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Abstract—In this work, we propose a low-cost tree health cat-
egorization and localization scheme using drones and machine
learning. Crop data is collected and employed to inform agricul-
tural decisions, with the ultimate goal of enhancing production.
Our solution employs visual imaging obtained from unmanned
aerial vehicles (UAVs), commonly known as drones, for the
purpose of monitoring the well-being of fruit trees. A user
activates the drone from the ground station, initiating a “snake-
like” flight path through the orchard to capture images before
landing. Subsequently, our models process the data, triggering
an alert for any visually identified unhealthy trees. The system
then furnishes the farmer with precise locations of these afflicted
trees. Our artificial-intelligent (AI)-driven precision agriculture
technology is poised to significantly streamline the process and
reduce costs for farmers by swiftly identifying and categorizing
both unhealthy and marginally healthy trees in the orchard.
The proposed framework is a cost-effective solution employing
an off-the-shelf visible light camera. It operates on a physical
drone equipped with a Raspberry Pi 4 computer running in
the background, providing real-time tree classification data.
The experimental outcomes demonstrate an impressive average
validation accuracy of 92.67%.

Index Terms—Artificial intelligence, machine learning, preci-
sion farming, drones, tree health classification.

I. INTRODUCTION

Farmers and plantations often manage vast expanses of
land, a challenge exacerbated by the increasing global pop-
ulation. As these agricultural operations continue to expand,
the tasks of maintenance and crop monitoring become in-
creasingly daunting. Farms must address various crop mainte-
nance activities, including weeding, pest and disease control,
pruning, and field sanitation.

The initial and critical step in any maintenance regimen
is crop monitoring. Field workers must vigilantly observe
and identify potential issues that could hinder crop growth.
Integrating an efficient crop monitoring approach with data
analytics holds the potential to furnish farmers with compre-
hensive information for making informed decisions, thereby
reducing the need for extensive manual labor.

Data analysis and machine learning offer the prospect of
enabling farmers to make well-informed choices regarding
resource allocation and yield projections through predictive
models. The challenge at hand is the automation of the crop
monitoring process to swiftly identify potential issues in
fields or orchards, ultimately mitigating the associated costs
and labor resources.

Related Work: The majority of literature concerning pre-
cision agriculture systems involves computer-implemented
methods for generating graphical interface alerts based on
diverse field data. These systems are primarily designed to

tackle challenges such as detecting farm equipment malfunc-
tions and providing suggested courses of action [1]. Machine
learning played a central role in the formulation of these
recommendations, and Alveraz et al. [2], have outlined the
utilization of neural networks for creating artificial intelli-
gence data structures that encompass parameters like seed
selection and planting recommendations derived from crop
field data. Yaniv Maor in the realm of precision agriculture
has proposed innovative systems that extend beyond main-
tenance activities, including the use of drones for tasks like
pruning crop trees and harvesting fruits [3]. The use of drones
in data acquisition is not a novel concept [4], and there are
existing patents that have elaborated on employing LiDAR
point clouds, hyperspectral, and multispectral imaging for
conducting thorough visual analyses to assess plant health
and estimate future yields [5], [6]. Nonetheless, these systems
entail significant costs that may be prohibitive for a farmer.

Among the works examined, machine learning methods
have been highlighted as pivotal for generating recommen-
dations. However, the specific models to employ, along
with their associated training accuracy statistics, have not
been clearly defined. The precision agriculture systems un-
der review aim to address challenges like automating crop
maintenance tasks such as fruit harvesting and identifying
the causes of crop damage [1]–[3].

All of the proposed systems are better suited for larger
fields, where the expenses associated with their implemen-
tation could be justified due to the substantial land area.
Unfortunately, there were no cost analyses available for these
specific systems in agricultural applications, but it is evident
that the hardware requirements for these systems are not
practical for smaller-scale farms.

