 

containers can be pulled from docker-hub and run on AMec. 

We have already confirmed application pods can be run on a 

white-box switch [7]. 

Because of utilizing surplus computing resources, there 

are times when resources on network devices are reclaimed 

for their original tasks, such as information gathering and 

routing reconfiguration, and then are not available for AMec 

tasks. Therefore, computing devices join and leave the 

resource pool and it is a key feature of AMec. 

Fig. 3 shows the internal structure of the resource pool. 

 

 

The clusters are built using Kubernetes. In the future, one 

cluster will be built for each prefectural unit, consisting of 

network devices and edge servers in carrier buildings. The 

AMec controller collaborates with Kubernetes masters and 

assigns processing requests from users to the optimum node 

in the clusters according to the situation of available resources, 

users, and applications. 

As connections to external services, VMs (Virtual 

Machines) on physical machines managed by OpenStack can 

also join AMec clusters, and this was used in collaboration 

with ARCA [7][8]. 

In past research, we have conducted an experiment where 

a pod on AMec at Keio Yagami received live streaming from 

Fig. 2 AMec Overall Architecture 

Fig. 3 Architecture of Resource Pool 

Fig. 1 Image of resource pool consisting of xPUs  

on heterogeneous devices 
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a smartphone at NICT Koganei via JGN [7][9]. Specifically, 

we have made an original web server docker image and 

uploaded it to Docker-Hub. AMec pulled the image and ran a 

web server to stream the video received from the smartphone. 

We have proved that AMec can run multiple third-party 

applications and can collaborate with applications in external 

networks. 

III. SYSTEM SEQUENCE 

In this section, we present three system sequences of 

AMec. These sequences were proposed in [6] and their 

working has been confirmed by experiments in [7]. 

A. When workers join clusters 

As described above, computing devices join and leave the 

resource pool because AMec does not use dedicated 

computing resources. Fig.4 shows the AMec system sequence 

when a worker joins a cluster.  

The section highlighted in red shows that the worker is 

marked as unavailable, being preoccupied with its primary 

function. After a while, the worker becomes available and asks 

to join the AMec cluster. This request is fielded by the AMec 

controller and it returns information to join the clusters to the 

worker.  

We have implemented a mechanism to automatically join 

the AMec cluster by executing a script file for AMec 

participation after the white-box switch detects its own 

availability [7]. 

Specifically, when a white-box switch notifies the AMec 

controller that it is ready to join AMec, the AMec controller 

returns the IP of the master node in the cluster where the 

white-box switch should join, and the token required to join. 

These exchanges are done by HTTPS. 

Then, the white-box switch joins the cluster using the 

information received from the AMec controller. 

B. When accepting processing from a user 

Fig.5 shows the system sequence when accepting and 

allocating processing from a user.   

Basically, users communicate only with front ends in 

AMec.  A front end receives an offloading request from a user 

and the AMec controller judges which node the pods in the 

apps should be processed in.  Then, the user offloads their 

processing to the cluster via the front end.   

To judge which nodes the pods in the apps should be 

processed in, the AMec controller gets information of each 

node in the clusters from its master.  The allocation algorithm 

used in this step is described in section 4. 

C. When workers become unavailable 

Fig.6 shows the system sequence when workers become 

unavailable, entering unavailable time due to their main job. 

The most important point is we aim for proactive dealing 

to prevent service disconnections from occurring. If the 

worker that is processing a pod is to be unavailable, the worker 

notifies the AMec controller in advance of entering 

unavailable time. 

Then, the AMec controller makes a master of cluster 

duplicate pod on another available node. Specifically, the 

master of the cluster renews the deployment file for the 

application. 

Experiments have shown that it takes about 7 seconds for 

the AMec controller to deploy a pod on a new node after 

receiving the notification. 

Although this is how we deal with the situation when a 

node becomes unavailable, it should be avoided as much as 

possible to have a node become unavailable while a pod is 

running. This is because the relocation of pods reduces the 

efficiency of resource utilization, increases the workload on 

the AMec controller, and requires migration if it is state-full 

pods. Therefore, to avoid having a node which pods running 

on become unavailable is one of the major research issues in 

AMec. 

Fig. 6 System sequence (When workers become unavailable) 

Fig. 5 System sequence (When accepting processing from a user) 

Fig. 4 System sequence (When workers join clusters) 
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IV. SIMULATION AND RESULTS 

A. Simulation conditions 

We have performed simulations in order to show that 

AMec can reduce the number of edge servers. 

First, three types of applications consisting of multiple 

Pods are generated (Table 1), and then they are assigned to 

nodes in the cluster consisting of network devices and edge 

servers in a carrier network of each prefectural unit (Table 2).  

Application B is an application that has a long execution 

time but can be executed on a low-performance CPU, 

Application C is an application that has a short execution time 

but requires execution on a high-performance CPU, and 

Application A is an application in between B and C but 

consists of one more Pod than them. 

To calculate the number of each device in Table 2, we 

assumed that a carrier network in each prefecture consists of 

100 buildings [10]. Assuming that each building serves 5000 

users and each OLT can accommodate 500 users, there will be 

one router, one OXC, and about 10 OLTs in each building. 

The start of the first unavailable time of OLT, Router, and 

OXC varies from node to node, and after that, the unavailable 

time occurs for 1 minute every 30 minutes. 

TABLE I.  APPLICATION CONFIGURATION 

 

 The following are the requirements for nodes that pods 

belonging to an application can assigned to. 

