
Effect of Beam Broadening in Directional
Beamforming-Based Cellular Networks

Gosan Noh

Dept. of Electronic Engineering, Hanbat National University, Daejeon 34158, Korea
E-mail: gsnoh@hanbat.ac.kr

Abstract—The use of directional beamforming at a base
station equipped with a linear antenna array has the potential
to significantly increase the spectrum utilization efficiency of
a cellular network by focusing the information-bearing signal
only to the direction of a target mobile user. Unfortunately,
however, this beamforming gain can be reduced by the beam
broadening effect which broadens the beam width and reduces
the directivity gain when the beam is steered away from the
boresight direction. Hence, in this paper, assuming poisson point
process (PPP)-distributed base stations, we analyze the coverage
probability of a directional beamforming-based cellular network
considering the beam broadening effect. Analyses are done with
the general Nakagami-m fading channel, including two special
cases: Rayleigh fading (m = 1) and static (m → ∞) channels.
Numerical results show that, although the beam broadening
effect can lead to some coverage loss, the achieved gain by the
directional beamforming is still significant.

Index Terms—Beamforming, fading, stochastic geometry.

I. INTRODUCTION

In order to cope with wireless traffic explosion, 5G networks
are required to support multi-Gbps data rate [1], which can
be achieved by advanced multi-antenna techniques such as
massive multiple-input-multiple-output (MIMO). Using such
a massive number of antennas, beamforming with a high
directivity gain and a narrow beam width is achievable, and
the beam direction can be easily steered by controlling the
phase and amplitude of each antenna element [2]. By doing
so, only mobile users in the direction of the steered beam are
subject to reception of the intended signal, achieving much
higher spatial frequency reuse.

One concern when employing directional beamforming is
the phenomenon of so-called beam broadening [3], [4]. As the
beam is steered away from the boresight direction, the beam
width broadens and the directivity gain decreases. The reason
of beam broadening is the reduced effective aperture size [3],
[5]. This beam broadening effect should be considered when
deploying the directional beamforming-based cellular network.

Another consideration is randomized base station locations,
originating from dense deployment of small cells such as
picocells and femtocells for achieving high spatial reuse. These
small cells are usually deployed in an unplanned manner, and
their locations will be highly irregular [6]. Hence, stochastic
geometry approach is more effective than traditional hexagonal
grid model in analyzing the performance of such highly dense
and randomly located cellular networks from conventional

sub-6GHz to mmWave bands [7], [8]. Poisson point process
(PPP)-based base station location modeling allows a tractable
analytic model for coverage probability evaluation [7].

Hence, in this paper, we investigate whether and how much
directional beamforming is effective for improving cellular
network performance under the aforementioned practical con-
siderations of beam broadening effects and random base sta-
tion locations. We derive a general expression for the coverage
probability that a mobile user can achieve in the downlink
of a directional beamforming-based cellular network under
a Nakagami-m fading channel assumption. More simplified
single-integral and asymptotic closed-form expressions are
also obtained when each link approaches Rayleigh fading
(m = 1) or static (m→ ∞) channel.

II. SYSTEM MODEL

Consider a downlink cellular network consisting of base
stations distributed according to a homogeneous PPP Φ with
intensity λ in a two-dimensional Euclidean plane R2. Mobile
users are distributed as a stationary point process independent
of the base stations. Throughout the analysis, we focus on a
typical mobile user located at the origin o using the Slivnyak’s
theorem [7]. We assume that each mobile user is associated
with the closest base station, forming a Voronoi tessellation
on the plane. We also assume an orthogonal multiple access
technique, so that there is no intra-cell interference.

Employing linear antenna array at base stations, directional
beamforming in the horizontal direction is supported, i.e., a
mobile user at a specific location is served by a beam uniquely
steered to it while rarely interfered by the beams for other
users. We assume each mobile user has an omnidirectional
single antenna due to limited power and dimension.

