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Abstract—Multi-factor authentication (MFA) procedures are 
widely used by digital systems. There are usually performed by 
hardware tokens comprising a microcontroller and an USB 
interface. The security level is increased by computing 
cryptographic procedures in secure elements such as smartcards. 
Authenticity of MFA token is a critical topic since hardware or 
software components may be cloned or modified, for example 
through supply chain. Due to industrial competition cyber 
security aspects of MFA token are not generally in the public 
domain, and therefore somewhat relies on security by obscurity 
(SbO). In this paper we present an original MFA token built with 
open hardware (Arduino) and javacard, which realizes a TLS 
pre-shared-key identity module (TLS-IM). The microcontroller is 
authenticated by SRAM dynamic PUF features, its software is 
checked by attestation procedure based on the bijective MAC 
time stamped algorithm. The javacard application is 
authenticated by PKI means, and manages a TLS-PSK channel 
for remote administration. 
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I.  INTRODUCTION 
Multi-Factor Authentication (MFA) is a technique [1][2] 

that enables the computing of cryptographic procedures 
involved in authentication processes, thanks to authentication 
credentials bound to human user, according to several factors. 
For example, something user has, something user known, 
something user does.  

As an illustration FIDO (Fast IDentity Online) standards 
define authentication protocols, supporting a second-factor 
hardware authenticator. The reference [3] lists some of such 
hardware tokens, which typically comprise an USB interface, 
a microcontroller and a secure element. This paper also 
reviews side channel attack [4] performs on the Google Titan 
Security Key that computes ECDSA signature based on the 
"comb" algorithm used for scalar multiplication. 

A secure element [6][7] is a tamper resistant 
microcontroller, widely used in bank card, SIM module or 
electronic passport. It typically performs Key Management 
System (KMS), in a trusted computing environment. 
Nevertheless secure elements, according to common criteria 

(CC) standards, have different evaluation assurance level 
(EAL), and may be approved by various organizations (for 
example EMVco).  

From a cyber security point of view, the authenticity of 
MTA token is an important topic. The device can be cloned by 
malicious manufacturers, or modified during supply chain 
journey. Genuine component can be replaced by counterfeit 
secure element or microcontroller [5]. Software integrity is 
obviously a critical requirement; backdoors enabling 
fraudulent interactions with secure element or malicious use of 
KMS, can be implemented in microcontroller or secure 
element. 

The contribution of this paper is the secure design of a 
MFA token (TLS identity module TLS-IM [8] [9] [10]), used 
for authentication purposes with TLS1.3 pre-shared-key 
servers. The TLS-IM token is based on open technologies; it 
comprises an Arduino microcontroller and a javacard. This use 
case avoids security by obscurity (SbO) and enables clear 
description of cyber security features whose main goals are: 

- to provide three-factor authentication (3FA, something you 
have, something you know, something you do) 

- to authenticate the microcontroller using PUF (Physical 
Unclonable Function) 

- to check the integrity of the microcontroller software 

- to authenticate the secure element and its content 

This paper is organized according to the following outline. 
Section 2 introduces TLS-IM identity modules, security 
requirements, and practical use. Section 3 details TLS-IM 
hardware components (Arduino and javacard) and 
microcontroller software. Section 4 describes secure element 
application downloading, configuration and authentication. 
Section 5 presents microcontroller enrollment and 
authentication according to dynamic SRAM PUF procedure. 
Section 6 describes microcontroller software attestation 
procedure working with the bijective MAC time stamped 
algorithm. Finally Section 7 concludes this paper. 
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II. TLS IDENTITY MODULE (TLS-IM) 
The last version (TLS 1.3) of the well known TLS protocol 

provides two authentication methods for server and client: 
signatures such as ECDSA (Elliptic Curve Digital Signature) 
based on asymmetric keys, and shared symmetric secret 
(named pre-shared-key, PSK). As depicted in [8] [9] 
associated procedures may be computed in dedicated identity 
module (i.e. TLS-IM). In this paper we focus on cryptographic 
functions required by TLS-PSK, on the client side. 

A. TLS-PSK Cryptographics procedures 
We are using the following notations; HL16: hash Length, 16 
bits; HL8: hash length, 8 bits; H0: hash(empty); hash: 
SHA256. 

