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Abstract— Sensors generate a huge amount of data that need 

to be transferred to a computing device for processing. Such 

large data transfer takes time and consumes energy. This paper 

presents a new sensing and computing architecture, referred to 

as MLIS (Machine Learning in Sensors). MLIS allows a part of 

machine learning to be done on sensor board thereby 

dramatically reducing the amount of data transferred to the 

computing device and hence improving overall system 

performance and energy efficiency. Using an energy-based 

probabilistic graphical model, RBM (Restricted Boltzmann 

Machine), we built a new ADAS (Advanced Driver-Assistance 

System) computing platform for autonomous driving with 

phased-array-radar as sensors. A working prototype has been 

built to provide proof of concept for our new architecture. The 

prototype is implemented using a TI’s mmWave (millimeter 

Wave) radar board and a Vivado HLS implementation of the 

RBM on the Xilinx xc7z020-clg400-1 device. Extensive 

experiments have been carried out using the prototype on 

realistic scenes on our campus. Experimental results have 

shown that the proposed architecture can reduce the data to be 

transferred by a factor of 8 while maintaining 98% accuracy. 

Based on the experimental settings, we present two case studies 

that have shown a remarkable reduction in collision probability 

if applying the new architecture to autonomous vehicles. 

Keywords—In-sensor computing, computer architecture, 

mmWave radar, deep learning, object detection and identification 

I. INTRODUCTION  

In today’s digital world, sensors generate a huge amount 

of data in a variety of applications. This huge amount of data 

is generally transferred to the DRAM of computing systems 

for processing through networks or direct connections. 

Transferring such a huge amount of data consumes energy and 

results in long transfer delays. In real-time applications, 

especially in mission-critical real-time applications such as 

autonomous vehicles, any delay over the hard deadline 

implies a life and death situation. Therefore, minimizing data 

transfer and hence latency is extremely important. 

Internal communication and computing in an autonomous 

vehicle should be designed to provide fault tolerance, energy 

efficiency, determinism, high bandwidth, and flexibility [1]. 

End-to-end latency and communication overhead play a 

critical role to ensure data consistency and temporal 

determinism across functional cause-effect chains [2], [3].  

This paper presents a new sensing, communication, and 

computing architecture for autonomous vehicles. The new 

architecture, referred to as MLIS (Machine Learning in 

Sensors), leverages an energy-based generative model, RBM 

(Restricted Boltzmann Machine). MLIS involves three major 

steps: First, sensed raw data go through the first layers of 

RBM as a "generate phase" on the sensor board. Second, the 

outputs of the hidden layer units of RBM are transmitted to 

the central ADAS computer. Third, ADAS computer carries 

out the phase of 1-step Gibbs sampling as the "reconstruct 

phase”. Because of in-sensor computing of the generate phase, 

the data transferred from the sensor board to the DRAM of the 

central ADAS computer is reduced, giving rise to dramatically 

improved performance and energy efficiency of MLIS. 

After establishing the accuracy of MLIS, we built a 
working prototype using Texas Instruments AWR1243 
FMCW mmWave radar board and Xilinx xc7z020-clg400-1 
device. Extensive experiments have been carried out using our 
prototype MLIS on practical scenes on our campus for object 
detection and decision making process. Experimental results 
have shown that MLIS yielded a reconstruction accuracy of 
98% accuracy, dimensionality reduction of a factor of 8 and 
reduced the point-to-point data transfer latency by a factor of 
6. To demonstrate how such latency reduction helps improve 
collision avoidance in autonomous vehicle applications, two 
case studies were performed using our prototype MLIS to 
show a dramatic reduction in collision probabilities. 

This paper makes the following contributions: 

1) A new in-sensor computing architecture is proposed 

on a radar sensor board that implements RBM to-

gether with the ADAS computer. 

2) A two-phase 1-step Gibbs sampling computation 

framework consisting of generate phase and recon-

struct phase is presented. 

3) Extensive experiments have been conducted to 

demonstrate the feasibility and performance of 

MLIS. Numerical results have shown up to 8 times 

reduction in data transfers between the sensor board 

and central computer with a reconstruction accuracy 

of 98%. 

4) Braking distance gain due to latency reduction is 

shown to be significant when implementing the gen-

erate phase of the MLIS on an FPGA. 

5) Our case studies show that the probability of colli-

sion is reduced dramatically with the new MLIS ar-

chitecture. 