For modeling the antenna pattern of the antenna array at
the base station, we employ a rectangular mask model for
spatial filtering taken from the 3GPP 5G channel model [9].
Assuming the boresight direction of ϕ = 0◦, the antenna array
pattern can be represented as

F (ϕ, ϕBW) =

{
G, |ϕ| ≤ ϕBW/2
0, otherwise, (1)

where G is a directivity gain and ϕBW is a beam width.
It is not possible to cover all azimuthal directions due to

physical limitations of a linear array, i.e., steering beam larger
than 90◦ is not possible. Hence, we employ sectorization at
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each base station, i.e., each cell is divided into K sectors. The
antenna array at each sector covers 2π/K radians.

Another concern when employing the linear antenna array
is the beam broadening, which is a phenomenon that the
beam width broadens (at the same time the directivity gain
decreases) when steered away from the boresight direction.
The reason of beam broadening is due to the reduced effective
aperture size [3]. With the steered angle θ, the beam width and
the directivity gain become [3]:

ϕ̃BW(θ) ≈ ϕBW

cos θ
and G̃(θ) ≈ G cos θ. (2)

A standard path loss model is used with a path loss exponent
α. For short-term fading, Nakagami-m fading distribution is
employed, which well characterizes both the LOS and NLOS
components and includes two special cases: NLOS-dominant
Rayleigh fading (m = 1) and LOS-dominant static (m→ ∞)
channels. The corresponding channel power gains will be
Gamma distributed with the probability density function (PDF)
of fx(x) = mm

Γ(m)x
m−1e−mx [10]. We denote the channel

power gain of a desired mobile user as h and the base station
transmit power as P . Then, the resulting signal-to-interference-
plus-noise ratio (SINR) at the typical mobile user with a
distance r from its tagged base station (b0) is given by

SINR =
GPhr−α cos θ

Ir +N0
, (3)

where Ir =
∑
i∈Φ\b0 GPgil

−a
i cosψi. We denote gi, li, and

ψi as channel power gain, distance, and steered angle from the
i-th interferer base station, respectively. N0 is noise power.

III. COVERAGE ANALYSIS

A. Effective Base Station Density

Each interferer base station creates a directional beam only
within its beam width. So we define Φeff as a set of interferer
base stations effectively interfering the typical mobile user.

By thinning theorem [11], Φeff is a PPP with density λeff
proportional to the ratio of the beam width to the entire
direction. Since the mobile users are PPP distributed, the
beam steering angle θ follows the uniform distribution over
the interval [− π

K ,
π
K ].

Averaging over the angle θ, λeff can be calculated as [12]:

λeff = E
[

ϕBW

2π cos θ
λ

]
=
ϕBW

2π

∫ π
K

− π
K

1

cos θ

K

2π
dθ · λ

=
ϕBWK

π2
log

(
1 +

2

cot
(
π
2K

)
− 1

)
︸ ︷︷ ︸

≜ρ: effective interferer ratio

·λ. (4)

B. Coverage Probability Calculation

The coverage probability is defined as the probability that
a typical mobile user is in coverage, which can be satisfied if
its received SINR exceeds a target threshold T :

Pc ≜ P[SINR > T ]. (5)

Assuming highly dense cellular networks, we consider an
interference-limited environment with negligible noise, i.e.,
N0 → 0 [7]. This interference-limited assumption is also
applicable even to highly dense mmWave networks [11], [13].

We first consider the most general fading case where each
link is Nakagami-m faded in the following proposition.

Proposition 1 (Most general case): The coverage probabil-
ity for a typical mobile user experiencing Nakagami-m fading
when directional beamforming is used at the base station is

Pc=λK

m−1∑
k=0

∫ π
K

− π
K

∫ ∞

0

re−πλr
2

[
(−s)k

k!

dk

dsk
LIr(s)

]
s= mTrα

GP cos θ

drdθ,

(6)
where

LIr (s) =
K

2π
eπλeffr

2

∫ π
K

− π
K

exp

(
− πλeffm

mr2(
m+ sGP cosψ

rα

)m
× 2F1

(
1,m; 1− 2

α
; 1− m

m+ sGP cosψ
rα

))
dψ.

(7)

Note that 2F1(·, ·; ·; ·) is the hypergeometric function [12].
Proof: See Appendix A.