Four symmetric keys (ESK, DSK, BSK, FEK) are computed 
from PSK (32 bytes value), according to the following 
relations: 

ESK= HMAC(salt=0,PSK) 

DSK=HMAC(ESK,HL16||0d746c7331332064657269766564||
HL8||H0||01) 

BSK=HMAC(ESK,HL16||10746c733133206578742062696e6
46572||HL8||H0||01) 

FEK=HMAC(BSK,HL16||0E746C7331332066696E69736865
640001) 

Two procedures that we name binder and derive are required 
for TLS authentication method based on PSK:  

- binder (data)= HMAC(FEK, data), in which data a hash 
(SHA256) value, computes an authentication value in the TLS 
first flight 

- derive(DHE)= HMAC(DSK, DHE) computes the handshake 
(HS) secret from the Diffie Hellman exchange (DHE) secret. 

B. Security requirements 
The main idea of TLS identity module (TLS-IM) is to 

support binder and derive procedures (defined in previous 
section) in tamper resistant computing environment, such as 
secure element (SE). Two-factor authentication (2FA), for 
example a PIN code, is a classical protection against malicious 
use of lost or stolen TLS-IM token. Secure element 
communication interfaces are specified by ISO7816 standards 
[6], while smart phones or laptops usually support Bluetooth 
RFCOMM or Serial USB communication port.  Therefore the 
TLS-IM token includes a microcontroller named Secure 
Element Processor (SEP, [10]) that realizes a logical bridge 
with ISO7816 protocols. The SEP or SE can be modified or 
replaced by supply chain attacks. Therefore we would like to 
check the integrity of SEP software, and establish that SEP 
and SE are genuine devices. Because the terminal to which is 
plugged the TLS-IM token can include malicious software, we 
introduce a third factor authentication (3FA), a push button 

that enables the derive function during a time slot (5 seconds) 
notified by a blinking LED. 

C. Integration in TLS stack 
TLS-IM modules require two callback functions for 

invoking binder and derive procedures. We added these 
procedures in the wolfSSL open library; they work either over 
PC/SC (Personal Computer/ Smart Card) API dedicated to 
smartcard readers (2FA case, i.e. TLS-IM module is a 
smartcard), or serial port (3FA case, i.e. TLS-IM token with 
SEP and SE). 

III. TLS-IM TOKEN COMPONENTS 

A. Hardware 

 
Fig. 1. The TLS-IM Token simplified architecture 

The TLS-IM token (see figure 1) comprises two 
components: a javacard (J3R180, Javacard 3.0.5, 85KB 
FLASH, 3KB SRAM) and a microcontroller (ATMEGA 
32u4) based on RISC technology clocked at 16MHz, with 32 
KB FLASH, 2.5 KB SRAM, 1 KB EEPROM, and USB 2.0 
full-speed/low-speed interface. 

 
Fig. 2. The experimental TLS-IM token 

The javacard is connected to the micro controller thanks to 
the ISO7816 five wires interface (Vcc, Gnd, Reset, Clock, 
IO). Two communication interfaces are available: serial USB 
and UART. Serial USB is dedicated to laptops or smart 
phones supporting OTG (USB On-The-Go) technology. UART 
(Universal Asynchronous Receiver Transmitter) is used for 
SRAM PUF (Physically Unclonable Function). We observed 
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that serial USB uses quite all available SRAM when the 
device is plugged to an USB port, what modified SRAM 
content after power up. 

The user interface (UI) comprises a LED 
(acknowledgment LED, A_LED) and two push buttons (reset 
button B_RESET, and acknowledgment button B_ACK). 
Blinking A_LED indicates that an action is required on 
B_ACK. Simultaneous use of B_RESET and B_ACK reboots 
the device in administrator mode, for which all implemented 
commands are available. 

Figure 2 illustrates the experimental device including an 
Arduino pro micro 32u4 board, a SIM socket (2FF format), 
two buttons, a LED, and a 10 pins SPI (Serial Programming 
Interface) connector used for flashing the micro controller 
(thanks to signals RST, SCK, MOSI, MISO), powering up the 
device, and communicating through the UART. 

