

Machine Learning in Sensors for Collision Avoidance
Erkan Karakus, Tao Wei, and Qing Yang

Dept. of Electrical, Computer, and Biomedical Engineering

University of Rhode Island

Kingston, RI, 02881 USA

{erkan_karakus, tao_wei, qyang}@uri.edu

Abstract— Sensors generate a huge amount of data that need

to be transferred to a computing device for processing. Such

large data transfer takes time and consumes energy. This paper

presents a new sensing and computing architecture, referred to

as MLIS (Machine Learning in Sensors). MLIS allows a part of

machine learning to be done on sensor board thereby

dramatically reducing the amount of data transferred to the

computing device and hence improving overall system

performance and energy efficiency. Using an energy-based

probabilistic graphical model, RBM (Restricted Boltzmann

Machine), we built a new ADAS (Advanced Driver-Assistance

System) computing platform for autonomous driving with

phased-array-radar as sensors. A working prototype has been

built to provide proof of concept for our new architecture. The

prototype is implemented using a TI’s mmWave (millimeter

Wave) radar board and a Vivado HLS implementation of the

RBM on the Xilinx xc7z020-clg400-1 device. Extensive

experiments have been carried out using the prototype on

realistic scenes on our campus. Experimental results have

shown that the proposed architecture can reduce the data to be

transferred by a factor of 8 while maintaining 98% accuracy.

Based on the experimental settings, we present two case studies

that have shown a remarkable reduction in collision probability

if applying the new architecture to autonomous vehicles.

Keywords—In-sensor computing, computer architecture,

mmWave radar, deep learning, object detection and identification

I. INTRODUCTION

In today’s digital world, sensors generate a huge amount

of data in a variety of applications. This huge amount of data

is generally transferred to the DRAM of computing systems

for processing through networks or direct connections.

Transferring such a huge amount of data consumes energy and

results in long transfer delays. In real-time applications,

especially in mission-critical real-time applications such as

autonomous vehicles, any delay over the hard deadline

implies a life and death situation. Therefore, minimizing data

transfer and hence latency is extremely important.

Internal communication and computing in an autonomous

vehicle should be designed to provide fault tolerance, energy

efficiency, determinism, high bandwidth, and flexibility [1].

End-to-end latency and communication overhead play a

critical role to ensure data consistency and temporal

determinism across functional cause-effect chains [2], [3].

This paper presents a new sensing, communication, and

computing architecture for autonomous vehicles. The new

architecture, referred to as MLIS (Machine Learning in

Sensors), leverages an energy-based generative model, RBM

(Restricted Boltzmann Machine). MLIS involves three major

steps: First, sensed raw data go through the first layers of

RBM as a "generate phase" on the sensor board. Second, the

outputs of the hidden layer units of RBM are transmitted to

the central ADAS computer. Third, ADAS computer carries

out the phase of 1-step Gibbs sampling as the "reconstruct

phase”. Because of in-sensor computing of the generate phase,

the data transferred from the sensor board to the DRAM of the

central ADAS computer is reduced, giving rise to dramatically

improved performance and energy efficiency of MLIS.

After establishing the accuracy of MLIS, we built a
working prototype using Texas Instruments AWR1243
FMCW mmWave radar board and Xilinx xc7z020-clg400-1
device. Extensive experiments have been carried out using our
prototype MLIS on practical scenes on our campus for object
detection and decision making process. Experimental results
have shown that MLIS yielded a reconstruction accuracy of
98% accuracy, dimensionality reduction of a factor of 8 and
reduced the point-to-point data transfer latency by a factor of
6. To demonstrate how such latency reduction helps improve
collision avoidance in autonomous vehicle applications, two
case studies were performed using our prototype MLIS to
show a dramatic reduction in collision probabilities.

This paper makes the following contributions:

1) A new in-sensor computing architecture is proposed

on a radar sensor board that implements RBM to-

gether with the ADAS computer.