C. Special Case: Strong Fading Environment

We consider a strong fading environment (m = 1), yielding
Rayleigh fading. If we further assume α = 4, much simpler
single-integral representation for the coverage probability can
be obtained in the following proposition.

Proposition 2 (Strong fading case): A single-integral form
of the coverage probability for Rayleigh fading is given by

Pc =
K2

2π2

∫ 1

cos πK

log

(√
1−(cos2 π

K )z2+(sin π
K )z√

1−(cos2 π
K )z2−(sin π

K )z

)
(
1 + ρ

√
Tz arcsec

√
1 + Tz

)
z
dz

+

∫ sec π
K

1

log

(√
z2−cos2 π

K+sin π
K√

z2−cos2 π
K−sin π

K

)
(
1 + ρ

√
Tz arcsec

√
1 + Tz

)
z
dz

.
(8)

Proof: See Appendix B.
If the directional beamforming without beam broadening is

available, e.g., via mechanical beam steering, we obtain the
upper-bounded closed-form solution for coverage probability

PUc =
1

1 + ϕBW
K

√
T arcsec

√
1 + T

, (9)

which can be easily calculated by substituting cos θ = 1 and
cosψ = 1 and eliminating integration over them.

D. Special Case: Weak Fading Environment

We now assume each link approaches AWGN-like static
channel (i.e., m → ∞), which is more suitable for mmWave
applications where the LOS component dominates over the
NLOS multipath components [11]. Assuming large directivity
gain (G ≫ 1) and α = 4, we obtain simple closed-form
asymptotic coverage probability expression.
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Proposition 3 (Weak fading case): The asymptotic cover-
age probability when each link experiences AWGN-like weak
fading (m→ ∞) can be obtained as

lim
m→∞

Pc =
8K2F

(
π
2K , 2

)
E
(
π
2K , 2

)
π3ρ

√
T

, (10)

where we denote that F (φ, k) =
∫ φ
0

dζ√
1−k2 sin2 ζ

is the elliptic

integral of the first kind, and E(φ, k) =
∫ φ
0

√
1− k2 sin2 ζdζ

is the elliptic integral of the second kind [12].
Proof: See Appendix C.

IV. NUMERICAL RESULTS

We provide the numerical results for the coverage prob-
ability of a typical user in a directional beamforming-based
cellular network. We also provide the Monte Carlo-based
simulation results for 50,000 iterations. Unless explicitly indi-
cated, we assume the following common parameters: λ = 10,
α = 4, P = 1, G = 10dB, K = 3, and ϕBW = 30◦.

We first show the results for Rayleigh fading. Fig. 1 depicts
the coverage probability as a function of the SIR threshold
for the cases with and without directional beamforming. The
curve for that without directional beamforming is based on
[7]. We also plot the upper-bounded coverage probability (9)
for comparison. The first observation is that the coverage
probability is much increased by directional beamforming,
which is due to the fact that the mobile user can receive
stronger beamformed desired signal while less affected by the
other-cell interference caused by the neighboring cells whose
beams are focused to their own mobile users. The achievable
coverage probability gain is up to 10 dB. The second observa-
tion is the relative closeness between the coverage probability
with directional beamforming and its upper bound considering
no beam broadening effect. Although the beam broadening
reduces the coverage probability, the amount of coverage loss
is not significant compared with the coverage gain over the
case without directional beamforming. We also observe good
conformance between the analytic and simulation results.

Fig. 2 shows the coverage probability as a function of the
SIR threshold for different beam widths: ϕBW = 20◦ − 140◦.
The coverage probability continuously decreases with ϕBW and
finally approaches that without directional beamforming.

We now show the coverage probability results under the
Nakagami-m fading model. Fig. 3 shows the coverage prob-
ability as a function of the SIR threshold for different m
parameters including the special cases of m = 1 (Rayleigh)
and m → ∞ (AWGN). We can see that the coverage
probability increases as m increases.

Asymptotic coverage probabilities with infinite m and large
T are shown in Fig. 4. Note that the asymptotic coverage
probability converges to the actual one as the SIR threshold
increases, justifying our asymptotic approach.