In the context of smaller-scale precision agriculture im-
plementations, opting for a monitoring solution over a
maintenance-focused one might appear to be a more fi-
nancially viable choice. We’ve observed that our relatively
cost-effective crop monitoring solution has found compara-
ble applications beyond the agricultural sector, particularly
in the use of machine learning for tree classification and
localization. In various instances, remote sensing techniques,
including LiDAR point cloud data and hyperspectral data
from spectrometers, have been harnessed to identify early
signs of tree diseases and classify stages of conditions like
pine wilt disease in forestry [7].

For our monitoring solution in targeted row crop fields,
LiDAR isn’t essential to distinguish individual crop plants
due to their arrangement. Cost-effective RGB optical imagery
reliably categorizes tree species for our specific application.

Similar projects have successfully employed solely RGB
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images for detecting invasive tree species, classifying various
tree species, and even in applications focused on detecting fir
and palm trees [8]–[11]. The use of aerial imagery for tree
classification is not a novel concept and has previously been
applied in forest and urban environments. However, we have
not encountered an agricultural application that leverages
deep learning and RGB optical imagery exclusively.

One distinctive aspect that sets our approach apart from
prior work involving RGB optical images and deep learning
is the utilization of classifications to generate informed
recommendations. Previous efforts mainly focused on iden-
tifying tree species. In our approach, we will compile clas-
sifications of crop tree health and the relative positions of
trees with similar health statuses to create priority groups.
Recommendations for areas requiring immediate attention
will be derived from these priority groups.

Maray et al. [12], present a scheme to classify coconut
tree diseases in a smart farming environment via artificial
intelligence. The Bayesian fuzzy clustering-based segmenta-
tion method is employed for the detection of the affected
leaf regions besides CapsNet as a feature extractor. For the
detection of disease, they utilized Harris Hawks optimization
with grated recurrent unit models.

Sandric et al. [13], develop a framework based on
consumer-based UAVs and deep learning techniques for
orchard tree segmentation and health assessment. Tree health
assessment is based on the use of vegetation indices. Two
vegetation indices, including visible atmospherically resistant
index (VARI) and green leaf index (GLI) were used with
the standard score (which is also known as z-score) for tree
health assessment.

In contrast to previous health assessment techniques that
rely on costly multi-spectral imaging cameras and are built
upon vegetation indices, our approach is grounded in the use
of an affordable off-the-shelf RGB camera to classify tree
conditions as “healthy,” “slightly unhealthy,” and “dying.”

Our study encompasses two key objectives, each represent-
ing a significant milestone. Firstly, we aim to automate the
flight path of an unmanned aerial vehicle (UAV) to enable
precise image capture of a crop field or orchard. Subse-
quently, the captured images will undergo manual processing
to trim and categorize them based on crop health aspects.

The second milestone involves training machine learning
models using categorized images to create a predictive model
for large volumes of raw image data. Multiple models are
trained using the same dataset, prioritizing classification
accuracy. Their performance is compared based on predefined
metrics for analysis.

We have successfully designed, developed, and conducted
real-world experiments involving the system across multiple
orchards. Our efforts have yielded an impressive validation
accuracy of 92.67% through the utilization of a deep learning
algorithm in our multi-sensor data analysis. This algorithm
proficiently classifies individual tree health into three distinct
categories and subsequently shares this valuable information
with the orchard owner.

The rest of the paper is organized as follows. In Section II,
we describe the system overview, followed by the UAV pro-
totype development in Section III, and the drone navigation
in III. After illustrating experimentation results in Section IV,
we draw the main conclusions in Section VI.

II. SYSTEM OVERVIEW
A. System Design

Our system is purpose-built to furnish orchard owners with
regularly updated health assessments for all the trees in their
fields, enabling them to optimize resource allocation and
stay informed about evolving crop conditions. It employs a
machine learning framework in conjunction with an RGB
camera mounted on an autonomous UAV, facilitating reason-
ably accurate health evaluations for various tree species.

The utilization of an RGB camera for this purpose presents
notable advantages by obviating the necessity for invasive and
stationary sensors to be scattered throughout the field. This
approach allows for the monitoring of a larger number of
trees at a faster pace and with reduced expenses.

The project is structured around two primary components:
data acquisition and machine learning model training. For
data acquisition, we have developed Python flight scripts that
are integrated into a Raspberry Pi mounted on a drone. This
Raspberry Pi communicates with the drone’s flight controller
using the MAVlink Protocol, enabling it to autonomously
navigate the drone along a predefined flight path over an
orchard to capture images.

