
Revisiting Multi-Factor Authentication Token
Cybersecurity: A TLS Identity Module Use Case

Pascal Urien
LTCI, Telecom Paris

19 Place Marguerite Perey 91120 Palaiseau, France
Pascal.Urien@Telecom-Paris.fr

Abstract—Multi-factor authentication (MFA) procedures are
widely used by digital systems. There are usually performed by
hardware tokens comprising a microcontroller and an USB
interface. The security level is increased by computing
cryptographic procedures in secure elements such as smartcards.
Authenticity of MFA token is a critical topic since hardware or
software components may be cloned or modified, for example
through supply chain. Due to industrial competition cyber
security aspects of MFA token are not generally in the public
domain, and therefore somewhat relies on security by obscurity
(SbO). In this paper we present an original MFA token built with
open hardware (Arduino) and javacard, which realizes a TLS
pre-shared-key identity module (TLS-IM). The microcontroller is
authenticated by SRAM dynamic PUF features, its software is
checked by attestation procedure based on the bijective MAC
time stamped algorithm. The javacard application is
authenticated by PKI means, and manages a TLS-PSK channel
for remote administration.

Keywords— Security,Secure Element, IoSE, TLS

I. INTRODUCTION
Multi-Factor Authentication (MFA) is a technique [1][2]

that enables the computing of cryptographic procedures
involved in authentication processes, thanks to authentication
credentials bound to human user, according to several factors.
For example, something user has, something user known,
something user does.

As an illustration FIDO (Fast IDentity Online) standards
define authentication protocols, supporting a second-factor
hardware authenticator. The reference [3] lists some of such
hardware tokens, which typically comprise an USB interface,
a microcontroller and a secure element. This paper also
reviews side channel attack [4] performs on the Google Titan
Security Key that computes ECDSA signature based on the
"comb" algorithm used for scalar multiplication.

A secure element [6][7] is a tamper resistant
microcontroller, widely used in bank card, SIM module or
electronic passport. It typically performs Key Management
System (KMS), in a trusted computing environment.
Nevertheless secure elements, according to common criteria

(CC) standards, have different evaluation assurance level
(EAL), and may be approved by various organizations (for
example EMVco).

From a cyber security point of view, the authenticity of
MTA token is an important topic. The device can be cloned by
malicious manufacturers, or modified during supply chain
journey. Genuine component can be replaced by counterfeit
secure element or microcontroller [5]. Software integrity is
obviously a critical requirement; backdoors enabling
fraudulent interactions with secure element or malicious use of
KMS, can be implemented in microcontroller or secure
element.

The contribution of this paper is the secure design of a
MFA token (TLS identity module TLS-IM [8] [9] [10]), used
for authentication purposes with TLS1.3 pre-shared-key
servers. The TLS-IM token is based on open technologies; it
comprises an Arduino microcontroller and a javacard. This use
case avoids security by obscurity (SbO) and enables clear
description of cyber security features whose main goals are:

- to provide three-factor authentication (3FA, something you
have, something you know, something you do)

- to authenticate the microcontroller using PUF (Physical
Unclonable Function)

- to check the integrity of the microcontroller software

- to authenticate the secure element and its content

This paper is organized according to the following outline.
Section 2 introduces TLS-IM identity modules, security
requirements, and practical use. Section 3 details TLS-IM
hardware components (Arduino and javacard) and
microcontroller software. Section 4 describes secure element
application downloading, configuration and authentication.
Section 5 presents microcontroller enrollment and
authentication according to dynamic SRAM PUF procedure.
Section 6 describes microcontroller software attestation
procedure working with the bijective MAC time stamped
algorithm. Finally Section 7 concludes this paper.

2024 Workshop on Computing, Networking and Communications (CNC)

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 33

II. TLS IDENTITY MODULE (TLS-IM)
The last version (TLS 1.3) of the well known TLS protocol

provides two authentication methods for server and client:
signatures such as ECDSA (Elliptic Curve Digital Signature)
based on asymmetric keys, and shared symmetric secret
(named pre-shared-key, PSK). As depicted in [8] [9]
associated procedures may be computed in dedicated identity
module (i.e. TLS-IM). In this paper we focus on cryptographic
functions required by TLS-PSK, on the client side.

A. TLS-PSK Cryptographics procedures
We are using the following notations; HL16: hash Length, 16
bits; HL8: hash length, 8 bits; H0: hash(empty); hash:
SHA256.