V. CONCLUSION

In this paper, we analyzed the coverage probability of a
cellular network when directional beamforming is employed.
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Fig. 1. Coverage probability vs. SIR threshold with and without directional
beamforming. Upper-bound coverage probability is also seen for comparison.
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Fig. 2. Coverage probability vs. SIR threshold for different beam widths.
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Fig. 4. Asymptotic coverage probability vs. SIR threshold when m → ∞.

Analyses are done with Nakagami-m fading, NLOS-dominant
Rayleigh fading (m = 1), and LOS-dominant static (m →
∞) channels. The obtained formulae reveal that, despite some
coverage loss due to the beam broadening effect, the achieved
gain by directional beamforming is still significant (i.e., up to
8 dB gain in SIR).

APPENDIX A
PROOF OF PROPOSITION 1

Conditioning on r and θ with their respective PDFs fr(r) =
2πλre−πλr

2

and fθ(θ) = K/2π [7], the coverage probability
for a typical mobile user can be expressed as

Pc = λK

∫ π
K

− π
K

∫ ∞

0

P
(
h >

TrαIr
GP cos θ

∣∣∣∣r, θ)re−πλr2drdθ,
(11)

where

P
(
h >

TrαIr
GP cos θ

∣∣∣∣r, θ) = E
[
P
(
h >

TrαIr
GP cos θ

)∣∣∣∣r, θ, Ir]
= E

[
exp

(
− mTrαIr
GP cos θ

)m−1∑
k=0

1

k!

(
mTrαIr
GP cos θ

)k∣∣∣∣r, θ],
(12)

The calculation of (12) is done using the complementary
cumulative distribution function (CCDF) of the Gamma dis-
tribution: F cx(x) = e−mx

∑m−1
k=0

(mx)k

k! .
After some mathematical manipulation and using the defi-

nition of the Laplace transform, (12) becomes

P
(
h>

TrαIr
GP cos θ

∣∣∣∣r, θ)=

m−1∑
k=0

sk

k!

∫ ∞

0

tke−stfIr (t)dt

∣∣∣∣
s= mTrα

GP cos θ

=

m−1∑
k=0

(−s)k

k!

dk

dsk
LIr (s)

∣∣∣∣
s= mTrα

GP cos θ

.

(13)

Using the IID properties of gi, li, and ψi, applying the
probability generating functional (PGFL) [7] of the PPP, and

substituting the Nakagami-m PDF yields

LIr (s)=Eψ

[
exp

(
−2πλeffm

m

Γ(m)

∫ ∞

0

∫ ∞

r

1− e−
sGPg
lα secψ

l−1g1−memg
dldg

)]

= Eψ

[
exp

(
πλeffr

2 +
2πλeff

α

mm

Γ(m)

(
sGP cosψg

) 2
α

×
∫ ∞

0

g
2
α+m−1e−mgγ

(
− 2

α
,
sGP cosψ

rα
g

)
dg

)]
,

(14)

where the inner integral is solved using the integration by
substitution (l−α = y) and (3.381.3-4) in [12]. (14) can be
further reduced with the help of (6.455.2) in [12], yielding the
desired result in (7).

APPENDIX B
PROOF OF PROPOSITION 2

When m = 1 and α = 4, using the Gauss’ recursion
functions (9.137.2) and (9.137.18) in [12], we have:

2F1

(
1, 1;

1

2
;x

)
=−

x2F1

(
1, 1; 3

2 ;x
)
+2F1

(
0, 1; 3

2 ;x
)

x− 1
. (15)

which can be used to simplify (7):

LIr (s) =
K

2π

∫ π
K

− π
K

exp

(
− πλeffr

2

√
sGP cosψ

r4

× arcsec

√
1 +

sGP cosψ

r4

)
dψ.

(16)

Substituting (16) into (6) and integrating by substitution
(r2 = z) yields

Pc=
K2

4π2

∫ π
K

− π
K

∫ π
K

− π
K

1

1+ρ
√
T cosψ

cos θ arcsec
√

1+T cosψ
cos θ

dψdθ.