2) A two-phase 1-step Gibbs sampling computation

framework consisting of generate phase and recon-

struct phase is presented.

3) Extensive experiments have been conducted to

demonstrate the feasibility and performance of

MLIS. Numerical results have shown up to 8 times

reduction in data transfers between the sensor board

and central computer with a reconstruction accuracy

of 98%.

4) Braking distance gain due to latency reduction is

shown to be significant when implementing the gen-

erate phase of the MLIS on an FPGA.

5) Our case studies show that the probability of colli-

sion is reduced dramatically with the new MLIS ar-

chitecture.

The paper is organized as follows. Next section presents
the basic architecture of MLIS. Section III presents the design
of Restricted Boltzmann Machine (RBM) model followed by
experimental results in Section IV. We discuss related work
in Section V and conclude the paper in Section VI.

2024 Workshop on Computing, Networking and Communications (CNC)

U.S. Government work not protected by U.S. copyright 291

2

II. SYSTEM ARCHITECTURE

We propose a new architecture for I/Q data reduction and
reconstruction as shown in Fig. 1. The left-hand side of the
diagram represents the in-sensor computing platform
consisting of the radar sensor and the FPGA board, while the
right-hand side of the diagram represents the ADAS
computing platform. The implementation of MLIS was split
into two distinct phases: Generate and Reconstruct phases as
shown in Fig. 2. Later, we will refer to this model as rtl+sw
based MLIS since MLIS generate phase is implemented with
RTL abstraction model and reconstruct phase is implemented
with a software model.

Fig. 2 The Generate and Reconstruct Phases of MLIS.

The generate and reconstruct phase computations are
performed using the following equations, respectively.

 ℎ = 𝑣𝑇𝑊 + 𝑏 (1)

 𝑣 = ℎ𝑇𝑊𝑇 + 𝑎 (2)

where 𝑏 is the hidden layer units bias vector, 𝑎 is the visible
layer units bias vector, 𝑊 is the connection weights between
the visible and hidden layer units, 𝑣 and ℎ are visible and
hidden layer unit activations, respectively.

III. RESULTS AND DISCUSSIONS

A. I/Q Data Reconstruction Accuracy

Fig. 3 and Fig. 4 shows sample plots of true and
reconstructed I and Q code data reconstructed by the proposed
MLIS architecture, respectively. The original true values are
plotted using solid blue lines, the sw based reconstructed data
are plotted using dashed red lines and the rtl+sw based
reconstructed data are plotted using solid green lines.

To quantify the accuracy assessment, we use Normalized
Euclidean Distance (NED) between the two time-series data:
reconstructed and true I/Q codes. TABLE I shows the
measured statistics for sw and rtl+sw MLIS architectures with
different sizes of visible and hidden layer units (v,h). As seen

from TABLE I, rtl+sw based MLIS with (512, 64)
configuration provides a data reduction factor of 8 with
98.03% accuracy for I code data and 95.7% accuracy for Q
code data. For (256, 64) configuration, MLIS provides a data
reduction factor of 4 with 98.3% accuracy for I code data and
94.1% accuracy for Q code data.

TABLE I 1-NED ACCURACY STATISTICS FOR SELECTED MLIS ARCHITECTURE SIZES

 Accuracy Statistics (1-NED)%

(v,h) Type I Codes Q Codes

(512,256)
sw 98.1% 97.2%

rtl+sw 96.5% 95.3%

(512,128)
sw 98.1% 97.4%

rtl+sw 97.8% 96.6%

(512,64)
sw 98.4% 96.6%

rtl+sw 98.0% 95.7%

(512_32)
sw 96.7% 94.4%

rtl+sw 96.2% 95.0%

(256,128)
sw 98.4% 97.1%

rtl+sw 98.0% 95.2%

(256,64)
sw 98.4% 95.7%

rtl+sw 98.3% 94.1%

B. Data Transfer Latency

In our experiments, the total amount of data transferred
over Ethernet from the data capture board, DCA1000EVM, to
the ADAS computer can be computed by multiplying the
ADC sample size, loop count, frame count, bit length, LVDS
lane count, and channel count. Therefore, transfer latency is
given by the following equation:

