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Abstract—The inspection of roads is an essential aspect of
infrastructure maintenance in our country. Yet, conventional
inspection methods often entail significant time and financial
investments. Drones present an innovative and superior alter-
native for inspecting roads, offering swifter, safer, and more
cost-efficient solutions. In this paper, we devise and deploy a
low-cost framework for the inspection of roads using drones
and machine learning. In our approach, we employ both an
infrared (IR) camera in tandem with a high-resolution optical
camera, as relying solely on optical cameras proves inadequate.
While optical cameras excel in surface damage inspection of
bridges and roads, IR cameras often yield valuable insights into
the underlying structural issues. To enable autonomous drone
navigation and the capture of images of the road structure when
it identifies potential problems, our drone inspection system is
outfitted with a minicomputer running sophisticated artificial
intelligence (AI) algorithms. Leveraging these advanced Al algo-
rithms, the drone autonomously performs inspection procedures
without human intervention. The outcomes of these experiments
demonstrated the system’s capability to detect potholes with an
average accuracy of 84.6% using the visible light camera and
an impressive 95.1% using the IR camera.

Index Terms—Artificial intelligence, machine learning, bridge
and road inspection, drones.

I. INTRODUCTION

A developed country’s highway network spans thousands
of centerline kilometers, comprising asphalt, concrete, or
composite pavements that vary in age, condition, and per-
formance. To effectively manage these diverse road systems,
various maintenance programs have emerged. These pro-
grams aim to monitor ongoing performance, predict future
conditions, aid investment planning, and identify necessary
rehabilitation and maintenance measures. One such initiative
is the Long-Term Pavement Performance Program (LTPP)
established by the United States Department of Transporta-
tion. This active program focuses on comprehensive data
collection, storage, analysis, and product development for
both the United States and Canada [1]. Central to the LTPP is
the assessment of pavement surface conditions, emphasizing
the need for accurate measurements of distresses such as
cracks, potholes, and other critical indicators [2].

Presently, pavement image and video data gathered from
digital inspection vehicles undergo manual inspection by
technicians on computer screens to detect and evaluate de-
fects. However, this process is both time-consuming and
expensive, and the outcomes can be subjective, influenced
by the raters’ experience and perspectives [3]. To overcome
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these limitations, several research efforts have focused on
automating defect detection.

Related Work: Koch and Brilakis in [4], introduce an
automated method for detecting potholes in asphalt pavement
images. The process begins with segmenting the image into
defect and non-defect areas through histogram shape-based
thresholding. Morphological thinning and elliptic regression
are used to approximate the potential shape of a pothole.

Zhang et al. in [5], propose a road crack detection using
a deep convolutional neural network. The images are taken
with a smartphone and trained on the neural network. This
study does not utilize a drone or an infrared camera to
automate the process and enhance fault detection.

Azhar et al. in [6] examine various images from asphalt
pavement, focusing on potholes and non-pothole scenarios.
Utilizing the appearance and shape characteristics of pot-
holes, Histograms of Oriented Gradients (HOG) features are
calculated from the input images. These features are trained
and classified using a Naive Bayes classifier to distinguish
between pothole and non-pothole images. To pinpoint pothole
locations within the detected images, a normalized graph cut
segmentation method is applied.

Ouma and Hahn in [7] introduce a 2D vision-based method
for spotting potholes on urban asphalt roads. It combines
multiscale texture filtering with wavelet transform for texton
representation, integrating it into superpixel clustering using
the fuzzy c-means (FCM) algorithm. The process identi-
fies pavement defects and non-defects. To pinpoint pothole
boundaries, the method employs fine segmentation based
on morphological reconstruction, refining and outlining the
detected potholes.

Hassan ef al. in [8], utilize deep neural networks to cat-
egorize roads according to their level of degradation. Again
in this work, they do not employ a drone or an infrared (IR)
camera to automate the process and improve fault detection.

