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Abstract—When considering beamforming in massive MIMO
systems, the large number of antennas increases the amount of
calculation at a base station. There is also a concern about the
complexity of antenna circuits. Therefore, we have proposed loose
beamforming in which the beam is formed by deciding whether
or not to use the antenna for each user. However, an appropriate
antenna selection method for the loose beamforming has not
been established yet. In this study, we introduce a direct-binary
search into the generation of the loose beamforming weights and
evaluate the performance. Although the throughput is lower than
one of other optimization methods such as a genetic algorithm, it
can significantly reduce the computation time and can generate
appropriate weights for a short time, thereby confirming the
effectiveness of the proposed method.

Index Terms—Loose beamforming, Massive MIMO, Antenna
selection, Direct-binary search, Local optimal solutions

I. INTRODUCTION

The commercialization of the 5th generation mobile com-

munication (5G) system has begun, and research on next

generation communication systems such as Beyond 5G and

6th generation mobile communication (6G) is underway. In

5G and 6G, Massive MIMO systems [1] that deploy hundreds

of transmitting antenna elements at a base station (BS) are

being considered in order to increase channel capacity and

data transmission speed in the high frequency band. This

system has attracted attention as an important technology in

the realization of 6G.

Conventionally, in MIMO systems, a precoding method that

uses all antenna elements to generate transmit weights, such as

the Minimum Mean Square Error (MMSE), has been used for

beamforming. However, Massive MIMO system has a large

number of transmit antenna elements, which increases the

amount of computation. In addition, since all antenna elements

are used in conventional methods, phase shifters and amplifiers

are required according to the number of elements. This makes

high frequency circuits more complex.

To solve these problems, antenna selection in RF circuit

reduction has being researched [2]-[4]. Many studies using

antenna selection insist the technique can improve system

complexity and hardware cost. However, as previously stated,

this technique requires circuits to control phase and ampli-

tude for beamforming. Therefore, we have proposed loose

beamforming [5]-[9]. In the loose beamforming, the antenna

elements are selected in order to form a quasi-optimal beam

for each user. It is one of the beamforming methods that uses

the channel response as it is. This method may greatly reduce

the amount of calculations for precoding because the loose

beamforming can be done only by turning the antennas on and

off. In addition, since a switch is placed at each antenna instead

of a circuit that controls complex amplitudes, it is expected to

simplify the high-frequency circuitry and reduce costs. This

means that if this method is established, low-computation and

low-cost beamforming will be possible.

However, the optimal weight generation method for loose

beamforming has not been currently established. In other

words, the appropriate antenna selection method is not known.

The problem of finding loose beamforming weights is a com-

binatorial optimization problem. In Massive MIMO systems

with hundreds of antenna elements, the number of combi-

nations is enormous. Therefore, mathematical optimization

methods such as a genetic algorithm (GA) have been used

to generate quasi-optimal weights. The loose beamforming

weights generated by the mathematical optimization method

gives good performance, but a lot of calculation time is

required. Considering practicality, this method is not suitable

for beamforming that requires real-time processing.

In this study, we are adapting direct-binary search (DBS)

[8]-[10] to generate loose beamforming weights. DBS is

expected to reduce computation time because of its simpler

processing. The literature [8], [9] are the first papers ap-

plying DBS to loose beamforming. This paper summarizes

the concept of them. Also, [10] proposed utilizing the DBS

as 01 optimization for optical devices. This paper shows

the performance of the loose beamforming using DBS and

evaluates.

II. LOOSE BEAMFORMING USING DBS

A. Loose beamforming

In this paper, we consider beamforming on the downlink in

a Massive MIMO system with N transmit antenna elements in

BS and K receiving users. We define H as a K × N channel

matrix between the BS and K users, s as the K dimensional

transmission signal vector, and n as the K dimensional noise
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Fig. 2: Difference in evaluation function

vector for each UE. Then, the K dimensional received signal

vector y is given by

y = HWs+ n. (1)

Loose beamforming is a concept of selecting some useful

antenna elements instead of weight calculation of all the ele-

ments. The weight matrix W produced by loose beamforming

are defined by

W =

⎛
⎜⎝

w11 · · · w1K

...
. . .