 𝑇 =

ADC Sample Size ∗ Loop Count ∗ Frame Count ∗
Bit Length ∗ Lane Count ∗ Channel Count

Bandwidth
 (3)

TABLE II shows the comparison in data transfer latencies
for different ADC sample size configurations. The first two
columns correspond to the original configuration with ADC
sample sizes of 512 and 256, respectively. The last three
columns correspond to the case where MLIS is deployed to
reduce the dimensionality of ADC sample size to 128, 64, and
32, respectively.

TABLE II DATA TRANSFER LATENCIES FOR DIFFERENT ADC SAMPLE SIZE

CASES

 Original MLIS

ADC Sample Size 512 256 128 64 32

Loop Count 128

Frame Count 10

Bit Length 16 22

Lane Count 4

Channel Count (I/Q) 2

BW (Mbps) 600

Tr. Latency (ms) 140 70 48 24 12

Fig. 1 Proposed Architecture for I/Q Data Reduction and Reconstruction.

2024 Workshop on Computing, Networking and Communications (CNC)

292

3

The bit length used for I/Q samples is 16-bit in the original
case and 22-bit in the MLIS case with the FPGA
implementation since we use ap_fixed<22,16> data format on
RTL design. The average data transfer rate between the data
capture board, DCA1000EVM, and ADAS computer is 600
Mbps. Each ADC sample is represented by a complex data
format, consisting of a real (I code) and imaginary part (Q
code) and each LVDS lane captures the complex data samples
per receiver antenna. The AWS1243 radar board has 4 LVDS
lanes and each lane receives I and Q codes, thus the channel
count is 2. As shown in TABLE II, the achieved latency
reduction (speedup) ranges from 46% (70/48) up to an order
of magnitude (140/12).

C. The Model Processing Latencies

The total end-to-end data reduction and reconstruction
latency is the sum of data transfer latency and model
processing latency. TABLE III shows the model processing
latencies of the architecture on the FPGA board (Vivado HLS
FPGA) and ADAS CPU, respectively. The model processing
latencies on the FPGA board (Vivado HLS FPGA) takes in
the range of nanoseconds while the processing time on the
ADAS CPU is on average 17 milliseconds as shown in
TABLE III. TABLE IV shows the reduction in total latency
including the latency of transferring the reduced radar data
from the FPGA board to the ADAS computer and the latency
of model processing.

D. Probabilistic Analysis of Collisions

The Collision Avoidance System (CAS) and Automated
Emergency Braking System (AEBS) are the crucial functions
of ADAS applications. The probability of non-collision with

an object can be described as the probability of the braking
distance being less than the object distance. We assume that
the braking distance has a variance due to different factors
such as tire tread, braking mechanics condition etc. The
probability of collision can be expressed as

 𝑃(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛) = 1 − 𝑃(𝒹𝑏 < 𝒹𝑜 | 𝒱 = 𝓋) (4)

where 𝑑𝑏and 𝑑𝑜 are braking and object distance, respectively.
𝓋 is the vehicle speed. The mean value of braking distance is
given by the following equation [4].

