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Abstract—The unlicensed 2.4 GHz band is popular among the
personal wireless applications. Even if protocols using this band
are implemented with countermeasures, they are no longer robust
enough to maintain good quality of service (QoS). Interference
between low data rate short-range communication protocols, such
as Bluetooth Low Energy (BLE), and high data rate protocols,
such as Wi-Fi, is symptomatic of the QoS loss in this band.
We present a new way to allow the narrowband protocols
receiver to adapt its internal states to the signal power by
improving the adaptive gain control (AGC). As a preliminary
work, we compare four machine learning algorithms (Decision
Tree, Bagged Tree, Support Vector Machine (SVM) and K-
Nearest Neighbour (KNN)) to classify BLE received packets
subject to an interferer. The receiver robustness can then be
improved by combining an optimised AGC index decision with
the detection of non-ideal reception conditions. The best model in
terms of its performance/complexity trade-off here is the KNN,
which classifies the packets with an accuracy of 95.6 %.

Index Terms—ML, BLE, Countermeasure, CR

I. INTRODUCTION

Originally intended for industrial, scientific or medical pur-
poses, the ISM band has became popular for communication
at close range devices, offering a good trade-off between
hardware cost and wave propagation. Victim of its own suc-
cess, the 2.4GHz band subject to spatial congestion causing
a degradation in the quality of service (QoS) of devices.
As highlighted in [4], [8], in crowded context low-power
protocols such as BLE suffer from a severe increase in latency
during the device discovery process. This behaviour correlates
with the number of interfering devices of the same protocol,
and large sensor networks are degraded by Wi-Fi, even when
coexistence techniques are in place to reduce the impact of
interference.

This paper investigate the relevance of artificial intelligence
algorithms for the classification of Bluetooth Low Energy
(BLE) packets while respecting the constraint of the BLE
radio. The aim is to improve the receiver linearity/noise trade-
off selected by the Automatic Gain Control (AGC), which is
responsible for adapting the radio to the signal strength at the
antenna, thus avoiding saturation of the radio to ensure that
the payload is received. Here, are exploited internal radio radio
metrics linked to the received signal quality produced during
packet reception (Received Signal Strength Indicator (RSSI),
Signal to Noise Ratio (SNR), Link Quality Indicator (LQI)
and Cyclic Redundancy Check (CRC)).

This article shows that it is possible to classify BLE packets
according to an optimised AGC index is possible with a good
performance/complexity ratio. The potential to avoid retrans-
mission of packets identified as recoverable is highlighted.

This paper is organised as follows. Sec. II presents some
related works and Sec. III gives some background. Sec. IV
presents the environment setup, and Sec. V presents exper-
imental results, followed by a discussion. Conclusions are
summarised in Sec. VI.

II. RELATED WORK

Machine learning techniques for classification and detection
of non-ideal reception cases is the main subject of this work.
This section present the integration of AI algorithm to improve
QoS then present few works using internal metrics with ML
algorithm are presented to support some RF related purposes.

O’Mahony and al. [6] exploit the in-phase (I) and
quadrature-phase (Q) signal of a Zigbee radio receiver with
a random forest algorithm to detect malicious interference. A
classifier is created in [1] combined with a specific packet to
investigate the presence of a harmful interferer. Lee and al. [5]
propose the subtraction of ambient noise from the signal to
improve its detectability thanks to a neural network. Natively,
devices cannot detect nearby protocols to apply the best
countermeasure associated with them. Wang and Zhang in [9]
use a decision tree to take into account the MAC layer in the
spectrum sensing scheme to design a new strategy of emission
and improve the quality of service of secondary users by
choosing the broadcast time wisely and avoiding the primary
user. Intelligent channel assignment is a well-documented re-
search field with promising results based on deep learning [10]
and genetic learning algorithms [7]. However, the use of highly
energy-consuming algorithms may reduce the interest in these
techniques despite promising results. [3] the team enhances
the delay of emission and reduces the energy consumption
during the discovery phase of available access points thanks
to a WiFi scanning manager application.

III. BACKGROUND

In this part we present briefly some IA algorithm notion
and BLE radio particularities that we use in next sections.
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A. Artificial intelligence background

Here we present here the four algorithms compared and give
an insight into how they work. The algorithmic complexity of
the solution presented is also provided. Let n be the number
of samples and p be the number of features.

1) Decision Tree: The decision Tree algorithm is a classic
ML algorithm used for classification problems, known for
its great generalisation capabilities and for working well
with large datasets. The general training complexity of this
algorithm is O(n× p× log(n)).