Subsequently, the captured images are categorized into
three distinct health classifications: “healthy,” “slightly un-
healthy,” and “dying.” These labels are then extracted and
stored as individual JPEG files. These labeled images serve
as the dataset for training, validating, and testing our convo-
lutional neural network (CNN).

B. Deep Convolutional Neural Network Design
There are several types of CNNs, including Inception-V3,

ResNet-50, and VGGNet. For our project, we’ve chosen to
implement ResNet-50 as one of the models. This choice was
based on a comprehensive performance comparison between
VGGNet and ResNet-50.

When comparing these models, it’s worth noting that
VGG-16 operates at a rate of 15.3 billion Floating Point
Operations Per Second (FLOPS), while ResNet-152 operates
at approximately 11.3 billion FLOPS. ResNet-152 exhibits
a lower FLOPS rate compared to VGG-16 despite having a
greater network depth. This discrepancy can be attributed to
the unique design of the ResNet architecture.

In traditional CNNs adding more layers often leads to
improved computational efficiency, but only up to a certain
point. Beyond that point, adding layers can result in accu-
racy degradation due to issues such as vanishing gradients
and optimization challenges. ResNet addresses the vanishing
gradient problem by introducing what are known as residual
blocks. These blocks enable the neural network to create
skip connections, effectively incorporating the concept of the
identity function. This function ensures that higher layers
do not perform worse than lower ones. Consequently, this
approach aims to reduce errors and enhance the overall
efficiency of the neural network.

C. Data Flow
The effectiveness of the proposed data flow primarily

hinges on data acquisition. In the initial flight tests, a quad-
copter drone is deployed, controlled by a Raspberry Pi 4
running flight scripts to navigate within a defined area over
an orchard. To ensure proper data acquisition, unit testing
is conducted to determine the drone’s load-bearing capacity
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Fig. 1: Top down image showing an unhealthy tree (right)
and a healthy tree (left).

and the optimal flight speed required for capturing coherent
images. RGB images are captured using an onboard optical
camera and stored on the Raspberry Pi’s memory card. This
process yields a diverse set of images, all of which are stored
in a designated data repository.

These images serve as the foundation for training a CNN.
Additionally, features necessary for our classification tasks
are extracted from both the captured images and an open-
source database containing a wider range of tree images
with varying health conditions. Figure 1 provides a visual
example of the desired image types, which undergo cropping
and labeling to facilitate training of the CNN algorithm. The
labeled images are fed into the neural network, enabling
feature extraction for subsequent categorization during the
model training phase. Following thorough training of the
neural network using a sufficient volume of image data, the
network is ready for implementation.

D. Data Collection and Processing
The data collection relied on a combination of private

data obtained from Fresno State and our own collected
dataset. This comprehensive dataset comprised 534 images,
all captured during drone flights at an altitude of 30 meters.
The images primarily depicted orange trees arranged in rows
and had an original resolution of 4608 × 3456 pixels. Each
image was taken from a top-down, bird’s eye perspective.
While we had 534 images in total, further annotation with
bounding boxes was necessary to isolate individual orchard
trees effectively.

The cropping and labeling of these images constituted a
substantial portion of our data collection efforts. However,
this step was crucial for training our model effectively.
Following the acquisition of the entire dataset at a 30-
meter altitude, we developed a Python script to crop and
store images of individual trees. Subsequently, these images
were organized into local folders, categorized as “healthy”,
“slightly unhealthy”, or “dying”.” The “healthy” category
contained 2,393 images, the “slightly unhealthy” category
comprised 1,814 images, and the “dying” category included
500 images. This resulted in a total of 4,707 individual
tree images. The distribution among the three categories was
approximately 5:4:1, representing healthy, slightly unhealthy,
and dying trees, respectively. An example of the raw data is
illustrated in Fig. 2 taken at 30 meters altitude.