 µ𝑏𝑑 =
𝑣2

2µ𝑔
 (5)

where 𝑣 (𝑚/𝑠) is the velocity, µ is friction coefficient,
𝑔 (𝑚/𝑠2) is the acceleration due to gravity. Then the
deceleration is given by

 𝑎 = −µ𝑔. (6)

TABLE III. RTL AND SW MODEL EXECUTION LATENCIES ON HLS AND

ADAS CPU

ADC

Sample

Size

Reduced

Size

rtl model absolute

processing latency(ns)

Vivado HLS

sw model average

processing la-

tency(ms)

ADAS CPU

256 32 28.567 17

256 16 1.430 17

128 32 0.87 17

128 16 0.78 17

TABLE IV. DATA TRANSFER AND PROCESSING LATENCY REDUCTION

 Original/Reduced Data Sample Size
 256/32 256/16 128/32 128/16

Data Transfer Latency Reduction (ms) 58 64 23 29

Processing Latency Reduction (ms) 17 17 17 17

Total Latency Reduction (ms) 75 81 40 46

(a) (a)

(b) (b)

(c) (c)

(d) (d)

Fig. 3 True and reconstructed (sw and rtl+sw) I codes

with ADC sample sizes of (a)512 (b)256 (c)128 (d)64

Fig. 4 True and reconstructed (sw and rtl+sw) Q codes

with ADC sample sizes of (a)512 (b)256 (c)128 (d)64

2024 Workshop on Computing, Networking and Communications (CNC)

293

4

E. Case Studies for Collision Avoidance

We present two different collision scenarios where AEBS
is engaged immediately to prevent any collision. We use the
deceleration profiles given in TABLE V for the two scenarios.
Braking distances were computed by using the formula given
in [4].

TABLE V DECELERATION PROFILES FOR TWO CASES

Case I II

Deceleration (m/s²) -8.83

Starting Velocity (kph) 50 70

Final Velocity (kph) 0 10

Condition
Dry

roadway

Dry

roadway

Braking Distance (m) 11 21

Case I: Collision Avoidance at Pedestrian Crossing:

Let us consider the scenario depicted in Fig. 5 in which a
car is cruising at a certain speed, while a pedestrian emerges
suddenly from the front of a minivan to cross the street. Since
the pedestrian is occluded by the minivan, the driver of the car
is not capable of realizing the presence of the pedestrian in
front of the minivan. This may lead to a serious collision with
the pedestrian that requires AEBS to be engaged immediately
to prevent an imminent collision with the pedestrian. If the car
is cruising at a speed of 50 kph and if the deployed MLIS is
512/64, then the distance gained is 1.8 meters. As soon as the
car detects the pedestrian on its cruise way, the ADAS will
engage the AEBS to stop the car.

Fig. 5 Case I: AEBS with Pedestrian Crossing Scenario

After AEBS is engaged, the car will decelerate and stop
after 11 m preventing any collision. The car would have
traveled 1.8 meters farther wwithout MLIS, causing a
collision.

(a) (b)

Fig. 6 Case I: Collision Probability with and w/o MLIS (a) for different car

speeds. (b) for different pedestrian distances while cruising at 50 kph

Using our probability model above and assuming a
standard deviation of 15% of its mean, Fig. 6 (a) shows the
probability of collision with and without MLIS for different

speeds when the pedestrian is 12 meters away from the car
when detected by the radar sensor board. As seen from Fig. 6
(a), the collision probability is lower with MLIS than that
without MLIS for the same car speed. Fig. 6 (b) shows the
probability of collision with and without MLIS for different
pedestrian distances while the vehicle cruises at 50 kph.

Case II: Collision Avoidance with a Leading Car:

In this scenario, a car is cruising at the speed of 70 kph
behind an SUV. The driver of the SUV makes a sudden brake
to avoid a collision with an object in front of it. The car behind
the SUV detects its rapid deceleration and engages the FCW
system to alert the driver of the hazard. After the FCW
engagement, the driver of the car starts braking until the car is
distanced securely from the decelerating SUV. This scenario
is depicted in Fig. 7. The MLIS with 512/64 configuration
helps gain 2.6 meters of distance, greatly reduced the chance
of collision. Fig. 8 (a) shows the probability of collision with
and without MLIS for different speeds when the leading SUV
is distanced at 21 meters away from the car when detected by
the radar sensor board. As seen in Fig. 8 (a), the probability of
collision is substantially lower with MLIS than that without
MLIS for the same car speed. As the speed increases the
probability of collision increases as expected. Similar
observations are shown in Fig. 8 (b) for different leading SUV
distances while the vehicle cruises at 70 kph.