In all the aforementioned studies, advanced machine learn-
ing algorithms were either not investigated, or only one type
of camera, typically an optical camera, was employed, or the
system was not automated using drones. Additionally, these
studies that utilized drones often necessitated the presence of
a specialist to operate the drone. Furthermore, none of the
discussed studies offered a global positioning system (GPS)
-less navigation for drones.

In contrast, our drone inspection system is equipped with
a minicomputer that runs machine learning algorithms, en-
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abling autonomous drone navigation and on-the-fly image
capture of the road structure. Whenever it detects any dam-
age, it can save the location information of that damage.
Instead of relying on human operation, it can self-operate
and carry out the inspection process independently, thanks to
the advanced artificial intelligence (AI) algorithms we have
developed.

Our proposed research, as detailed below, stands poised
to significantly enhance future road inspection practices. In
this study, we develop a cutting-edge hardware and software
framework, rooted in Al, tailored for road inspections using
drones equipped with multiple sensors. Recognizing the
limitations of relying solely on cameras for inspections, we
have incorporated an IR camera in conjunction with a high-
resolution optical camera. Notably, the IR camera often pro-
vides more comprehensive insights into the interior structural
condition of a road, complementing the capabilities of optical
cameras primarily suited for surface damage assessment.

Therefore, we believe that the integration of an infrared
camera along with a visible camera can greatly enhance the
performance of fault detection on roads.

II. SYSTEM OVERVIEW

The Al-based road inspection system seamlessly integrates
advanced software, a machine learning neural network, and
hardware subsystems, all operating in harmony to fulfill its
designated task.

In the software subsystem, we leverage software devel-
opment kit (SDK) libraries to establish connections with
two distinct control setups. These libraries facilitate com-
munication between the drone’s flight controller and the
companion computer, enabling efficient preflight checks, in-
flight operations, and data transmission. Once the SDK li-
braries have successfully established communication between
the companion computer and the control setups, the drone’s
movement is initiated. The software’s initial step is to instruct
the drone to ascend to predefined global GPS waypoints.
While traversing these waypoints, the drone continuously
captures images of the road terrain below. These real-time
images are subjected to immediate analysis by the machine
learning algorithms. If faults or anomalies are detected, the
drone momentarily deviates from its waypoint path, descend-
ing in altitude to approach the identified fault area. Close-up
images of the fault are then captured by both cameras and
transmitted to the ground station for storage. Afterward, the
drone resumes its designated flight path, continuing to cap-
ture images. Upon reaching the final waypoint, the ongoing
mission is marked as complete, and the drone autonomously
returns to its launch waypoint.

The machine learning subsystem encompasses several es-
sential preflight processes. Initially, the model dataset is up-
loaded and consolidated to facilitate the training of the neural
network. Once the model undergoes its initial training phase,
it becomes operational for in-flight use, actively detecting
faults (e.g., cracks, patrols) in real-time images obtained by
the software subsystem.

III. DRONE FRAMEWORK DESIGN

Our system is constructed around a Hexacopter 6-axle
Aircraft Kit, featuring an HMF S550 Frame, PXI PX4

Fig. 1: The final drone prototype.

Flight Control, 920KV Motors, a GPS unit, and an AT9
Transmitter. The ultimate drone prototype, as displayed in
Fig. 1, encompasses all peripherals, including six propellers,
a GPS module equipped with a built-in compass, and a GPS
antenna mount, along with the PXI PX4 flight controller.

Our S550 Hexacopter achieves seamless wireless commu-
nication with the ground station through telemetry transmit-
ters and receivers. The Holybro 915 MHz radios were pre-
ferred over generic 5.8 GHz radios due to their longer com-
munication range, reduced bandwidth usage, lower power
consumption, and decreased susceptibility to interference
from other devices, in contrast to the 5.8 GHz radios.

The chosen radios are directly connected to the drone’s
flight controller, the Pixhawk. The Pixhawk boasts an in-
tuitive interface that empowers users to fine-tune settings,
configure parameters, and establish specific flight directives
for the Pixhawk to execute during flight operations.