...

w1N · · · wNK

⎞
⎟⎠ . (2)

For each element of loose beamforming weight matrix,

wnk = 1 and 0 denote that antenna is used and not used,

respectively. In this paper, we apply DBS for searching a

quasi-optimal solution of (2).

B. DBS

The elements of the weight matrix wn,k are determined so

that the evaluation functions (3) and / or (4) are maximized.

The optimal weight can be determined by trying all possible

combinations of 0s and 1s. However, as the number of BS

transmitting antenna elements and the number of users in-

crease, the number of combinations increases dramatically, and

the solution cannot be obtained in a realistic amount of time.

This is a so-called combinatorial explosion. Therefore, DBS

determines the 0s and 1s of the elements of the weight matrix

by a method described below, and searches for a combination

that approaches the maximum value of the evaluation function

as much as possible.

A flowchart of DBS is shown in Fig. 1. First, initial solution

candidates are generated. In this paper, its elements are chosen

randomly to be 0 or 1. Next, one element of the candidates

is randomly selected and a state change is applied to that

element. Then, evaluation is performed according to the eval-

uation function. If that change in state improves the evaluation

value, hold that state. Conversely, when the evaluation value is

worse, the state change is discarded. By repeating this process,

optimization can proceed while keeping the best. In this paper,

testing all the elements once is defined as one iteration.

To evaluate loose beamforming weights, the following eval-

uation functions

Csum =

K∑
k=1

log2(1 + γSINR,k) (3)

Ck = log2(1 + γSIR,k). (4)

where γSINR,k and γSIR,k are the signal-to-interference-plus-

noise ratio (SINR) and signal-to-interference ratio (SIR) for

the kth user, respectively. The differences in evaluation func-

tions are shown in Fig. 2. In the figure, hk is kth row vector

of H , and wk is kth column vector of W . Equation (3) uses

the row elements of the execution channel matrix to compute

the SINR, on the other hand, (4) uses the column elements of

the execution channel matrix to compute the SIR. γSINR,k is

calculated by (5) and γSIR,kby (6)

γSINR,k =
|hkwk|2∑K

i=1,i�=k |hiwk|2 + σ2
(5)

γSIR,k =
|hkwk|2∑K

i=1,i�=k |hiwk|2
, (6)

where σ2 is the noise power of the user terminal.

Equation (3) is the total downlink throughput. Maximizing

this equation is equivalent to minimizing interference at the

receiver. Equation (4) calculates the virtual uplink throughput

for the kth user [11]. Maximizing this equation corresponds

to minimizing interference to other users on the transmit side.

Equation (3) requires that a weight must be fully generated

to calculate throughput. The number of elements is N ×
K, and we need to deal with such a large number. On the

other hand, (4) does not require full weights to calculate

throughput, because the throughput can be calculated using

only the desired signal of the kth user and the interfering

signal to other users. The number of elements is N, which

greatly reduces the number of elements compared to (3). The
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Fig. 4: Simulation environments

reduction in the number of elements narrows the solution

search space. It is expected that this will make it easier to

find the optimal solution.

In this paper, we use DBS to generate loose beamforming

weights defined (2). For example, if the element wnkelement is

0, it is changed to 1. Then, we evaluate the throughput using

(3) or (4). If the evaluation value has improved, retain the

state change. If it has worsened, discard it. The same process

is performed also for the case where the wnk element is 1.

C. DBS Issues and Measures

Since DBS is a simple algorithm, it is expected to reduce

computation time. On the other hand, it has no method of

escaping from local optimal solutions such as mutation of

GA. Therefore, there is a problem of solution depending

on the initial solution candidates and the order of reversal.

Especially in loose beamforming in Massive MIMO systems,

it is necessary to consider measures to prevent this problem,

because the large solution space makes it easy to fall into local

optimal solutions.

In this paper, we propose three countermeasures taking

account of the increase in the amount of computation. Each

of the proposed measures is called method (a), (b), or (c),

and a schematic diagram is shown in Fig. 3. The first is to

increase the number of initial solution candidates as shown

in Fig. 3 (a) (Multiple solution candidates). This achieves

apparent multi-directional optimization. By increasing them,

the diversity of solutions can be multiplied, thus improving

the expected performance. The second proposal uses pre-

optimized weights as initial solution candidates as shown in

Fig. 3 (b). Each column of weights is optimized using (4) to

reduce interference to each user. Then (3) optimizes the entire

matrix to suppress the interference. It should be noted that this

approach uses two DBS with different evaluation functions.