Four symmetric keys (ESK, DSK, BSK, FEK) are computed
from PSK (32 bytes value), according to the following
relations:

ESK= HMAC(salt=0,PSK)

DSK=HMAC(ESK,HL16||0d746c7331332064657269766564||
HL8||H0||01)

BSK=HMAC(ESK,HL16||10746c733133206578742062696e6
46572||HL8||H0||01)

FEK=HMAC(BSK,HL16||0E746C7331332066696E69736865
640001)

Two procedures that we name binder and derive are required
for TLS authentication method based on PSK:

- binder (data)= HMAC(FEK, data), in which data a hash
(SHA256) value, computes an authentication value in the TLS
first flight

- derive(DHE)= HMAC(DSK, DHE) computes the handshake
(HS) secret from the Diffie Hellman exchange (DHE) secret.

B. Security requirements
The main idea of TLS identity module (TLS-IM) is to

support binder and derive procedures (defined in previous
section) in tamper resistant computing environment, such as
secure element (SE). Two-factor authentication (2FA), for
example a PIN code, is a classical protection against malicious
use of lost or stolen TLS-IM token. Secure element
communication interfaces are specified by ISO7816 standards
[6], while smart phones or laptops usually support Bluetooth
RFCOMM or Serial USB communication port. Therefore the
TLS-IM token includes a microcontroller named Secure
Element Processor (SEP, [10]) that realizes a logical bridge
with ISO7816 protocols. The SEP or SE can be modified or
replaced by supply chain attacks. Therefore we would like to
check the integrity of SEP software, and establish that SEP
and SE are genuine devices. Because the terminal to which is
plugged the TLS-IM token can include malicious software, we
introduce a third factor authentication (3FA), a push button

that enables the derive function during a time slot (5 seconds)
notified by a blinking LED.

C. Integration in TLS stack
TLS-IM modules require two callback functions for

invoking binder and derive procedures. We added these
procedures in the wolfSSL open library; they work either over
PC/SC (Personal Computer/ Smart Card) API dedicated to
smartcard readers (2FA case, i.e. TLS-IM module is a
smartcard), or serial port (3FA case, i.e. TLS-IM token with
SEP and SE).

III. TLS-IM TOKEN COMPONENTS

A. Hardware

Fig. 1. The TLS-IM Token simplified architecture

The TLS-IM token (see figure 1) comprises two
components: a javacard (J3R180, Javacard 3.0.5, 85KB
FLASH, 3KB SRAM) and a microcontroller (ATMEGA
32u4) based on RISC technology clocked at 16MHz, with 32
KB FLASH, 2.5 KB SRAM, 1 KB EEPROM, and USB 2.0
full-speed/low-speed interface.

Fig. 2. The experimental TLS-IM token

The javacard is connected to the micro controller thanks to
the ISO7816 five wires interface (Vcc, Gnd, Reset, Clock,
IO). Two communication interfaces are available: serial USB
and UART. Serial USB is dedicated to laptops or smart
phones supporting OTG (USB On-The-Go) technology. UART
(Universal Asynchronous Receiver Transmitter) is used for
SRAM PUF (Physically Unclonable Function). We observed

2024 Workshop on Computing, Networking and Communications (CNC)

34

that serial USB uses quite all available SRAM when the
device is plugged to an USB port, what modified SRAM
content after power up.

The user interface (UI) comprises a LED
(acknowledgment LED, A_LED) and two push buttons (reset
button B_RESET, and acknowledgment button B_ACK).
Blinking A_LED indicates that an action is required on
B_ACK. Simultaneous use of B_RESET and B_ACK reboots
the device in administrator mode, for which all implemented
commands are available.

Figure 2 illustrates the experimental device including an
Arduino pro micro 32u4 board, a SIM socket (2FF format),
two buttons, a LED, and a 10 pins SPI (Serial Programming
Interface) connector used for flashing the micro controller
(thanks to signals RST, SCK, MOSI, MISO), powering up the
device, and communicating through the UART.