Additionally, the drone is equipped with a companion
computer, specifically the Raspberry Pi 4, which plays a
central role in executing the project’s core functions.

IV. SOFTWARE ARCHITECTURE

Our system is predominantly constructed upon the ROS2
(Robot Operating System) system architecture. ROS is a
comprehensive collection of software libraries and tools
designed for the creation of robotic applications. These
libraries and algorithm implementations are at the forefront
of technology and are widely adopted in the industry. ROS
primarily employs a variation of the publisher-subscriber
model referred to as ‘nodes’ and ‘topics’. The ROS setup
incorporated into the project is segmented into three distinct
nodes running on the Raspberry Pi: the Imaging Node, Road
Nav Node, and Defect Classification Node.

Imaging Node: This node interfaces physical cameras
with the system, processing images via OpenCV and publish-
ing image topics in “sensor msg” format from an OpenCV
Mat type. It manages all image and video data from onboard
drone sensors, publishing “thermal st” and “visible light”
topics corresponding to thermal and visible light camera
feeds, collected through driver scripts and SDK libraries
within the Imaging Node.

Road Nav Node: This node handles motion planning and
data collection, subscribing to image topics to perform edge
detection for autonomous road navigation between predefined
GPS start and endpoints. It also conducts periodic data
collection, processing information from the drone’s Inertial
Measurement Unit (IMU) and location sensors. Subscribing
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to “imu pub” for IMU data, “global position” for GPS
coordinates, and ‘flagged” from the Defect Classification
Node for crack detection, the Road Nav Node merges this
data to control the drone’s movements.

Defect Classification Node: The Defect Classification
Node uses machine learning models to spot image defects
from subscribed image topics (“thermal st” and “visible
light”) published by the Imaging Node. It processes these
images through neural networks and scripts, publishing a
‘flagged’ topic containing all identified defect images.

The drone’s flight controller utilizes a square-root PID
controller, ensuring swift and accurate stabilization. This con-
figuration minimizes overcompensation and allows precise
tuning of PIDs, reducing errors and mid-flight oscillations.
ArduPilot software simplifies controller value adjustments,
enabling easy optimization for stable flight performance.

V. MACHINE LEARNING

Two parallel machine learning models were implemented
for road fault detection, each employing a distinct approach.
The first method involves the use of an infrared camera
in conjunction with a visible light camera to heighten the
likelihood of fault detection. This combination is advanta-
geous because the two cameras capture different types of
information. While both methods rely on visual inspection,
the infrared camera identifies variations in heat across the
roadway’s surface. Faults typically exhibit different temper-
atures compared to the surrounding asphalt, making them
stand out in the thermal images.

We have employed two distinct model types: a deep neural
network followed by a region-based convolutional neural
network (RCNN). The classification deep neural network
operates onboard the drone and is responsible for rapidly
analyzing images and categorizing them into predefined
groups. These models can classify an entire image into
specific categories but cannot localize and identify objects
within the image. In contrast, the region-based convolutional
neural network can perform tasks such as object localiza-
tion, identification, classification, and bounding within the
image itself. The classification deep neural networks excel
in expeditiously completing image analysis, allowing them
to conduct a preliminary assessment of photos and organize
data for the region-based convolutional neural network. This
prioritizes images classified as “faulty roadways” for in-depth
analysis.

The machine learning component of this project was
designed to operate both in conjunction with the drone and
independently. The creation of smaller classification models
served the initial purpose of organizing the photos captured
by the drone. These classification deep neural networks
were specifically designed to categorize the photos into two
distinct groups: “faulty roadways” or “acceptable roadways”.
The dataset comprising images captured through both IR
and visible cameras included approximately 300 instances
of “faulty roadways” and another 300 instances of “accept-
able roadways”. The “faulty roadways” images encompassed
various road issues such as potholes, manhole covers, and
extensively deteriorated roads in need of repair. The images
labeled as “acceptable roadways” depicted well-prepared
roads with minimal asphalt cracks. To increase the dataset

Fig. 2: Sample images of potholes and a manhole cover
gathered with the RGB (top) and thermal (bottom) cameras.

size fourfold, data augmentation techniques were employed,
resulting in 1200 images for each category within both types
of images. Additionally, a feature was integrated into the
model to flag and save photos classified as “faulty roadways,”
prioritizing them for subsequent analysis. Figure 2 displays
sample images of potholes and a manhole cover obtained
from the visible light camera and the thermal camera, which
serve as the training data for the neural network.