The third is to give DBS two evaluation functions as shown

in Fig. 3 (c). We use (3) and (4) at the same time to hold

the inverted state when both downlink and uplink throughput

are improved. It should be noted that the difference between

method (b) and method (c) is whether the evaluation functions

(3) and (4) are used separately or simultaneously.

III. SIMULATIONS AND RESULTS

A. Simulation Environments

In this study, an indoor environment of 30 m length, 30 m

width, and 10 m height is assumed, as shown in Fig. 4. The

building materials are concrete and there are neither fixtures

nor windows, for simplicity. It is within line of sight from the

BS to all users. The detailed material properties are as follows :

relative permittivity εr=6.76, electrical conductivity σ=0.0023

S/m, and permeability μr=1. The BS is an array of 10 × 10

antenna elements, whose radiation pattern is similar to that

of dipole. It is placed on the wall as shown in Fig. 4. The

antenna spacing is half-wavelength and the carrier frequency

is 5 GHz. Ten receiving users are randomly located, and each

user has one antenna. For simplicity, the effects of coupling

between antenna elements and human blockages during signal

transmission are assumed to be absent. The noise power of

each receiving device is assumed to be the same for all users,

and the SNR due to only the direct wave is assumed to be 20

dB when a signal is transmitted from the point P at the center

of the BS array to the point Q on the opposite wall surface in

Fig. 4.

In the above environment, we obtain channel matrices

between the BS and UE by using Raplab [12], which is

software for radio propagation analysis using a ray-tracing

technique. Furthermore, the number of trials is set to 100.

B. Simulation results

Fig. 5 shows the total downlink throughput performance

of loose beamforming with DBS. As a comparison, the

performance of MMSE for normal beamforming and loose

beamforming using GA [5], quantum annealing [6] and sim-

ulated annealing [7] are shown. It is noted that the MMSE

performance is the best because it optimally controls the
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TABLE I: Weight generation time

Evaluation functions Generation time[s]

MMSE 1.4 × 10−3

DBS(Eq.(4)) 97 × 10−3

DBS(Eq.(3)) 213 × 10−3

SA 11
QA 30
GA 396
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Fig. 5: Total downlink thoughput
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Fig. 6: SNR performance
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Fig. 7: INR performance

amplitude and phase of all the antenna elements. As for

the two evaluation functions considered in this study, loose

beamforming using (4) showed higher throughput. We think

the reason for this result is the different size of the solution

space. As mentioned earlier, the number of elements is N
× K when (3) is used, and N elements when (4) is used.

We consider that the above result has been obtained because

using (4) narrows the solution space and makes it easier to

find the optimal solution. Figs. 6 and 7 show the SNR and

INR performance, respectively. The throughput improvement

is due to suppression interference. Fig. 6 shows that using

(4) improves SNR over (3). The reason for this result is that

the desired signal can be strengthened for the users by using

(4). In Fig. 7, there is a range where interference is better

suppressed using (3). The reason is that in DBS using (3), the

desired signal is strengthened or interference is suppressed

in order to improve the total throughput. Therefore, good

interference suppression is achieved with a certain probability.

However, compared with (4), it cannot be optimized for each

user and may not take account of some user’s desired signal

or interfering signal. Therefore, the performance are generally

degraded when using (3).

Moreover, Fig. 8 shows the results when the number of

iterations is increased. The “ite” in the figure represents the

number of iterations. The total downlink throughput perfor-

mance improves as the number of iterations increases, but the

change becomes smaller after a certain number of iterations.

This is due to the DBS algorithm. As mentioned in II.C, DBS

is prone to converge to local optimal solutions because of its

simplicity. As the number of iterations increases, the weights

become more optimized, but the possibility of falling into a

local solution increases. This is shown in Fig. 8, where the

change in performance becomes small after a certain number

of iterations. This suggests that a local solution has been

achieved, and an increase in the number of iterations alone

is not expected to improve the performance.