2) Bagged tree: This type of approach combines multiple
decision trees (called weak learners) using bootstrap aggrega-
tion method to form a stronger estimator. The general training
complexity of this algorithm is O(n2 × p× log(n)).

3) K-Nearest neighbours (KNN): The classification algo-
rithm uses the vote of the k nearest data in the n-space to
determine the class of the new arriving data. The general
training complexity of this algorithm is O(n× p× log(n)).

4) Support Vector Machine (SVM): SVM is an algorithms
family designed originally for discrimination between two
classes, it is based on the search of optimal hyper-planes sep-
arating data. The general training complexity of this algorithm
is O(n2 × p).

B. Radio Frequency background

BLE and Wi-Fi are two non-collaborative protocols oper-
ating in the same unlicensed 2.4GHz band. Hence, they are
affected by each other’s communications without any means
of detecting and identifying each other’s transmissions. In the
BLE radio, 3 advertising channels and 9 data channels out
of 39 possible are potentially interference-free from Wi-Fi
concurrent operations. Internal countermeasure systems are in
place to reduce disruption repercussion from other protocols
with a balance between energy saving and the complexity of
receiver filtering.

The AGC adjusts the receiver gain according to the received
signal strength, allowing the radio to avoid saturation during
packet reception. The AGC gain index is set based on the
packet preamble, and frozen during the payload to avoid cor-
ruption of the bit decoding. However, this mechanism cannot
preserve the communication from a signal power increase
within the receiver after the AGC frozen which creates receiver
saturation (see Fig. 1). The higher the interferer, the lower
the receiver gain and therefore the lower the AGC index
value is. We will use later the terms of under-restricted for
an AGC index value higher than required and over-restricted
for an AGC index value lower than needed. If the gain is
not sufficiently restricted, noise is favoured at the expense of
linearity, resulting in better detection of a low power signal
but increased sensitivity to the intermodulation product.The
terminology of After will refer to an interferer that arrives after
the AGC gain freeze. Similarly, the terminology of Before will
refer to an interferer that arrives before the AGC gain freeze.

1) Receiver metrics used as metrics for ML algorithm:

Fig. 1. Interferer arriving after the AGC freeze, perturbing the payload
reception. The AGC cannot sustain the power variation.

a) Fast Link estimators : Received Signal Strength Indi-
cator (RSSI), Link Quality Indicator (LQI) and Signal to noise
ratio (SNR): These three metrics provide a good indication
of the quality of the received signal, and as a consequence,
an indication of the link quality in between the transmitter
and the receiver. RSSI provides an estimate of the average
power in a channel throughout the reception of a packet, all
signals included, while LQI and SNR quantify the signal-to-
noise ratio, i.e. the ability of the receiver to decode the signal
despite ambient noise. SNR gives the margin of the signal
over the noise and the ability of the demodulator to recognise
the bits. There are good to instant estimation but as exposed
in [2], their are poor resources on their own to determine the
interferer presence.

b) Cyclic Redundancy Check (CRC): The CRC is a word
composed of a few bits calculated by the emitting radio from
the payload part of the send packet. It is appended to the end
of the packet before it is emitted. When the receiver decodes
the packet, this word is recalculated with the received payload
and compared with the received CRC to check the validity of
the packet.

c) Access address (AA) found : This binary metric pro-
vides a confirmation of packet start detection. Two scenarios
can lead to an access address not being detected, either the
wanted signal strength is too weak for the receiver despite the
absence of an interferer, or there is a too powerful interferer
at the beginning of the packet reception.

IV. INTERFERENCE DISTURBANCE CLASSIFICATION

METHODOLOGY

A. Scope and environment

The BLE protocol is the core of this study. However,
other lightweight protocols (such as Zigbee) could also be
investigated using our method. The experimental environment
setup consists of a BLE receiver simulated using Matlab
(v2020b) and Simulink modelling tools. The seeds used to
randomise the packet simulation are controlled to ensure the
reproducibility of the experiments.

B. ML Training and Test methodology

The physical restrain of BLE devices exclude the use of
deep learning algorithms because of their huge time com-
plexity. In addition, due to the high dynamic of the spectral
environment, it is mandatory for the algorithm to achieve all
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the operation in real time. We have selected four algorithms,
namely Bagged Tree, KNN, Decision Tree and SVM, from the
twenty-four algorithms proposed by the ML Graphical User
Interface (GUI) of Matlab. The selection was made according
to their accuracy and precision. The best algorithm in each
family was selected. Then, using the function of the ML
toolbox, a detailed analysis of their variability is carried out,
in Sec. V.