• The node must be AMec Ready (The node is not in 

Unavailable time). 

• The node has free capacity 

• The node's performance value must be greater than or 

equal to the Pod's performance requirements. 

TABLE II.  NODE CONFIGURATION 

 

Nodes that satisfy the above conditions are referred to here 

as "suitable nodes". In MEC, nodes consist only of edge 

servers, so we only need to pay attention to the capacity of 

nodes. However, since AMec uses in-network CPUs, the other 

two conditions must also be considered when creating the list 

of "suitable nodes". 

In AMec, our concern is which nodes we place the pods 

from the list of "suitable nodes" in order to avoid having the 

nodes become unavailable while the pods running on them. 

We compared the following three, changing the number of 

edge servers. 

The first is MEC, which runs solely on edge servers. Since 

the edge servers are always available as worker nodes for 

AMec, there is no interruption due to unavailable time. 

Second, AMec with a random selection algorithm. It is an 

algorithm that randomly selects one node from "suitable 

nodes", which meet the performance requirements of the pod 

and are available for allocation. 

The last one is AMec with the proposed allocation method. 

The proposed allocation method is as follows. 

𝑑𝐴𝑝𝑝  means the duration that the application works on 

AMec, and 𝑟𝑁𝑜𝑑𝑒  means the remaining time of the node until 

the next unavailable time. Interruption is defined as follows. 

 

𝑑𝐴𝑝𝑝 > 𝑟𝑁𝑜𝑑𝑒    (1) 

 

 AMec has past data of each apps as cumulative frequency 

distribution of application working duration 

 

𝐹(𝑡) = 𝑃(𝑑𝐴𝑝𝑝  ≤ 𝑡)  (2) 

 

 In this simulation, the application usage time 𝑑𝐴𝑝𝑝  is 

given by a normal distribution with mean μ and variance 𝜎2 

 

𝑑𝐴𝑝𝑝  ~ 𝑁 (𝜇, 𝜎2)   (3) 

 

 By using them, interruption occurrence rate is presented 

as follows 

 

𝑃𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛 = 1 − 𝐹(𝑟𝑁𝑜𝑑𝑒) = 1 −  𝑃(𝑑𝐴𝑝𝑝 ≤ 𝑟𝑁𝑜𝑑𝑒)
 (4) 

 

 Calculate 𝑃𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛 for all nodes in "suitable nodes" to 

each application, pick up nodes whose 𝑃𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛  is below 

a threshold, and randomly select from the minimum-

performance nodes among them. In this case, we set the 

threshold at 5%. EC2 (Elastic Compute Cloud) at AWS offers 

100% service credit if the monthly utilization is less than 95% 

[11]. The 5% set in this paper was learned from this value. 

 

B. Result 

The results are shown in Fig. 7. 

First, MEC requires 150 ~ 160 edge servers to 

accommodate the generated Apps (to achieve 100 % 

allocation success rate). 

Average

Duration

Composition

Pods

Performance

Requirements

Occurrences

per minute

A-1 1

A-2 2

A-3 3

B-1 1

B-2 2

C-1 2

C-2 3

20

20

20

A

B

C

10 min

15 min

5 min

OLT Router OXC Edge Server

Unavailable time period -

Unavailable time duration -

Performance 1, 2 2, 3 1 3

Quantity in the cluster 500, 500 50, 50 100 Variable

Capacity (pod)  of each node 10

30 min

1 min

1
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On the other hand, AMec (Random) already boasts 100 % 

allocation rate with only 60 edge servers, but it is not practical 

due to the high interruption rate. 

AMec with the proposed method (with a threshold of 5 %) 

can achieve an allocation rate of 100 % with 50 ~ 60 edge 

servers, and the interruption rate is 4 ~ 6 % regardless of the 

number of edge servers. 

Thus, AMec with the proposed method can reduce the 

number of edge servers by 62.5 % ~ 66.7 % compared to MEC 

under the condition that some interruption can be tolerated. 

V. CONCLUSION 

Although AMec was expected to reduce the number of 

edge servers, there were concerns about frequent interruption 

and pod's relocation due to executing their main job such as 

information gathering and routing reconfiguration, unlike 

MEC. 

To avoid the pod's relocation, we proposed an allocation 

method that calculates the interruption occurrence rate when 

each pod of the application is placed in each node by using the 

usage duration characteristics of the application and allocates 

the pods in a way that the value is below a threshold. 

As a result, under conditions where a certain level of 

interruption can be acceptable, it is confirmed that AMec with 

the proposed method can reduce the number of edge servers 

by 62.5 % ~ 66.7 % compared to MEC. 

This time, we were able to demonstrate that the AMec can 

reduce the number of edge servers compared to the MEC, 

even with a relatively simple algorithm that randomly selects 

from nodes where the interruption occurrence rate is below a 

certain threshold. However, it is hard to claim that the Pod 

placement is strictly optimal. 

As future work, we are considering an allocation algorithm 

that solves an optimization problem aimed at maximizing the 

allocation success rate and minimizing the interruption 

occurrence rate for all apps generated every minute. It is 

expected to achieve better allocation success rates and lower 

interruption occurrence rates. 

 Moreover, we have presently defined the application's 

working duration using a normal distribution. In future 

research, we aim to demonstrate that AMec can adapt to any 

kind of distribution for the continuation time, including 

distributions based on real data. 
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Fig. 7 Result of MEC vs. AMec (with two types of allocation methods) 
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