Therefore, the performance of the three methods in II.C

proposed to improve the search capability of DBS is shown in

Fig. 9. In method (a), the number of initial solution candidates

is set to 10 and the evaluation function used is (4). The number

of iterations for all methods is 1. All of the methods designed

to solve the DBS issues produce better results than the normal

DBS. Increasing solution diversity, adjusting initial solution

candidates and giving detailed evaluation functions are found

to improve DBS’s ability to search for solutions. In particular,

the method (c) gives the best results, and we can say that

the choice of the evaluation function for DBS is an important

factor.

The performance is worse than the other optimization meth-

ods such as GA, but DBS has an advantage in computation

time, which can be reduced by a factor of about 1/100

to 1/1000. We think this factor depends on the number of

times needed for throughput calculations. In GA, the number

of throughput calculations is approximately the number of

generations multiplied by the number of individuals. In the

simulation, the number of generations was 10000 and the

number of individuals was 200. Thus, GA calculated the

throughput 2000000 times. On the other hand, the number

of DBS throughput calculations is the number of elements.
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Fig. 8: Difference of iterations
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Fig. 9: Performance comparison between countermeasures
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Fig. 10: Effect of array shape variation

According to this simulation, the number of times was 1000.

The number of calculations is reduced by 1/2000. Although

there is an error due to coding, the amount of calculation is re-

duced. In addition, the performance of DBS is degraded when

compared to the performance of annealing. Quantum annealing

requires a quantum computer to conduct the calculation. This

is the cost of setting up the antenna, and loses the advantage

of loose beamforming. It is possible to entrust the process

to a quantum computer in the cloud, but it would take time

to do processing other than generating weights. In fact, the

quantum annealing result shown here was obtained using D-

Wave’s quantum computer [13]. The computer gets the results

by exchanging files in the cloud, but this takes time. Simulated

annealing can be computed on a classical computer, but the

difference in computation time is higher than that of DBS.

In beamforming, weights must be generated in a short time

in practical applications. From the above, DBS is an effective

method that satisfies the advantages of loose beamforming.

Table I shows the time to generate weights. Using (4) takes

less time than (3) because the former requires fewer matrix

calculations for obtaining throughput. Equation (4) can be

computed for each user, so parallel processing is also possible.

Therefore, we believe that its application to multi user MIMO

is also effective.

C. Effect of array shape variation

Once a method of antenna selection for loose beamforming

is established, low-computation and low-cost beamforming can

be realized, but there are still many uncertainties. In order to

clarify the method, it is necessary to evaluate the performance

under a variety of conditions and environments. Here, we

consider effect of array shape variation. We change the array

shape and see if we have changes in the performance. In this

simulation, three types of array shapes are compared: 10 ×
10, 1 × 100, and 100 × 1. The 1 × 100 array has elements

placed horizontally and the 100 × 1 array has elements

set vertically. Fig. 10 shows the total downlink throughput

performance for the different array shapes. In this simulation,

(3) and (4) are used for the DBS’s evaluation function. The

performance of MMSE is also shown for comparison. Overall,

changing the array shape does not show large effect on the

performance. However, for the array with 100 elements in the

horizontal direction, (4) and MMSE improve the performance.

The results show that loose beamforming exhibits similar

change of performance to normal beamforming.

IV. CONCLUSIONS

In this paper, we have proposed and a loose beamforming

using DBS in a Massive MIMO system and evaluated the

performance. The performance is highly variable depending on

the evaluation function used. In particular, the solution search

capability can be improved by providing detailed evaluation

functions. Compare to other optimization methods such as

GA, we confirm that although the performance is not as

good as that of GA, the computation time can be greatly

reduced and appropriate weights can be generated for a shorter

time. From the above, we state that DBS is an effective

method for loose beamforming. In addition, simulations are

performed with varying the array shape to examine the detailed

performance of the loose beamforming. In the environment

stated here, the change in performance is similar to MMSE.

However, to establish loose beamforming, it is necessary

to analyze simulations in other environments as well. For

example, environments with a channel estimation errors should

be examined. It also needs to be tested in an environment with

obstacles. Fewer paths may reduce the number of cases in

antenna selection, and then the number of 01 combinations.
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As a result, we expect to find better solutions even with simple

optimization methods such as DBS. Future prospects is to find

the optimal antenna selection method.
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