B. Software
The token software is designed with the Arduino

integrated development environment (IDE), a dedicated
ISO7816 library [11] drives the secure element. It manages
two serial communication channels (channel 1: Serial USB
and channel 2: UART), it has two working modes user and
administrator, and supports acknowledged commands (thanks
to the B_ACK button).

cmd comment ch ack adm
dump Dump 1KB SRAM 1-2 no no

bmac SEED Compute bijective
MAC time stamped

1 no no

on Power on SE 1 no no
off Power off SE 1 no no

user PIN Power on SE & Send
PIN

1 no no

binder DATA Compute binder 1 no no
derive DATA Compute derive 1 yes no

getpk Read SE public key 1 no no
getcert Read SE certificate 1 no no

auth DATA Authenticate SE 1 no no
apdu DATA Send APDU to SE 1 no yes
ewrite ADR

DATA
Write data in EEPROM 1 no yes

Fig. 3. Main commands of the TLS-IM token

The software provides a SHELL (see figure 3) that parses
ASCII command sent over serial interfaces. Channel 2 is used
to dump SRAM content for PUF operations; channel 1
processes all other commands. The user’s plane realizes the
bMAC algorithm, the two TLS-IM procedures "binder" and
"derive" (protected by the B_ACK button), and starts the
smartcard with a PIN. Secure element authentication is
performed thanks to three commands: "getpk", "getcert", and
"auth".

The administrator mode is entered by the simultaneous
press of B_RESET and B_ACK BUTTON. It enables the
"apdu" command, which is required to exchange ISO7816
APDU packets with the secure element, needed for TLS-PSK
setting or javacard application downloading. It also gives
access to the "ewrite" command that controls writing operation
in EEPROM.

IV. SECURE ELEMENT
The secure element stores the pre-shared-key (PSK), and

computes "binder" and "derive" procedures. The observed
computing time for "binder" and "derive" procedure is about
100ms. A wrong content (bad PSK) induces a denial of service
(DoS) risk. From the administration point of view the two
issues to be taken into account are: 1) software downloading,
and authentication, and 2) secure PSK storage.

Fig. 4. TLS-IM-APP application in javacard environnment

A. TLS-IM APP Downloading
Most of secure elements implement Global Platform (GP)

protocols, which perform secure software downloading,
protected by two symmetric (128 bits) secrets, from which are
derived two keys used for encryption and integrity purposes.
Because GP transport is based on APDU (see figure 4), the
TLS-IM token provides, in administration mode, a transparent
bridge for its support.

Fig. 5. Software downloading in TLS-IM token SE, local mode with
GPSHELL (right part), remote mode with IOSE server (left part)

Open software such as GPSHELL [12] based on PC/SC
API can be used with a SHIM (implemented for example in a
WINSCARD.DLL for Windows) that translates PC/SC calls
over channel 1 serial port (see figure 5, right part). Such SHIM
also enables to plug TLS-IM token to IOSE server [10] (see
figure 5 left part), as explained in next section.

2024 Workshop on Computing, Networking and Communications (CNC)

35

B. TLS-IM APP Configuration
Upon instantiation the TLS-IM-APP software creates a

pair of public and private key over the SECP256k1 elliptic
curve. According to [13] the application manages an internal
TLS-PSK server (see figure 4) initialized with a provider pre-
shared-key (Provider-PSK) used for administration. This
server is associated to a name, the Secure Element Name (SEN
[10]).

TLS-IM tokens are supported, thanks to PC/SC SHIMs, by
IOSE server [10], which maintains two networks interfaces
over TLS. First is used by RACS (Remote APDU Call Secure)
daemon, typically for GP support. Second provides a front
TLS-PSK interface with a backend named TLS server (such as
TLS-IM token).

The TLS-PSK internal channel is used for two tasks:

-reading the secure element public key and forwarding a
certificate (the ECDSA signature of the public key hash, by a
Certification Authority);

- setting the TLS-IM pre-shared-key.

C. TLS-IM-APP authentication
In the user mode the TLS-IM token provides three

commands for SE authentication:

- getpk reads the secure element public key

- getcert, reads the secure element certificate

- auth DATA, computes an ECDSA signature of DATA
value with the secure element private key

V. SECURE ELEMENT PROCESSOR (SEP) AUTHENTICATION

Fig. 6. Authentfication of ATGEMA32u4 micocontrollers. SRAM
contents,references, based on 100 measures, have been recorded for 2 devices
A et B. A device is authenticated with different powerup signals such as Ramp
(R), Square (S), and Ramp&Square (R&S). Memory cell colors are the
following, yellow always 0, green always 1, white,noise, red fipping bits..