Fig. 7 Case II: Forward Collision Warning Scenario

(a) (b)

Fig. 8 Case II: Collision Probability with and w/o MLIS (a) for different

car speeds. (b for different leading SUV distances while cruising at 70 kph.

IV. RELATED WORK

The major challenge with edge computing is the limited
resources available on the edge devices and a large amount of
sensed raw data to be transferred to the main computer for
further processing [5], [6]. Any latency may become a major
bottleneck in real-time applications which have hard real-time
computation requirements [7]. High Correlation Filter,

2024 Workshop on Computing, Networking and Communications (CNC)

294

5

Principal Component Analysis, General Discriminant
Analysis etc. are among the techniques used for the
dimensionality reduction [8]. Vanilla Autoencoders and
Convolutional Autoencoders are commonly used in deep
neural networks to remove noise and redundant information
in high-dimensional data [9]. RBM has captured researchers’
interest and many researchers produced hardware designs of
the RBM model on FPGAs [10], [11]. The field of time series
forecasting has received significant interest in academia and
has a wide range of applications in the areas of energy,
communication, business, finance, health, and sports [12],
[13], [14], [15], [16], [17].

Our work in this paper differs from the studies discussed
above in many substantial ways. First, our work concentrates
on having a portion of machine learning computations on the
radar sensor board to minimize necessary data to be
transferred from the radar sensor board to the computing
device. Secondly, to reconstruct the approximated data by
applying 1-step Gibbs sampling, we implemented the RBM
model on the FPGA and its reverse symmetric model on
computing device. Third, we carried out extensive
experiments to demonstrate the advantages of MLIS in a real-
time application: ADAS system in autonomous vehicles.
Furthermore, a probabilistic collision avoidance model
showed that the probability of collision decreases dramatically
with our MLIS architecture.

V. CONCLUSIONS

We introduced a novel in-sensor machine learning system,
MLIS, applicable to ADAS in autonomous vehicles. The idea
is to reduce the amount of data transferred from the sensor
board to the main computing platform by performing machine
learning computations on the sensor board. The new
architecture has shown itself to be capable of substantially
reducing the time for decision making, which is critical for
real time applications. We used the Texas Instruments’
AWR1243 FMCW radar board and Vivado HLS to
implement an experimental prototype. Experimental findings
showed that it is possible to reduce data transferred from the
sensor board to the central computer by a factor of up to 8 with
an accuracy of 98%. The collision probabilistic model showed
that the data reduction dramatically reduced the collision
probability for two collision cases because of the gain in
reaction time of ADAS thus increasing the vehicle agility to
prevent serious collisions in the most severe cases.

ACKNOWLEDGMENT

This research is supported in part by the National Science
Foundation (NSF) under grants 2027069 and 2106750. The
authors thank the anonymous reviewers for their comments
and suggestions.

REFERENCES

[1] T. Nolte, H. Hansson, and L. Lo Bello, “Automotive

communications - Past, current and future,” in IEEE International
Conference on Emerging Technologies and Factory Automation,

ETFA, 2005, pp. 985–992. doi: 10.1109/etfa.2005.1612631.

[2] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst,
“Communication centric design in complex automotive embedded

systems,” in 29th Euromicro Conference on Real-Time Systems

(ECRTS 2017), 2017, pp. 10:1-10:20. doi:
10.4230/LIPIcs.ECRTS.2017.10.

[3] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “End-

to-end timing analysis of cause-effect chains in automotive
embedded systems,” Journal of Systems Architecture, vol. 80, pp.

104–113, Oct. 2017, doi: 10.1016/j.sysarc.2017.09.004.