These machine learning training results revealed that the
uneven distribution of data had a significant adverse impact
on our model. The substantial bias towards healthy trees
potentially skewed the model’s outcomes in favor of the
healthy tree classification. To rectify this imbalanced data
distribution, we employed data augmentation techniques to

Fig. 2: Sample image taken by Arducam camera.

Fig. 3: Drone assembly.

augment the dataset for the “slightly unhealthy” and “dying”
categories, aligning them with the dataset for “healthy” trees.

III. UAV PROTOTYPE DEVELOPMENT AND TESTING

We utilized a quadcopter drone kit equipped with various
components, including an L3GD20 3-axis digital gyroscope,
MPU6000 6-axis accelerometer, MS5611 precision barome-
ter interface, an 11.1V 4400MAH 30C 3S1P battery, 4 pieces
of 30A Brushless ESC Speed Controllers, and 2 pairs of
DJI 920KV CW CCW Brushless Motors. Additionally, we
incorporated a camera gimbal with an Arducam day and night
vision camera.

The assembly of the drone, complete with the gimbal
camera mount, is depicted in Fig. 3. To ensure the proper
functioning of all brushless and servo motors, thorough
testing and verification were conducted using the AT9S Pro
RadioLink Controller.

We conducted unit testing to confirm the functionality
of all hardware components. Custom-fitted propeller guards
were installed to mitigate the risk of catastrophic drone
crashes. Furthermore, we made adjustments to the orienta-
tions of both the Raspberry Pi and Pixhawk flight controller
to accommodate the inclusion of anti-vibration padding.

After implementing the modifications to the drone assem-
bly, we affixed and recalibrated the gimbal mount. Since our
project entailed capturing top-down images autonomously,
there was no need for the pilot to manually adjust the camera
angles using the AT9S radio controller.

The calibration of the gimbal mount was carried out
using the BaseCam Electronics Camera Calibration System
version 2.2 b2. For the roll axis motor and pitch axis motor,
we determined the appropriate values for the proportional,
integral, derivative, and power (PID and power) settings, as
depicted in Fig. 4.

Initially, we set the PID values for the pitch motor to 5.00,
0.00, and 10.00, respectively. Subsequently, we increased
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Fig. 4: Gimbal camera mount tuning settings.

Fig. 5: SITL flight simulations over potential sites.

the values for its corresponding power incrementally by 15
until the motor demonstrated resistance to external stimuli.
Next, we raised the proportional values incrementally un-
til the accelerometer and gyroscope sensors for that axis
exhibited smoother responses after the external stimulus.
Simultaneously, we adjusted the derivative value to dampen
oscillations. The integral value, typically quite small, was
increased by 0.01 and controlled the speed at which the
gimbal returned to its preset position.

With the hardware properly configured, calibrated, and
fine-tuned, we acquired various coordinates essential for
planning drone flight missions. These coordinates played a
pivotal role in guiding the drone’s flight path.

Initially, we conducted flight simulations using Mission
Planner and Software in the Loop (SITL), as illustrated
in Fig. 5. These simulations served as a foundational step
in ensuring the safety of autonomous flights. The drone
successfully executed basic Python scripts for actions such
as arming, takeoff, hovering, landing, and a simple return to
home for coordinated flight path control.

One of the challenges we faced was the requirement for
network connectivity at field sites. While it is indeed feasible
to initiate flight scripts upon Raspberry Pi startup, establish-
ing a Secure Shell protocol (SSH) network connection to the
Raspberry Pi was essential for monitoring purposes and to
facilitate real-time customization of flight scripting as needed
in the field.

We also explored the Raspberry Pi’s potential for deep

learning applications. While it can run TensorFlow Lite,
we encountered limitations related to its computing power.
Specifically, the Raspberry Pi lacks a dedicated GPU, making
it insufficient for simultaneously training models while exe-
cuting flight scripts. We had anticipated this challenge and
established that all deep learning training and computations
must be carried out on an external computer.