The idea behind SEP authentication is to detect counterfeit
devices. We want to identify and to authenticate
microcontroller used by TLS-IM token.

A. SRAM PUF and SRAM dPUF

Fig. 7. Experimental measurements of flipping bit threshold values (VTH),
thanks to Ramp&Square signals with different knee voltage (VK, from 9,8mV
to 244mV, with step of 1,022mV). Yellow always 0 (25 tries), green always
(25 tries) 1, red flipping bits (25 tries), noise between 1-24 for 25 tries. SRAM
cells are ordered by increasing VTH.

Microcontroller chips embed SRAM memory, a set of cells
made with six CMOS transistors realizing two logical
inverters head to tail. Upon power up, most of cells take a fix
value (due to physical dissymmetry), while other have random
content. This effect is called SRAM-PUF. Furthermore
[14][15], due to capacitance dissymmetry, the supply voltage
rise time may create flipping bits. Such memory cells take a
fix value (either 0 ou 1), but with inverted values depending
on the supply voltage rise time. Flipping bits are not observed
for low rising time (less than 10V/s), and are created for rising
time of about 100V/s. This effect occurs at a given voltage
threshold (VTH). The observed VTH values (see figure 7) are in
the range of a few hundred mV; they are measured thanks to
R&S power-up signals, with different knee (VK) values (Vk is
defined in figure 6).

The token is power-up by three kinds of signals: Square,
(S, about 1500V/s), Ramp (R, 5V/s) and Ramp and Square
(R&S, the voltage knee VK is at 625mV). Only square signal
creates flipping bits. Dynamic PUF (dPUF) relies on the fact
that S or R&S signal cannot be differentiated by the
microcontroller. Even if PUF bits are known, a random use of
S and R&S powering up, creates a set of SRAM-PUF that
cannot be guessed by a malicious firmware.

B. SEP Enrollment & Authentication
The token is powered by a dedicated generator built with

an ATMEGA2560 (Arduino, 16 MHz) comprising a digital to
analog (DAC) converter (MCP4725, with 12 bits resolution)
and an operational amplifier (LM358P), which can sink about
40mA. The firmware that controls output voltage processes 4
samples per ms; the rising time ranges between 1500V/s and
5V/s. When the powering up process (P) is complete, one KB
of SRAM is dumped thanks to a serial interface.

The powering process is repeated n times (Pn). Three types
of cell rams are identified (see figure 6): always zero (Z,
colored in yellow), always one (O, colored in green), noise (N,
colored in white) sometimes one or zero. So the memory M is
divided in three sets: M= O U Z U N.

We call domain (D) the set D= O U Z.

2024 Workshop on Computing, Networking and Communications (CNC)

36

In order to compare two memory contents M1 and M2, we
define:

-The common domain, CD = D1 n D2 (CD = M1,2 U F1,2)

-The matching bits in CD, M1,2 = (O1 n O2) U (Z1 n Z2)

-The flipping bits in CD, F1,2 = (O1 n Z2) U (Z1 n O2)

-The similarity factor Sf= #M1,2/#CD (# being the cardinal of a
given set). Sf is used as metric for device authentication, with
a value around 0,99.

Matching bits (see figure 6) are colored either in yellow or
green. Flipping bits are colored in red. Other bits (noisy bits)
are colored in white.

For a given microcontroller, flipping bits belong to a
common domain created by S and R powering up signals;
depending on the powering up signal (S, R, R&S), they are
located either in O or Z.

A device (k) identification compares P1,k (single power on)
with different Pn,i (n power on) for devices i. About 50% of
flipping bits are expected for wrong device, while quite no
flipping bits are observed (i.e. about 100% of matching bits
are expected, so Sf > 0,99) for the right device.

For two different devices (i and k) comparison between Pn,i
and Pn,k creates about 50% (Sf=0,494) flipping bits in the
common domain (see figure 8)

For the same device, comparison of Pn obtained with S
powering signal to P’n collected with R or R&S signals enable
to identify flipping bits (see figure 9)

Fig. 8. Common Domain for two devices,using 100 measures profile, the
memory size is 4096 bits (512 bytes)

Fig. 9. Device #10 authentication with S and R&S signals, the memory size
is 4096 bits (512 bytes)

VI. SOFTWARE ATTESTATION
Software integrity is a major concern, increased by supply

chain journey. Malicious software enables multiple MIM (man
in the middle) attacks. The bijective MAC time stamped
(bMAC_TS) is a software-based [18] remote attestation [17]

[18], which comprises a prover (i.e. bMAC_TS) and a
(human) verifier. Verifier sends challenge to prover, which
computes and returns a response.