The paper is organized as follows. Next section presents 
the basic architecture of MLIS. Section III presents the design 
of Restricted Boltzmann Machine (RBM) model followed by 
experimental results in Section IV. We discuss related work 
in Section V and conclude the paper in Section VI. 
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II. SYSTEM ARCHITECTURE 

We propose a new architecture for I/Q data reduction and 
reconstruction as shown in Fig. 1. The left-hand side of the 
diagram represents the in-sensor computing platform 
consisting of the radar sensor and the FPGA board, while the 
right-hand side of the diagram represents the ADAS 
computing platform. The implementation of MLIS was split 
into two distinct phases: Generate and Reconstruct phases as 
shown in Fig. 2. Later, we will refer to this model as rtl+sw 
based MLIS since MLIS generate phase is implemented with 
RTL abstraction model and reconstruct phase is implemented 
with a software model. 

 

Fig. 2 The Generate and Reconstruct Phases of MLIS. 

The generate and reconstruct phase computations are 
performed using the following equations, respectively. 

 ℎ = 𝑣𝑇𝑊 + 𝑏 (1) 

 𝑣 = ℎ𝑇𝑊𝑇 + 𝑎 (2) 

where 𝑏 is the hidden layer units bias vector, 𝑎 is the visible 
layer units bias vector, 𝑊 is the connection weights between 
the visible and hidden layer units, 𝑣  and ℎ  are visible and 
hidden layer unit activations, respectively. 

III. RESULTS AND DISCUSSIONS 

A. I/Q Data Reconstruction Accuracy 

Fig. 3 and Fig. 4 shows sample plots of true and 
reconstructed I and Q code data reconstructed by the proposed 
MLIS architecture, respectively. The original true values are 
plotted using solid blue lines, the sw based reconstructed data 
are plotted using dashed red lines and the rtl+sw based 
reconstructed data are plotted using solid green lines. 

To quantify the accuracy assessment, we use Normalized 
Euclidean Distance (NED) between the two time-series data: 
reconstructed and true I/Q codes. TABLE I shows the 
measured statistics for sw and rtl+sw MLIS architectures with 
different sizes of visible and hidden layer units (v,h). As seen 

from TABLE I, rtl+sw based MLIS with (512, 64) 
configuration provides a data reduction factor of 8 with 
98.03% accuracy for I code data and 95.7% accuracy for Q 
code data. For (256, 64) configuration, MLIS provides a data 
reduction factor of 4 with 98.3% accuracy for I code data and 
94.1% accuracy for Q code data. 

TABLE I 1-NED ACCURACY STATISTICS FOR SELECTED MLIS ARCHITECTURE SIZES 

  Accuracy Statistics (1-NED)% 

(v,h) Type I Codes Q Codes 

(512,256) 
sw 98.1% 97.2% 

rtl+sw 96.5% 95.3% 

(512,128) 
sw 98.1% 97.4% 

rtl+sw 97.8% 96.6% 

(512,64) 
sw 98.4% 96.6% 

rtl+sw 98.0% 95.7% 

(512_32) 
sw 96.7% 94.4% 

rtl+sw 96.2% 95.0% 

(256,128) 
sw 98.4% 97.1% 

rtl+sw 98.0% 95.2% 

(256,64) 
sw 98.4% 95.7% 

rtl+sw 98.3% 94.1% 

B. Data Transfer Latency 

In our experiments, the total amount of data transferred 
over Ethernet from the data capture board, DCA1000EVM, to 
the ADAS computer can be computed by multiplying the 
ADC sample size, loop count, frame count, bit length, LVDS 
lane count, and channel count. Therefore, transfer latency is 
given by the following equation: 

 𝑇 =

ADC Sample Size ∗ Loop Count ∗ Frame Count ∗
Bit Length ∗  Lane Count ∗ Channel Count

Bandwidth
 (3) 

TABLE II shows the comparison in data transfer latencies 
for different ADC sample size configurations. The first two 
columns correspond to the original configuration with ADC 
sample sizes of 512 and 256, respectively. The last three 
columns correspond to the case where MLIS is deployed to 
reduce the dimensionality of ADC sample size to 128, 64, and 
32, respectively. 

TABLE II DATA TRANSFER LATENCIES FOR DIFFERENT ADC SAMPLE SIZE 

CASES 

  Original MLIS 

ADC Sample Size 512 256 128 64 32 

Loop Count 128 

Frame Count 10 

Bit Length 16 22 

Lane Count 4 

Channel Count (I/Q) 2 

BW (Mbps) 600 

Tr. Latency (ms) 140 70 48 24 12 

 

Fig. 1 Proposed Architecture for I/Q Data Reduction and Reconstruction. 
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The bit length used for I/Q samples is 16-bit in the original 
case and 22-bit in the MLIS case with the FPGA 
implementation since we use ap_fixed<22,16> data format on 
RTL design. The average data transfer rate between the data 
capture board, DCA1000EVM, and ADAS computer is 600 
Mbps. Each ADC sample is represented by a complex data 
format, consisting of a real (I code) and imaginary part (Q 
code) and each LVDS lane captures the complex data samples 
per receiver antenna. The AWS1243 radar board has 4 LVDS 
lanes and each lane receives I and Q codes, thus the channel 
count is 2. As shown in TABLE II, the achieved latency 
reduction (speedup) ranges from 46% (70/48) up to an order 
of magnitude (140/12). 