B. Software 
The token software is designed with the Arduino 

integrated development environment (IDE), a dedicated 
ISO7816 library [11] drives the secure element. It manages 
two serial communication channels (channel 1: Serial USB 
and channel 2: UART), it has two working modes user and 
administrator, and supports acknowledged commands (thanks 
to the B_ACK button). 

cmd comment ch ack adm 
dump Dump 1KB SRAM 1-2 no no 

bmac SEED Compute bijective 
MAC time stamped 

1 no no 

on Power on SE 1 no no 
off Power off SE 1 no no 

user PIN Power on SE & Send 
PIN 

1 no no 

binder DATA Compute binder 1 no no 
derive DATA Compute derive 1 yes no 

getpk Read SE public key 1 no no 
getcert Read SE certificate 1 no no 

auth DATA Authenticate SE 1 no no 
apdu DATA Send APDU to SE 1 no yes 
ewrite ADR 

DATA 
Write data in EEPROM 1 no yes 

Fig. 3. Main commands of the TLS-IM token 

The software provides a SHELL (see figure 3) that parses 
ASCII command sent over serial interfaces. Channel 2 is used 
to dump SRAM content for PUF operations; channel 1 
processes all other commands. The user’s plane realizes the 
bMAC algorithm, the two TLS-IM procedures "binder" and 
"derive" (protected by the B_ACK button), and starts the 
smartcard with a PIN. Secure element authentication is 
performed thanks to three commands: "getpk", "getcert", and 
"auth". 

The administrator mode is entered by the simultaneous 
press of B_RESET and B_ACK BUTTON. It enables the 
"apdu" command, which is required to exchange ISO7816 
APDU packets with the secure element, needed for TLS-PSK 
setting or javacard application downloading. It also gives 
access to the "ewrite" command that controls writing operation 
in EEPROM. 

IV. SECURE ELEMENT 
The secure element stores the pre-shared-key (PSK), and 

computes "binder" and "derive" procedures. The observed 
computing time for "binder" and "derive" procedure is about 
100ms. A wrong content (bad PSK) induces a denial of service 
(DoS) risk. From the administration point of view the two 
issues to be taken into account are: 1) software downloading, 
and authentication, and 2) secure PSK storage. 

 
Fig. 4. TLS-IM-APP  application in javacard environnment 

A. TLS-IM APP  Downloading 
Most of secure elements implement Global Platform (GP) 

protocols, which perform secure software downloading, 
protected by two symmetric (128 bits) secrets, from which are 
derived two keys used for encryption and integrity purposes. 
Because GP transport is based on APDU (see figure 4), the 
TLS-IM token provides, in administration mode, a transparent 
bridge for its support. 

 
Fig. 5. Software downloading in TLS-IM token SE, local mode with 
GPSHELL (right part), remote mode with IOSE server (left part) 

Open software such as GPSHELL [12] based on PC/SC 
API can be used with a SHIM (implemented for example in a 
WINSCARD.DLL for Windows) that translates PC/SC calls 
over channel 1 serial port (see figure 5, right part). Such SHIM 
also enables to plug TLS-IM token to IOSE server [10] (see 
figure 5 left part), as explained in next section. 
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B. TLS-IM APP Configuration 
Upon instantiation the TLS-IM-APP software creates a 

pair of public and private key over the SECP256k1 elliptic 
curve. According to [13] the application manages an internal 
TLS-PSK server (see figure 4) initialized with a provider pre-
shared-key (Provider-PSK) used for administration. This 
server is associated to a name, the Secure Element Name (SEN 
[10]). 

TLS-IM tokens are supported, thanks to PC/SC SHIMs, by 
IOSE server [10], which maintains two networks interfaces 
over TLS. First is used by RACS (Remote APDU Call Secure) 
daemon, typically for GP support. Second provides a front 
TLS-PSK interface with a backend named TLS server (such as 
TLS-IM token). 

The TLS-PSK internal channel is used for two tasks: 

-reading the secure element public key and forwarding a 
certificate (the ECDSA signature of the public key hash, by a 
Certification Authority); 

- setting the TLS-IM pre-shared-key. 

C. TLS-IM-APP authentication 
In the user mode the TLS-IM token provides three 

commands for SE authentication: 

- getpk reads the secure element public key 

- getcert, reads the secure element certificate 

- auth DATA, computes an ECDSA signature of DATA 
value with the secure element private key 

V. SECURE ELEMENT PROCESSOR (SEP) AUTHENTICATION 

 

Fig. 6. Authentfication of ATGEMA32u4 micocontrollers. SRAM 
contents,references, based on 100 measures, have been recorded for 2 devices 
A et B. A device is authenticated with different powerup signals such as Ramp 
(R), Square (S), and Ramp&Square (R&S). Memory cell colors are the 
following, yellow always 0, green always 1, white,noise, red fipping bits.. 