A. Bijective MAC TimeStampted (bMAC_TS)
Given a memory of size m (including FLASH, EEPROM

and SRAM), bMAC computes a memory fingerprint (h, such
as SHA256 or Keccak256) according to a P permutation.

bMAC = h(A(P(0)) || A(P(1) || … || A(P(m-1))

A(x) is the byte content associated to an address x. The
computing time (CT) is returned with the bMAC

In Z/pZ* (multiplicative group of integers modulo p), with
p (p>m) a safe prime, p=2q+1with q St Germain prime, and
p=7 modulo 8, we define P as :

gk are generators in Z/pZ* defined according to

The number of P permutations is (p-1)(q-1)2, about m3/4 (243

for a 32 KB memory). Therefore bMAC responses (whose
total size is about 243x32bytes) cannot be stored in the token
memory. Nevertheless malicious software may perform
memory copy attacks, which use copy of genuine memory. In
order to detect such event, the computing time is measured by
an internal timer using the microcontroller clock (16MHz) sub
frequency (16MHz/64); stopping and restarting this timer
creates random time measurement error (in the order of 4 µS
per stop&start action).

B. Enrollment & Authentication
The TLS-IM token software works with the prime

p=36887 (32K + 2,5K + 1K = 36352). Given a positive integer
of 31 bits inserted in the "bmac" command, a pseudo random
generator [19] computes s1, g1 and g2 values. The hash
function is Keccak256; the whole content of the FLASH and
EEPROM memories, and part of SRAM memory used by
Keccak256 context are included in MAC calculations.
Because the EEPROM memory is not used, a dedicated
command ("ewrite") enables to modify its content; the idea
being to avoid memory copy attack. In the same spirit, the
unused portion of FLASH memory (storing code), is filled
with pseudo random bytes (inserted in the software image
file).

Multiple calls of "bmac" commands with different seed
enable to build a table, indexed by seed values, which stores
bMAC and CT. As illustrated by figure 8, the computing time
repartition looks similar to a normal law. For 722 tries, in unit
of 4µs (the internal timer resolution) the minimum is
6.762.590, the maximum 6.783.464, the average 6.774.474 (27
seconds), and the standard deviation 3005 (12 ms). If we

Device Domain Zero One Flip
ping

#10 3873 2162 1711 228
#11 3867 1963 1904 182

Common
Domain

3658 1045 807 1852

Powering
Signal

Common
Domain

Zero One Flip
ping

Sf Ma
tch

S - R100 3873 1723 1699 451 0,884 no
S - S100 3591 1506 2084 1 0,999 yes

RS- R100 3873 2162 1708 3 0,999 yes
RS- S100 3591 1503 1748 340 0,905 no

2024 Workshop on Computing, Networking and Communications (CNC)

37

admit that quite all computing times are observed in three
standards deviation, the resulting entropy is about 13 bits.

Fig. 10. bMAC computing time distribution (722 measures) for TLS-IM
token. Computing times are divided in 25 classes between minimum to
maximum value.

VII. CONCLUSION
In this paper we introduced 3FA TLS-IM token made with

a microcontroller, a secure element, a LED and two push
buttons. Codes were written with Arduino IDE [20] and
Oracle Javacard 3.0.5 Software Development Kit.

The secure element should be manufactured by a trusted
company. It is protected by GP keys required for application
downloading, asymmetric keys managed by application
provider for software authentication, and Provider-PSK
initialized by application provider in order to handle TLS-PSK
secure channel for administration purposes.

The microcontroller is authenticated by PUF technique
(dPUF) and its software integrity is checked by an attestation
procedure (bMAC_TS).

The 3FA is realized by the token, a PIN code, and a push
button for cryptographic procedure authorization.

We believe that this design, based on open hardware and
software technologies could be applied in many use cases for
which trusted multi-factor authentication is required.