C. The Model Processing Latencies 

The total end-to-end data reduction and reconstruction 
latency is the sum of data transfer latency and model 
processing latency. TABLE III shows the model processing 
latencies of the architecture on the FPGA board (Vivado HLS 
FPGA) and ADAS CPU, respectively. The model processing 
latencies on the FPGA board (Vivado HLS FPGA) takes in 
the range of nanoseconds while the processing time on the 
ADAS CPU is on average 17 milliseconds as shown in 
TABLE III. TABLE IV shows the reduction in total latency 
including the latency of transferring the reduced radar data 
from the FPGA board to the ADAS computer and the latency 
of model processing. 

D. Probabilistic Analysis of Collisions 

The Collision Avoidance System (CAS) and Automated 
Emergency Braking System (AEBS) are the crucial functions 
of ADAS applications. The probability of non-collision with 

an object can be described as the probability of the braking 
distance being less than the object distance. We assume that 
the braking distance has a variance due to different factors 
such as tire tread, braking mechanics condition etc. The 
probability of collision can be expressed as 

 𝑃(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛) = 1 − 𝑃(𝒹𝑏 < 𝒹𝑜  | 𝒱 = 𝓋) (4) 

where 𝑑𝑏and 𝑑𝑜 are braking and object distance, respectively. 
𝓋 is the vehicle speed. The mean value of braking distance is 
given by the following equation [4]. 

 µ𝑏𝑑 =
𝑣2

2µ𝑔
 (5) 

where 𝑣  (𝑚/𝑠)  is the velocity, µ  is friction coefficient, 
𝑔 (𝑚/𝑠2)  is the acceleration due to gravity. Then the 
deceleration is given by 

 𝑎 = −µ𝑔. (6) 

TABLE III. RTL AND SW MODEL EXECUTION LATENCIES ON HLS AND 

ADAS CPU 

ADC 

Sample 

Size 

Reduced 

Size 

rtl model absolute 

processing latency(ns) 

Vivado HLS 

sw model average 

processing la-

tency(ms) 

ADAS CPU  

256 32 28.567 17 

256 16 1.430 17 

128 32 0.87 17 

128 16 0.78 17 

TABLE IV. DATA TRANSFER AND PROCESSING LATENCY REDUCTION 

 Original/Reduced Data Sample Size 
 256/32 256/16 128/32 128/16 

Data Transfer Latency Reduction (ms) 58 64 23 29 

Processing Latency Reduction (ms) 17 17 17 17 

Total Latency Reduction (ms) 75 81 40 46 

(a)  (a)  

(b)  (b)  

(c)  (c)  

(d)  (d)  

Fig. 3 True and reconstructed (sw and rtl+sw) I codes 

with ADC sample sizes of (a)512 (b)256 (c)128 (d)64 

Fig. 4 True and reconstructed (sw and rtl+sw) Q codes 

with ADC sample sizes of (a)512 (b)256 (c)128 (d)64 

 

2024 Workshop on Computing, Networking and Communications (CNC)

293



4 

 

E. Case Studies for Collision Avoidance 

We present two different collision scenarios where AEBS 
is engaged immediately to prevent any collision. We use the 
deceleration profiles given in TABLE V for the two scenarios. 
Braking distances were computed by using the formula given 
in [4]. 

TABLE V DECELERATION PROFILES FOR TWO CASES 

Case I II 

Deceleration (m/s²) -8.83 

Starting Velocity (kph) 50 70 

Final Velocity (kph) 0 10 

Condition 
Dry 

roadway 

Dry 

roadway 

Braking Distance (m) 11 21 

Case I: Collision Avoidance at Pedestrian Crossing: 

Let us consider the scenario depicted in Fig. 5 in which a 
car is cruising at a certain speed, while a pedestrian emerges 
suddenly from the front of a minivan to cross the street. Since 
the pedestrian is occluded by the minivan, the driver of the car 
is not capable of realizing the presence of the pedestrian in 
front of the minivan. This may lead to a serious collision with 
the pedestrian that requires AEBS to be engaged immediately 
to prevent an imminent collision with the pedestrian. If the car 
is cruising at a speed of 50 kph and if the deployed MLIS is 
512/64, then the distance gained is 1.8 meters. As soon as the 
car detects the pedestrian on its cruise way, the ADAS will 
engage the AEBS to stop the car. 