The idea behind SEP authentication is to detect counterfeit 
devices. We want to identify and to authenticate 
microcontroller used by TLS-IM token.  

A. SRAM PUF and SRAM dPUF 
 
 
 
 
 
 
 

Fig. 7. Experimental measurements of flipping bit threshold values (VTH), 
thanks to Ramp&Square signals with different knee voltage (VK, from 9,8mV 
to 244mV, with step of 1,022mV). Yellow always 0 (25 tries), green always 
(25 tries) 1, red flipping bits (25 tries), noise between 1-24 for 25 tries. SRAM 
cells are ordered by increasing VTH. 

Microcontroller chips embed SRAM memory, a set of cells 
made with six CMOS transistors realizing two logical 
inverters head to tail. Upon power up, most of cells take a fix 
value (due to physical dissymmetry), while other have random 
content. This effect is called SRAM-PUF. Furthermore 
[14][15], due to capacitance dissymmetry, the supply voltage 
rise time may create flipping bits. Such memory cells take a 
fix value (either 0 ou 1), but with inverted values depending 
on the supply voltage rise time. Flipping bits are not observed 
for low rising time (less than 10V/s), and are created for rising 
time of about 100V/s. This effect occurs at a given voltage 
threshold (VTH). The observed VTH values (see figure 7) are in 
the range of a few hundred mV; they are measured thanks to 
R&S power-up signals, with different knee (VK) values (Vk is 
defined in figure 6). 

The token is power-up by three kinds of signals: Square, 
(S, about 1500V/s), Ramp (R, 5V/s) and Ramp and Square 
(R&S, the voltage knee VK is at 625mV). Only square signal 
creates flipping bits. Dynamic PUF (dPUF) relies on the fact 
that S or R&S signal cannot be differentiated by the 
microcontroller. Even if PUF bits are known, a random use of 
S and R&S powering up, creates a set of SRAM-PUF that 
cannot be guessed by a malicious firmware. 

B. SEP Enrollment & Authentication 
The token is powered by a dedicated generator built with 

an ATMEGA2560 (Arduino, 16 MHz) comprising a digital to 
analog (DAC) converter (MCP4725, with 12 bits resolution) 
and an operational amplifier (LM358P), which can sink about 
40mA. The firmware that controls output voltage processes 4 
samples per ms; the rising time ranges between 1500V/s and 
5V/s. When the powering up process (P) is complete, one KB 
of SRAM is dumped thanks to a serial interface. 

The powering process is repeated n times (Pn). Three types 
of cell rams are identified (see figure 6): always zero (Z, 
colored in yellow), always one (O, colored in green), noise (N, 
colored in white) sometimes one or zero. So the memory M is 
divided in three sets: M= O U Z U N.  

We call domain (D) the set D= O U Z. 
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In order to compare two memory contents M1 and M2, we 
define: 

-The common domain, CD = D1 n D2 (CD = M1,2  U F1,2 ) 

-The matching bits in CD, M1,2 = (O1 n O2) U (Z1 n Z2) 

-The flipping bits in CD, F1,2 =  (O1 n Z2) U (Z1 n O2) 

-The similarity factor Sf= #M1,2/#CD (# being the cardinal of a 
given set). Sf is used as metric for device authentication, with 
a value around 0,99. 

Matching bits (see figure 6) are colored either in yellow or 
green. Flipping bits are colored in red. Other bits (noisy bits) 
are colored in white. 

For a given microcontroller, flipping bits belong to a 
common domain created by S and R powering up signals; 
depending on the powering up signal (S, R, R&S), they are 
located either in O or Z. 

A device (k) identification compares P1,k (single power on) 
with different Pn,i (n power on) for devices i. About 50% of 
flipping bits are expected for wrong device, while quite no 
flipping bits are observed (i.e. about 100% of matching bits 
are expected, so Sf > 0,99) for the right device. 

For two different devices (i and k) comparison between Pn,i 
and Pn,k creates about 50% (Sf=0,494) flipping bits in the 
common domain (see figure 8) 

For the same device, comparison of Pn obtained with S 
powering signal to P’n collected with R or R&S signals enable 
to identify flipping bits (see figure 9) 

 

 

 

 

Fig. 8. Common Domain for two devices,using 100 measures profile, the 
memory size is 4096 bits (512 bytes) 

 

 

 

 

Fig. 9. Device #10 authentication with S and R&S signals, the memory size 
is 4096 bits (512 bytes) 

VI. SOFTWARE ATTESTATION 
Software integrity is a major concern, increased by supply 

chain journey. Malicious software enables multiple MIM (man 
in the middle) attacks. The bijective MAC time stamped 
(bMAC_TS) is a software-based [18] remote attestation [17] 

[18], which comprises a prover (i.e. bMAC_TS) and a 
(human) verifier. Verifier sends challenge to prover, which 
computes and returns a response. 