IV. UAV PROTOTYPE FIELD EXPERIMENTATION

Deploying the drone in the fields involved a well-defined
sequence of steps. To execute this process, Python scripts
were developed and loaded onto the onboard Raspberry
Pi, enabling the drone to operate with just two sets of
geographical coordinates. These coordinates corresponded to
the starting point of the targeted orchard tree row and its
endpoint, as shown in Fig. 5. Subsequent rows were deter-
mined by incrementing or decrementing values of 0.0002 for
longitude and 0.00015 for latitude. It’s important to note that
these values could be adjusted based on flight altitude, speed,
and desired camera coverage.

The drone’s flight parameters were configured to maintain
a relative ground speed of 2 meters per second while flying at
an altitude of 30 meters over the orchards. These specific val-
ues were chosen during testing to achieve an estimated 80%
overlap in the captured photos. This deliberate overlap was
designed with future project phases in mind, which involve
digitally stitching all the images together and performing
object detection on the resulting orthophoto.

Furthermore, additional configurations included the imple-
mentation of fail-safes and monitoring mechanisms. These
included terminal notifications in the event of GPS discon-
nection or when the battery level reached critical levels.
Additionally, real-time monitoring of altitude and speed was
enabled. Emergency landing procedures were programmed
to execute automatically if GPS connectivity was lost or if
the battery reached a critical level. In accordance with FAA
regulations and laws, a manual controller was continuously
connected to the drone, providing a means for manual
override of flight controls if deemed necessary.

The camera settings were adjusted to capture a total of
40 images for each row, both over the orchards at Fresno
State and those in Sanger belonging to an acquaintance. In
total, we acquired 320 images that were neither cropped nor
labeled, alongside other data collected from Fresno State.
Figure 6 illustrates the drone experimentation conducted in
the orange tree orchard at Fresno State.

Fig. 6: Experimentation in the orange tree orchard at Fresno
State.
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Localization data is gathered using the drone’s GPS and
timestamps linked to image capture. To deploy, a network
connection is set up between the drone’s Pi and a laptop. This
connection allows the operator to SSH into the Raspberry Pi,
execute flight scripts, monitor terminal outputs, and smoothly
transfer images from the Pi to the laptop using SCP.

V. PERFORMANCE RESULTS FOR RGB CAMERA

The dataset of aerial images of orchard trees was labeled
using LabelImg, which is a widely used labeling software in
the machine learning community.

To assess the data quality, we developed an image cat-
egorization model to classify our labeled images. Initially,
we extracted cropped images for each labeled object in a
given image using a dedicated Python script. Subsequently,
these extracted objects were organized into different folders
according to their respective classifications. This process
resulted in over 1,000 labeled trees for training purposes.

We used transfer learning on a ResNet-50 model in Matlab
for classification training with a reduced dataset. This step
ensured the accuracy of manual labeling before moving to
object detection training in TensorFlow. Assessing classifica-
tion independently is crucial as it influences object detection,
validating the labeled images before developing the detection
model. The training progress results are illustrated in Fig. 7.
The model’s parameters included the use of stochastic gra-
dient descent with momentum for optimization. The specific
settings were as follows: a momentum value of 0.9, an initial
learning rate of 0.01, a maximum of 20 epochs, and a vali-
dation patience of 4 epochs. This classification training, with
these parameters, achieved an average validation accuracy of
92.67%.

The confusion matrix depicted in Figure 8 reveals that
the category where the most misclassifications occurred was
“slightly unhealthy” trees. This pattern was consistent across
multiple training sessions. The figure illustrates that trees cat-
egorized as “slightly unhealthy” are frequently misclassified
as “healthy.”

VI. CONCLUSION

In this work, we have created an affordable framework
for autonomously categorizing the health of orchard trees,
specifically designed for small-scale farmers. Our system
seamlessly integrates a drone, a visible camera, a mini-
computer, and state-of-the-art machine learning algorithms
to accurately categorize and precisely determine the health
status of trees in an orchard. Localization data is obtained

Fig. 7: Validation accuracy and loss plot for the RGB camera.

Fig. 8: Confusion matrix classification results.

by using the drone’s GPS and timestamping image captures.
We conducted extensive training and field experiments at
Fresno State and Sanger farms, and the results demonstrate
the system’s ability to detect and classify tree health with an
impressive average validation accuracy of 92.67%.
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