The Faster R-CNN models were responsible for analyzing
each captured photo, starting with those flagged as faulty.
These models were developed using MATLAB, chosen for
its extensive collection of toolboxes and comprehensive doc-
umentation for implementing deep learning models. Modi-
fications to the classification of deep neural networks were
carried out using the Deep Network Designer interface. The
region-based convolutional neural network was constructed
through MATLAB code, and it operates with images of
uniform dimensions. For the creation of MATLAB data
stores necessary for the region-based convolutional neural
network, MATLAB’s Image Labeler application was utilized
for annotation and dataset generation.

VI. GPS-LESS NAVIGATION USING ROAD EDGE
DETECTION

We investigated multiple algorithms aimed at guiding the
drone through streets for road inspection without relying on
GPS. These algorithms were intended to help the drone scan
and inspect pathways for defects, especially in areas like
street corners where GPS accuracy might be limited.

We utilized various computer vision algorithms in OpenCV
to detect and locate road edge lines in the camera frame. Our
approach centered on Canny edge detection, a multistage
algorithm identifying changes in color gradient intensity.
It uses non-maximum suppression to find local maxima in
gradient contrast pixels, followed by hysteresis thresholding
to determine edge pixels within a specified range.

Figure 3 provides a visual representation of Canny edge
detection applied to a roadway. The image on the left
represents the original frame, while the modified version is
displayed on the right.

The algorithm’s hysteresis thresholding offers adaptability
by setting thresholds based on each frame’s unique edge
spread, effectively identifying gradient variations in asphalt
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Fig. 3: Canny edge detection example on a roadway image
original (left) and modified (right).

Fig. 4: Hough transform performed on a roadway image
original and modified.

and road edges. To fortify road detection, we utilized the
Hough transform, detecting straight lines in images by rep-
resenting them as sine curves. Intersection points between
these curves define lines. Through user-defined thresholding,
we isolated lines exceeding a predefined length, achieving
accurate detection of painted road edges

Figure 4 provides a visual representation of the Hough
transform in action on a roadway. The image on the left
depicts the original frame, while the modified version is
displayed on the right.

We used color masking as an alternative to traditional edge
detection, particularly effective with blurry or light-colored
roadways. This method isolates defined hue, saturation, and
value (HSV)-based colors from the image frames, effectively
distinguishing painted road edges. Subsequently, we applied
the Hough transform to detect these isolated colors as lines,
further refining line detection accuracy.

Figure 5 provides a visual representation of the color
masking process along with the Hough transform in action
on a roadway. The left-side image shows the original frame,
the middle image displays the result after color masking and
the Hough transform, and the right-side image incorporates
the identified green lines for navigation.

The computer vision techniques we employed not only
helped detect road edge lines in image frames but also
provided critical x-axis and y-axis coordinates for the start
and end points of each detected line, relative to the image
frame’s size in pixels.

To ascertain if the drone had crossed a detected road edge
line during flight, we compared the x-coordinates of these
lines to the x-coordinate value of the vertical asymptote
positioned precisely in the middle of the frame. If the x-
coordinates of the lines exceeded or fell below the middle x-
coordinate, depending on the line’s starting side, it signified a
respective left or right edge. This edge information was then
relayed to a MAVROS program, a ROS package facilitating
drone communication.

The MAVROS program utilized this edge information to

Fig. 5: Color masking and Hough transform performed on a
roadway image.