(17)
Employing a change of variable method [14], we first

substitute z = cosψ
cos θ and introduce an auxiliary variable w = θ.

Solving the equation cosψ = z cosw yields

·ψ1 = arccos(z cosw)
·ψ2 = − arccos(z cosw)

· θ1 = w (18)

We then derive the Jacobian

J(z, w) =

∣∣∣∣ ∂ψ1

∂z
∂ψ1

∂w
∂θ1
∂z

∂θ1
∂w

∣∣∣∣ = − cosw√
1− z2 cos2 w

. (19)

The derived joint PDF of z and w is given by

fz,w(z, w) =
K2

2π2

cosw√
1− z2 cos2 w

, (20)

for cos π
K ≤ z < 1 and − π

K ≤ w < π
K .

Marginalizing over w using (2.597.5) in [12] yields

fz(z) =
K2

2π2
√
1− z2

∫ π
K

− π
K

cosw√
1 + z2

1−z2 cos
2 w

dw

=
K2

2π2z

[
log

(√
1− (cos2 π

K )z2 + (sin π
K )z√

1− (cos2 π
K )z2 − (sin π

K )z

)]
,

(21)
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for cos π
K ≤ z < 1.

Now we set w = ψ in order to find the PDF of z for the
range of 1 ≤ z < sec π

K . Solving cos θ = cosw
z yields

·θ1 = arccos( coswz )
·θ2 = − arccos( coswz )

· ψ1 = w. (22)

Similar approach to the above cos π
K ≤ z < 1 case (i.e.,

Jacobian calculation and marginalization on w) yields the PDF
of z for the range of 1 ≤ z < sec π

K , as follows:

fz(z) =
K2

2π2z

[
log

(√
z2 − cos2 π

K + sin π
K√

z2 − cos2 π
K − sin π

K

)]
. (23)

Replacing z and fz(z) into (17), integrating it yields (8).

APPENDIX C
PROOF OF PROPOSITION 3

Assuming m→ ∞, the Laplace transform LIr (s) under the
Nakagami-m fading in (7) can be simplified to

LIr(s)=
eπλeffr

2

2π/K

∫ π
K

− π
K

exp

(
(sGP cosψ)

2
α

α/2πλeff
γ

(
− 2

α
,
sGP cosψ

rα

))
dψ,

(24)
where γ(a, x) =

∫ x
0
e−tta−1dt is the lower incomplete

Gamma function [12]. Since we employ a high directivity gain,
i.e., G≫ 1, the incomplete gamma function in (24) becomes

γ

(
− 2

α
,
sGP cosψ

rα

)
→ Γ

(
− 2

α

)
. (25)

Using (25) and assuming α = 4, (24) is reexpressed as

LIr (s)=
K

2π
eπλeffr

2

∫ π
K

− π
K

exp
(
−π 3

2λeff
√
sGP cosψ

)
dψ, (26)

Using (0.433.1) of [12], the k-th derivative of LIr (s) is

dk

dsk
LIr (s) =

K

2π
eπλeffr

2

∫ π
K

− π
K

k−1∑
p=0

(−1)p(k + p− 1)!

p!(k − p− 1)!

×
(
−π 3

2λeff
√
GP cosψ

)k−p exp(−π 3
2λeff

√
sGP cosψ

)
(
2
√
s
)k+p dψ.

(27)

Substituting (27) into the general coverage expression (6),
integrating it over r, and using (15.4.1) of [15] yields

Pc=
λK2

4π2

∫ π
K

− π
K

∫ π
K

− π
K

1

λ−λeff

(
1−
√
πmT cosψ

cos θ

)[2δ(θ,ψ)(1+δ(θ,ψ))
2 + δ(θ, ψ)

×
(
1−
(

−1

δ(θ, ψ)(2+δ(θ, ψ))

)m)
−2δ(θ, ψ)

m−1∑
k=0

(2k)!

k!(k+1)!