A. Bijective MAC TimeStampted (bMAC_TS) 
Given a memory of size m (including FLASH, EEPROM 

and SRAM), bMAC computes a memory fingerprint (h, such 
as SHA256 or Keccak256) according to a P permutation. 

bMAC = h( A(P(0)) || A(P(1) || … || A(P(m-1) ) 

A(x) is the byte content associated to an address x. The 
computing time (CT) is returned with the bMAC 

In Z/pZ* (multiplicative group of integers modulo p), with 
p (p>m) a safe prime,  p=2q+1with q St Germain prime, and 
p=7 modulo 8, we define P as : 

 
 

gk are generators in Z/pZ* defined according to 

 

The number of P permutations is (p-1)(q-1)2, about m3/4 (243 

for a 32 KB memory). Therefore bMAC responses (whose 
total size is about 243x32bytes) cannot be stored in the token 
memory. Nevertheless malicious software may perform 
memory copy attacks, which use copy of genuine memory. In 
order to detect such event, the computing time is measured by 
an internal timer using the microcontroller clock (16MHz) sub 
frequency (16MHz/64); stopping and restarting this timer 
creates random time measurement error (in the order of 4 µS 
per stop&start action). 

B. Enrollment & Authentication 
The TLS-IM token software works with the prime 

p=36887 (32K + 2,5K + 1K = 36352). Given a positive integer 
of 31 bits inserted in the "bmac" command, a pseudo random 
generator [19] computes s1, g1 and g2 values. The hash 
function is Keccak256; the whole content of the FLASH and 
EEPROM memories, and part of SRAM memory used by 
Keccak256 context are included in MAC calculations. 
Because the EEPROM memory is not used, a dedicated 
command ("ewrite") enables to modify its content; the idea 
being to avoid memory copy attack. In the same spirit, the 
unused portion of FLASH memory (storing code), is filled 
with pseudo random bytes (inserted in the software image 
file). 

Multiple calls of "bmac" commands with different seed 
enable to build a table, indexed by seed values, which stores 
bMAC and CT. As illustrated by figure 8, the computing time 
repartition looks similar to a normal law. For 722 tries, in unit 
of 4µs (the internal timer resolution) the minimum is 
6.762.590, the maximum 6.783.464, the average 6.774.474 (27 
seconds), and the standard deviation 3005 (12 ms). If we 

Device Domain Zero One Flip 
ping 

#10 3873 2162 1711 228 
#11 3867 1963 1904 182 

Common 
Domain 

3658 1045 807 1852 

 

Powering 
Signal 

Common  
Domain 

Zero One Flip 
ping 

Sf Ma 
tch 

S - R100 3873 1723 1699 451 0,884 no 
S - S100  3591 1506 2084 1 0,999 yes 

RS- R100 3873 2162 1708 3 0,999 yes 
RS- S100 3591 1503 1748 340 0,905 no 
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admit that quite all computing times are observed in three 
standards deviation, the resulting entropy is about 13 bits. 

 
Fig. 10. bMAC computing time distribution (722 measures) for TLS-IM 
token. Computing times are divided in 25 classes between minimum to 
maximum value. 

VII. CONCLUSION 
In this paper we introduced 3FA TLS-IM token made with 

a microcontroller, a secure element, a LED and two push 
buttons. Codes were written with Arduino IDE [20] and 
Oracle Javacard 3.0.5 Software Development Kit. 

The secure element should be manufactured by a trusted 
company. It is protected by GP keys required for application 
downloading, asymmetric keys managed by application 
provider for software authentication, and Provider-PSK 
initialized by application provider in order to handle TLS-PSK 
secure channel for administration purposes. 

The microcontroller is authenticated by PUF technique 
(dPUF) and its software integrity is checked by an attestation 
procedure (bMAC_TS). 

The 3FA is realized by the token, a PIN code, and a push 
button for cryptographic procedure authorization. 

We believe that this design, based on open hardware and 
software technologies could be applied in many use cases for 
which trusted multi-factor authentication is required. 
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