 

Fig. 5 Case I: AEBS with Pedestrian Crossing Scenario 

After AEBS is engaged, the car will decelerate and stop 
after 11 m preventing any collision. The car would have 
traveled 1.8 meters farther wwithout MLIS, causing a 
collision. 

   
(a) (b) 

Fig. 6 Case I: Collision Probability with and w/o MLIS (a) for different car 

speeds. (b) for different pedestrian distances while cruising at 50 kph  

Using our probability model above and assuming a 
standard deviation of 15% of its mean, Fig. 6 (a) shows the 
probability of collision with and without MLIS for different 

speeds when the pedestrian is 12 meters away from the car 
when detected by the radar sensor board. As seen from Fig. 6 
(a), the collision probability is lower with MLIS than that 
without MLIS for the same car speed. Fig. 6 (b) shows the 
probability of collision with and without MLIS for different 
pedestrian distances while the vehicle cruises at 50 kph. 

Case II: Collision Avoidance with a Leading Car: 

In this scenario, a car is cruising at the speed of 70 kph 
behind an SUV. The driver of the SUV makes a sudden brake 
to avoid a collision with an object in front of it. The car behind 
the SUV detects its rapid deceleration and engages the FCW 
system to alert the driver of the hazard. After the FCW 
engagement, the driver of the car starts braking until the car is 
distanced securely from the decelerating SUV. This scenario 
is depicted in Fig. 7. The MLIS with 512/64 configuration 
helps gain 2.6 meters of distance, greatly reduced the chance 
of collision. Fig. 8 (a) shows the probability of collision with 
and without MLIS for different speeds when the leading SUV 
is distanced at 21 meters away from the car when detected by 
the radar sensor board. As seen in Fig. 8 (a), the probability of 
collision is substantially lower with MLIS than that without 
MLIS for the same car speed. As the speed increases the 
probability of collision increases as expected. Similar 
observations are shown in Fig. 8 (b) for different leading SUV 
distances while the vehicle cruises at 70 kph. 

 

Fig. 7 Case II: Forward Collision Warning Scenario 

  
(a) (b) 

Fig. 8 Case II: Collision Probability with and w/o MLIS (a) for different 

car speeds. (b for different leading SUV distances while cruising at 70 kph. 

IV. RELATED WORK 

The major challenge with edge computing is the limited 
resources available on the edge devices and a large amount of 
sensed raw data to be transferred to the main computer for 
further processing [5], [6]. Any latency may become a major 
bottleneck in real-time applications which have hard real-time 
computation requirements [7]. High Correlation Filter, 
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Principal Component Analysis, General Discriminant 
Analysis etc. are among the techniques used for the 
dimensionality reduction [8]. Vanilla Autoencoders and 
Convolutional Autoencoders are commonly used in deep 
neural networks to remove noise and redundant information 
in high-dimensional data [9]. RBM has captured researchers’ 
interest and many researchers produced hardware designs of 
the RBM model on FPGAs [10], [11]. The field of time series 
forecasting has received significant interest in academia and 
has a wide range of applications in the areas of energy, 
communication, business, finance, health, and sports [12], 
[13], [14], [15], [16], [17]. 

Our work in this paper differs from the studies discussed 
above in many substantial ways. First, our work concentrates 
on having a portion of machine learning computations on the 
radar sensor board to minimize necessary data to be 
transferred from the radar sensor board to the computing 
device. Secondly, to reconstruct the approximated data by 
applying 1-step Gibbs sampling, we implemented the RBM 
model on the FPGA and its reverse symmetric model on 
computing device. Third, we carried out extensive 
experiments to demonstrate the advantages of MLIS in a real-
time application: ADAS system in autonomous vehicles. 
Furthermore, a probabilistic collision avoidance model 
showed that the probability of collision decreases dramatically 
with our MLIS architecture. 

V. CONCLUSIONS 

We introduced a novel in-sensor machine learning system, 
MLIS,  applicable to ADAS in autonomous vehicles. The idea 
is to reduce the amount of data transferred from the sensor 
board to the main computing platform by performing machine 
learning computations on the sensor board. The new 
architecture has shown itself to be capable of substantially 
reducing the time for decision making, which is critical for 
real time applications. We used the Texas Instruments’ 
AWR1243 FMCW radar board and Vivado HLS to 
implement an experimental prototype. Experimental findings 
showed that it is possible to reduce data transferred from the 
sensor board to the central computer by a factor of up to 8 with 
an accuracy of 98%. The collision probabilistic model showed 
that the data reduction dramatically reduced the collision 
probability for two collision cases because of the gain in 
reaction time of ADAS thus increasing the vehicle agility to 
prevent serious collisions in the most severe cases. 
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