Fig. 6: Detecting road edge lines for altitude control.

adjust the drone’s attitude control. If an edge was detected by
the computer vision system, the MAVROS program issued
commands to the drone to halt its movement along the
detected edge. This setup empowered the drone to achieve
fully autonomous flight, navigating both straight and curved
roadways without reliance on GPS. Figure 6 shows the
process of detecting road edge lines, which is used for
altitude control of the drone.

VII. DRONE PROTOTYPE EXPERIMENTATION

In the initial stages of development, the S550 Hexacopter
faced significant challenges in achieving successful flights.
These challenges were primarily attributed to the drone’s
tuning parameters and ESC, which caused desynchronization
from the flight controller’s initial configuration. To address
these issues, the drone underwent structural reconfigurations,
and the PID tuning was meticulously adjusted. These im-
provements were pivotal in enhancing the drone’s stability
and enabling it to execute consecutive successful flights.
Figure 7 illustrates the drone experimentation conducted on
a street in Fresno State.

Data collected during flights was securely transmitted
to the ground station via a Secure Shell (SSH) protocol.
This data served as the foundation for training and testing
our anomaly detection models, allowing us to assess their
effectiveness in identifying discrepancies within the scanned
roadway structure.

The development of the imaging, road navigation, and
defect classification node classes was facilitated through
the ROS2 application programming interface (API). These
classes were structured to inherit attributes from the parent
ROS2 node template class, which introduced layers of ab-
straction, streamlining the development process.

To interface effectively with the physical sensors, the
imaging node made use of two distinct libraries: OpenCV and
libseek-thermal. OpenCV, an open-source image processing
library, and libseek-thermal, an open-source device driver
library, played key roles in sensor management. For both
the visible light and infrared sensors, the approach involved
opening these devices as OpenCV VideoCapture objects.
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Fig. 7: Experiments conducted to detect faults in the road
using the prototype quadcopter drone.

This VideoCapture object is an integral part of OpenCV,
designed for capturing sequences of frames (video) from
various sources. Each frame extracted from the VideoCapture
object was represented as an OpenCV Mat type, essentially
a matrix-based representation of pixel data.

The VideoCapture objects were kept continuously open
throughout the node’s lifecycle, avoiding repeated opening
and closing for each frame. This optimization notably re-
duced computational load by eliminating the need to free
buffers for the constrained 9 Hz infrared speed. Devices were
opened in the class constructor and released in the destructor.

We achieved successful drone construction and calibration,
seamlessly integrating essential components into the system.
Both thermal and optical cameras were securely mounted on
the drone, and we developed robust software to ensure their
flawless operation.

Furthermore, the machine learning component of the
project excelled in constructing various classification deep
neural networks, as well as the necessary region-based convo-
lutional neural networks. These models exhibit an impressive
level of accuracy, as evidenced by the training dataset results
outlined in the machine learning experimental section below.

All models developed for this project showcased notable
levels of accuracy. 80% of the data set was used for training
and the rest for validation. The optical image deep neural net-
work achieved a commendable validation accuracy of 84.6%,
while its thermal imaging counterpart surpassed expectations
with a validation accuracy of 95.1%. The optical faster-
RCNN model demonstrated exceptional performance with a
mini-batch accuracy of 99.5%, and the thermal faster-RCNN
model closely followed with a mini-batch accuracy of 98.9%.
Figures 8 and 9 represent the training and validation results of
the classification deep neural network for optical and thermal
images, respectively.

VIII. CONCLUSION

In this work, we have introduced an Al-powered frame-
work for inspecting roads utilizing drone technology. Our
pioneering approach includes the development of GPS-
independent navigation algorithms, specifically designed for
road edge line detection. While our initial data collection
focused on roads, employing both visible light and thermal
infrared cameras, we successfully trained Machine Learning
models to revolutionize road inspection by autonomously
identifying areas in need of repair. Our experimental findings
highlight a remarkable defect detection accuracy of over
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95%. While this marks a significant achievement, our future
endeavors will extend this innovative approach to bridge
inspection, further advancing the field.
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