×
(

1

4+2δ(θ, ψ)

)k+1

2F1

(
1−k, k; k+2;−δ(θ, ψ)

2

)]
dθdψ,

(28)

where

δ(θ, ψ) = −

1 +
λ− λeff

λeff

√
πmT cosψ

cos θ

 . (29)

Since 2F1(1−k, k; k+2;x) in (28) is continuous at x = 1
2 ,

the following limiting property holds:

lim
m→∞2F1

(
1−k, k; k+2;−δ(θ, ψ)

2

)
= 2F1

(
1−k, k; k+2;

1

2

)
=2−k(k + 1),

(30)

where
lim
m→∞

δ(θ, ψ) = −1. (31)

Using the algebraic limit theorem and substituting (30) and
(31) into (28), we obtain the following asymptotic coverage
probability:

lim
m→∞

Pc=
λK2

4π2

∫ π
K

− π
K

∫ π
K

− π
K

lim
m→∞

m21−2m
(
2m
m

)
λ−λeff

(
1−
√
πmT cosψ

cos θ

)dθdψ
=

λK2

2π3λeff
√
T

∫ π
K

− π
K

∫ π
K

− π
K

√
cos θ

cosψ
dθdψ,

(32)

where the limit can be easily obtained by applying Sterling’s
approximation [15]. The double integral can be solved using
(2.571.4) and (2.576.1) in [12], yielding the desired result (10).

REFERENCES

[1] J. G. Andrews et al., “What will 5G be?” IEEE J. Sel. Areas Commun.,
vol. 32, no. 6, pp. 1065–1082, Jun. 2014.

[2] W. Roh et al., “Millimeter-wave beamforming as an enabling technology
for 5G cellular communications: Theoretical feasibility and prototype
results,” IEEE Commun. Mag., vol. 52, no. 2, pp. 106–113, Feb. 2014.

[3] W. H. Kummer, “Basic array theory,” Proc. IEEE, vol. 80, no. 1, pp.
127–140, Jan. 1992.

[4] A. Elshafiy and A. Sampath, “Beam broadening for 5G millimeter wave
systems,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC 2019),
Apr. 2019.

[5] H. J. Visser, Array and Phased Array Antenna Basics. John Wiley &
Sons, 2005.

[6] W. H. Chin, Z. Fan, and R. Haines, “Emerging technologies and research
challenges for 5G wireless networks,” IEEE Wireless Commun. Mag.,
vol. 21, no. 2, pp. 106–112, Apr. 2014.

[7] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to
coverage and rate in cellular networks,” IEEE Trans. Commun., vol. 59,
no. 11, pp. 3122–3134, Nov. 2011.

[8] J. G. Andrews, T. Bai, M. N. Kulkarni, A. Alkhateeb, A. K. Gupta,
and R. W. Heath, “Modeling and analyzing millimeter wave cellular
systems,” IEEE Trans. Commun., vol. 65, no. 1, pp. 403–430, Jan. 2017.

[9] 3GPP TR 38.900, “Channel model for frequency spectrum above 6
GHz,” v. 1.0.1, Jun. 2016.

[10] A. Ghasemi and E. S. Sousa, “Fundamental limits of spectrum-sharing
in fading environments,” IEEE Trans. Wireless Commun., vol. 6, no. 2,
pp. 649–658, Feb. 2007.

[11] T. Bai and R. W. Heath, “Coverage and rate analysis for millimeter-wave
cellular networks,” IEEE Trans. Wireless Commun., vol. 14, no. 2, pp.
1100–1114, Feb. 2015.

[12] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and
Products, 7th ed. London, UK: Academic Press, 2007.

[13] A. Thornburg, T. Bai, and R. W. Heath, “Performance analysis of
outdoor mmWave ad hoc networks,” IEEE Trans. Signal Process.,
vol. 64, no. 15, pp. 4065–4079, Aug. 2016.

[14] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochas-
tic Processes, 4th ed. McGraw-Hill, 2002.

[15] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
With Formulas, Graphs, and Mathematical Tables, ser. National Bureau
of Standards Applied Mathematics. U.S. Gvnt. Printing Office, 1964.

2024 Workshop on Computing, Networking and Communications (CNC)

338