REFERENCES
[1] A. A. S. AlQahtani, Z. El-Awadi and M. Min, "A Survey on User

Authentication Factors," 2021 IEEE 12th Annual Information
Technology, Electronics and Mobile Communication Conference
(IEMCON), Vancouver, BC, Canada, 2021, pp. 0323-0328, doi:
10.1109/IEMCON53756.2021.9623159.

[2] Ometov, A., Bezzateev, S., Mäkitalo, N., Andreev, S., Mikkonen, T., &
Koucheryavy, Y. (2018). "Multi-factor authentication: A survey".
Cryptography, 2(1), 1.

[3] Lomme, V., "An Overview of the Security of Some Hardware FIDO(2)"
TokensHardwear.io Security Trainings and Conference, Netherlands,
202224-28 October 2022, https://hardwear.io/netherlands-
2022/presentation/security-of-Hardware-FIDO(2)-tokens.pd

[4] Thomas Roche, Victor Lomné, Camille Mutschler, Laurent Imbert. "A
Side Journey To Titan: Revealing and Breaking NXP’s P5x ECDSA
Implementation on the Way." USENIX Security 2021, USENIX
Security Symposium, Aug 2021, Virtual, Canada. pp.231-248.

[5] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor and Y.
Makris, "Counterfeit Integrated Circuits: A Rising Threat in the Global

Semiconductor Supply Chain," in Proceedings of the IEEE, vol. 102, no.
8, pp. 1207-1228, Aug. 2014, doi: 10.1109/JPROC.2014.2332291.

[6] Jurgensen T.M., Guthery, S.B., "Smart Cards: The Developer's Toolkit",
O’Reilly

[7] Chen, Z., "Java Card™ Technology for Smart Cards, Architecture and
Programmer's Guide", ADDISON-WESLEY, 2000

[8] IETF Draft, "Identity Module for TLS Version 1.3", draft-urien-tls-im-
09.txt, July 2023

[9] P. Urien, "Innovative TLS 1.3 Identity Module for Trusted IoT Device,"
2021 IEEE 18th Annual Consumer Communications & Networking
Conference (CCNC), Las Vegas, NV, USA, 2021, pp. 1-4, doi:
10.1109/CCNC49032.2021.9369656.

[10] P. Urien, "On Line Secure Elements: Deploying High Security
Keystores and Personal HSMs," 2023 International Conference on
Computing, Networking and Communications (ICNC), Honolulu, HI,
USA, 2023, pp. 450-455, doi: 10.1109/ICNC57223.2023.10074066.

[11] ISO7816 Library For Arduino, https://github.com/purien/SCLIB-
ARDUINO

[12] Global Platform Shell, https://github.com/kaoh/globalplatform
[13] IETF Draft "Internet of Secure Elements", draft-urien-coinrg-iose-07.txt,

IETF Draft, April 2023
[14] Elshafiey, A. T., Zarkesh-Ha, P. and Trujillo, J. (2017). The effect of

power supply ramp time on SRAM PUFs. 2017 IEEE 60th International
Midwest Symposium on Circuits and Systems (MWSCAS).
https://doi.org/10.1109/MWSCAS.2017.8053081.

[15] Urien, P. (2020). Innovative Dynamic SRAM PUF Authentication for
Trusted Internet of Things. 16th International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMob).
https://doi.org/10.1109/WiMob50308.2020.9253432.

[16] Sigurd Frej Joel Jørgensen Ankergård, Edlira Dushku, Nicola Dragoni,
"State-of-the-Art Software-Based Remote Attestation: Opportunities and
Open Issues for Internet of Things", Sensors 2021, 21(5), 1598;
https://doi.org/10.3390/s21051598

[17] Seshadri, A., et al (2006). SCUBA: Secure Code Update By Attestation
in sensor networks. WiSe '06: Proceedings of the 5th ACM workshop on
Wireless security. https://doi.org/10.1145/1161289.1161306

[18] Urien, P. (2020). Proving IoT Devices Firmware Integrity With
Bijective MAC Time Stamped. IEEE 6th World Forum on Internet of
Things (WF-IoT). https://doi.org/10.1109/WF-IoT48130.2020.9221395.

[19] Park, S.K., Miller, K.W, (1998) Random Numbers Generators: Good
Ones Are Hard to Find. Communication of ACM , Volume 31, Number
10, pp1192-1201.

[20] https://github.com/purien, seen November 2023

2024 Workshop on Computing, Networking and Communications (CNC)

38