C. Packet labelling : Set the optimal AGC

The reception status is an logic indicator that combine both
Access Address found and CRC features (see Table I).Three
designations are deduced: Good reception, Bad Reception, No
detection. In Sec. III, the role of the AGC mechanism in the
receiver saturation avoidance and its limitation in the case
of late interferer arrival scenario has been exposed. For the
labelling process, in most of the cases, native AGC gain index
decision is taken into account, but some packets are poorly
received regardless of the interferer arrival time. Specific
classes have been created to identify these packets.

TABLE I
PACKET RECEPTION STATUS CLASSES

Good
reception
(GR)

Bad reception
(BR)

No detec-
tion (ND)

CRC 1 0 0
AA detected 1 1 0

These indicators are combined to sort the packets into
classes that put in relation the reception status of the two
packet versions according to the following naming conven-
tion : The first two letters stand for the reception status for
the version when the interferer arrives Before the AGC index
freeze, while the last two letters indicate the reception status
for the version when the interferer arrives After the AGC
index freeze. The optimal AGC is identify for most packets,
the remainder being the packets that cannot be improved by
an AGC modification. Three additional labels X, Y and Z
are created to distinguish the evolution of reception status
(see Tab. II). For these three labels, AGC modification will
not lead to an improvement. Other countermeasures must be
proposed such as adjusting channel hopping table or changing
the communication offset.

• GR GR: Whatever the timing of arrival of the interferer,
the packet is always well received, the packet label is the
original AGC index of the packet.

• GR BR: If the interferer is late, the packet is badly
received because the AGC index is not properly adapted
to avoid saturation, the packet label correspond to the
AGC index of the good received version of packet.

• BR BR: No matter when the interferer arrives, the packet
is never well received.

• ND GR: The receiver expects a packet but the interferer
is too powerful for the receiver to detect the access

TABLE II
THE DETERMINATION OF THE PACKET LABELS WITH GR : GOOD

RECEPTION, BR : BAD RECEPTION, ND : NO DETECTION

Before After Optimal Label
GR GR Original packet AGC index
GR BR AGC index from Before version
ND BR X
ND GR Y
BR BR Z

address. However, the payload can be well received if
the interferer arrives after the AGC index freeze.

• ND BR: The interferer is too powerful for the receiver
to detect the access address and the payload cannot be
received well.

D. Effect of the forced AGC index on GR BR class

In Sec. IV-C, packets in class GR BR leads to AGC index
value selection not suitable to sustain interferer power level
because it arrives after the AGC index freeze. However, it
could have been well received if the AGC index had arrived
before the AGC index freeze.

Fig. 2. Recovered packet reception after AGC index forcing (packets
originally missed due to interferer arrival after AGC freeze, then AGC forced
to value got when interferer occurrence before wanted packet)

By forcing the AGC index of the After version packets of
this class during the preamble of the packet, we obtain a 61%
improvement on the packet subset (see fig. 2).

V. RESULT ANALYSIS OF THE PACKET CLASSIFICATION

ACCORDING TO THEIR AGC

A. Data collection

BLE packets are retrieved at six different interferer fre-
quency offsets: 12 MHz, 18 MHz, 20 MHz, 22 MHz, 37 MHz,
47 MHz. A packet is generated by setting the desired signal
and the blocker power level at the antenna in the range [-
100 dBm, 0 dBm] and [-120 dBm, 0 dBm] range with a
2dB steps. Two types of datasets were generated: packets
with the interferer arriving Before the AGC index freeze and
packets with the interferer arriving After the AGC index freeze.
Each packet reception scenario exists in two versions. Receiver
internal metrics showing the evolution of the reception quality
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are pre-processed to reduce the computation of the ML-
based algorithm. We collect data at three representatives time
intervals: at the beginning of the preamble, in the middle of the
payload and before the CRC. Therefore, the metrics collected
at these time intervals are the wideband and narrowband RSSI,
the SNR, the LQI. The AA Found and CRC status indicators,
which provide exclusive information for a packet, are stored
at the beginning and at the end of the packet reception,
respectively.

The dataset consists of 23954 packets, which exist in two
versions, i.e. 47908 packets in total. 7-fold cross-validation is
used to create balanced training and test data for each of the
fifteen training runs.