[4] M. Sabri and A. Fauza, “Analysis of vehicle braking behaviour and
distance stopping,” IOP Conf Ser Mater Sci Eng, vol. 309, no. 1,

p. 012020, Feb. 2018, doi: 10.1088/1757-899X/309/1/012020.

[5] E. Oyekanlu, “Predictive edge computing for time series of
industrial IoT and large scale critical infrastructure based on open-

source software analytic of big data,” in Proceedings - 2017 IEEE

International Conference on Big Data, Big Data 2017, Institute of
Electrical and Electronics Engineers Inc., Jul. 2017, pp. 1663–

1669. doi: 10.1109/BigData.2017.8258103.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing:

Vision and Challenges,” IEEE Internet Things J, vol. 3, no. 5, pp.

637–646, Oct. 2016, doi: 10.1109/JIOT.2016.2579198.

[7] D. Fernandez, C. Gonzalez, D. Mozos, and S. Lopez, “FPGA
implementation of the principal component analysis algorithm for

dimensionality reduction of hyperspectral images,” J Real Time

Image Process, vol. 16, no. 5, pp. 1395–1406, Oct. 2019, doi:
10.1007/s11554-016-0650-7.

[8] S. Velliangiri, S. Alagumuthukrishnan, and S. I. Thankumar
Joseph, “A Review of Dimensionality Reduction Techniques for

Efficient Computation,” in Procedia Computer Science, Elsevier

B.V., 2019, pp. 104–111. doi: 10.1016/j.procs.2020.01.079.
[9] E. Karakus, M. Bruckner, T. Wei, and Q. Yang, “In-Sensor Neural

Network Preprocessing for ADAS Computer Systems,” in 2022

IEEE International Conference on Networking, Architecture and
Storage (NAS), IEEE, Oct. 2022, pp. 1–8. doi:

10.1109/NAS55553.2022.9925497.

[10] G. E. Hinton and R. R. Salakhutdinov, “Reducing the
Dimensionality of Data with Neural Networks,” Science (1979),

vol. 313, no. 5786, pp. 504–507, Jul. 2006, doi:

10.1126/science.1127647.
[11] D. L. Ly and P. Chow, “A high-performance FPGA architecture

for restricted boltzmann machines,” in Proceeding of the

ACM/SIGDA international symposium on Field programmable
gate arrays - FPGA ’09, 2009, pp. 73–82. doi:

10.1145/1508128.1508140.

[12] S. Shastri, K. Singh, S. Kumar, P. Kour, and V. Mansotra, “Time
series forecasting of Covid-19 using deep learning models: India-

USA comparative case study,” Chaos Solitons Fractals, vol. 140,

p. 110227, 2020.
[13] O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu, “Financial time

series forecasting with deep learning: A systematic literature

review: 2005–2019,” Applied Soft Computing Journal, vol. 90, p.
106181, 2020, doi: 10.1016/j.asoc.2020.106181.

[14] M. Mishra, J. Nayak, B. Naik, and A. Abraham, “Deep learning in

electrical utility industry: A comprehensive review of a decade of
research,” Eng Appl Artif Intell, vol. 96, p. 104000, 2020, doi:

10.1016/j.engappai.2020.104000.

[15] A. Baarnhielm, “Multiple time-series forecasting on mobile
network data using an RNN-RBM model,” Uppsala University,

2017. [Online]. Available: http://www.teknat.uu.se/student

[16] B. Denton, Frank and Feaver, Christine and Spencer, “Time series
analysis and stochastic forecasting: An econometric study of

mortality and life expectancy,” J Popul Econ, vol. 18, no. 2, pp.

203–227, 2005.
[17] Y. Hu, J. N. K. Liu, J. You, and P. W. Chan, “Continuous RBM

based deep neural network for wind speed forecasting in Hong

Kong,” Proceedings of the 2015 International Conference on
Image Processing, Computer Vision, and Pattern Recognition,

IPCV 2015, pp. 368–374, 2015.

2024 Workshop on Computing, Networking and Communications (CNC)

295