B. Result

Tab. III compares the accuracy of the four algorithms stud-
ied for each of the fifteen training groups. Bagged Tree, KNN
and Decision Tree have excellent results, with an accuracy of
96.6% ± 0.12%, 95.6% ± 0.117%, 95.2% ± 0.22% respec-
tively for each retraining. SVM score falls to 93.81% ± 0.21%.

TABLE III
ACCURACY OF THE TRAINED ALGORITHMS WITH STANDARD DEVIATION

(STD)

Bagged tree SVM Decision Tree KNN
Accuracy 96.6 % 93.81 % 95.2 % 95.6 %

STD ± 0.12 ± 0.21 ± 0.22 ± 0.117

C. Algorithms Precision

To evaluate the precision of the algorithms we choose to use
on one hand the Mean Square Error (MSE) (see Tab. IV) to
determine the mean error of the numerical label (0 to 11), and,
on the other hand, use the mode to evaluate the most frequent
error of the class X, Y, Z (see Tab. V). Tab. IV presents the
Mean Square Error (MSE) between the classification proposed
by the algorithm and the expected AGC index of the packet.
Bagged Tree shows the smaller errors with the most stability
with an MSE of 0.041 ± 0.004.

TABLE IV
MEAN SQUARE ERROR OF NUMERICAL CLASS WITH STANDARD

DEVIATION (STD)

Bagged tree SVM Decision Tree KNN
MSE 0.041 0.073 0.051 0.044
STD ± 0.004 ± 0.004 ± 0.005 ± 0.004

TABLE V
ERROR MODE

Bagged tree SVM Decision Tree KNN
Mode X Z Z Z Z
Mode Y X 11 X X
Mode Z X X X X

Figures 3, 4, 5 and 6 highlight the mean misclassification
rate matrix. Regarding the numerical class, the Bagged Tree
and SVM show a distribution of errors grouped around of the
main diagonal with a tendency to AGC index under-restrict
the AGC index for class 4 to 11. The Decision Tree is less
accurate with a wider error distribution. The KNN presents
errors grouped tightly around the main diagonal with errors
mainly in the range of ± 1.

Fig. 3. Confusion Matrix of Bagged Tree

Fig. 4. Confusion Matrix of Decision Tree

D. Discussion

This comparison shows that the classification of the received
packets by a BLE receiver according to their AGC index with
the recognition of their specific reception status is possible
with an accuracy of better than 90 %. BT, KNN and DT
show similar results in terms of accuracy. The comparison
of numerical MSEs confirms that Bagged Tree has the best
precision performance with an error of 0.041 i.e. the error of
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Fig. 5. Confusion Matrix of K nearest neighbour

Fig. 6. Confusion Matrix of Support Vector Machine

the label is mainly included between ±1, which are usually
sustained by the receiver.

Regarding the class X, Y and Z, according to the confusion
matrix, models perform well in X and mode error shows
that all models, except SVM, have the majority of their error
located in class X or Z. This confusion questions the interest of
distinguishing these three cases since they will be managed by
countermeasures other than AGC improvement. Nevertheless,
the proportion of samples Y and Z is unbalanced compared
to the other classes due to the low number of occurrences of
these cases in our data collection plan.

The current results show that Bagged Tree and KNN present
very similar performance, regarding the need of the minimum
complexity the best accuracy/complexity, it is the KNN that
shows the best overall performance.

The simulation environment is controlled, which explains
the high performance of the models. For the future, we
have planned to test our assumptions with more stringent

radio coexistence conditions. However, the current coverage
provides a good trend regarding classification capability.

VI. CONCLUSION

The Bluetooth Low Energy is threatened by high-power
interferers that cause an over-consumption and loss of quality
of service. We have identified new improvement axes by using
internal metrics characterising the signal quality (RSSI, SNR,
LQI) during packet reception. We has used ML algorithms to
classify tuples of wanted signal power, interferer power and
frequency offset by their optimal AGC index value and non-
ideal reception conditions. Among the four algorithm tested
Bagged tree has the best performance with an accuracy of
96.6 % ±0.12 % and KNN has shown the ratio perfor-
mance/complexity with an accuracy of 95.6 % ±0.117 %.

VII. FURTHER RESEARCH

This classification according to an optimal AGC is the
beginning of a broader work to design a new type of coun-
termeasure. The aim is to make the radio more resistant to
an interferer using a broadband protocol, by using only the
radio’s regular communication times.

Further developments will focus on predicting the optimal
AGC index value needed to guarantee reception of the next
packet, and extending our solution to other lightweight proto-
cols such as like Zigbee.
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