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Abstract—The rapid development of Industry 4.0 technologies
has brought predictive maintenance into focus, particularly for
small and medium-sized enterprises (SMEs) where cost and
complexity are major barriers. In this paper, we present an
innovative approach to vibration analysis, a key component
for fault detection in mechanical systems and the creation of
digital twins. Utilizing MatLab, we generated synthetic data
points to simulate various vibration scenarios. These synthetic
data points served as the training set for our machine learning
model. The trained model was then integrated with a low-
cost, Bluetooth-enabled accelerometer for real-time monitoring.
Our system successfully identified fault conditions, specifically
lump mass irregularities, through real-time sensor data. Our
findings show promising capabilities for offering a cost-effective
and straightforward solution for predictive maintenance. This
research not only advances the field of vibration analysis but
also opens doors for SMEs to embrace the benefits of digital
twin technologies.

Index Terms—Wireless Communication, Vibration Analysis,
Predictive Maintenance, Machine Learning, Synthetic Dataset

I. INTRODUCTION

Vibration analysis is a cornerstone technique in the realm
of predictive maintenance, serving as a powerful diagnostic
tool for assessing the operational health of various mechanical
systems, from industrial machinery to automotive components
[2]. By analyzing the vibration patterns and frequencies emit-
ted by these systems, it is possible to identify a wide range
of mechanical faults and anomalies, such as misalignments,
imbalances, and wear and tear, well before they escalate into
catastrophic failures.

Despite the critical importance of vibration analysis, its
adoption has been hindered by several barriers, most notably
the high costs associated with specialized equipment and the
technical expertise required to interpret complex vibration
data [7]. These challenges are particularly apparent for small
and medium-sized enterprises (SMEs), which often lack the
resources to invest in sophisticated predictive maintenance so-
lutions. Accelerometers are the sensors predominantly used for
capturing vibration signals in rotating machinery applications,
capable of capturing signals in frequency ranges from 1 Hz to
10 kHz [8].

The Fourier-based analysis, including Fast Fourier Trans-
form (FFT), is the most traditional approach to identify the
specific harmonic constituents, which are often indicative of

mechanical faults and failures . Additionally, advancements
in machine learning algorithms like Support Vector Machines
(SVMs) and Neural Networks have introduced an additional
layer of predictive power and accuracy [10].

Serial communication serves as a foundational element in
the realm of hardware-software interfacing. Unlike parallel
communication, where multiple bits are sent simultaneously
over multiple channels, serial communication transmits data
sequentially, bit-by-bit, over a single channel. This makes it
a more straightforward and cost-effective solution for long-
distance data transmission. Serial communication is effective
when signal integrity is prioritized over bandwidth [12].

Given the focus of our study on capturing low-bandwidth
data—specifically z-axis acceleration—serial communication’s
emphasis on signal integrity aligns well with our needs.

Fig. 1. System and operation

In light of these challenges, the primary aim of our research
is to democratize access to vibration analysis technologies by
developing an affordable and efficient monitoring system. At
the heart of our system is a Bluetooth-enabled accelerometer,
affixed to cantilever beams to facilitate straightforward and
wireless data acquisition. This hardware setup is comple-
mented by a machine learning model trained on synthetic
data [13], which we generate using MatLab . This approach
eliminates the need for expensive and time-consuming exper-
imental setups, thereby accelerating the model training phase
and reducing overall costs.

In our system, the Bluetooth accelerometer captures raw
vibration data from the physical setup. This data is wirelessly
transmitted to MATLAB via serial communication, where
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the primary task is to analyze and identify the vibrational
frequencies using FFT. After extracting these frequencies,
MATLAB interfaces with a Python-based ML module. This
module, pre-trained on a synthetic dataset generated through
FEM simulations, now receives real-world frequency data as
input. The ML model processes this input to predict the
mass and its precise location on the beam. The final step is
the display of these predictions in MATLAB. While the ML
model’s initial training occurs on synthetic data, its real-world
application involves making predictions based on actual data
collected from the accelerometer.

Our proposed solution is engineered to be not only cost-
effective but also highly precise, capable of real-time fault
detection and diagnosis.

Moreover, our work lays the groundwork for the broader
adoption of digital twin technology in the field of predictive
maintenance [3]. Digital twins, or virtual replicas of physical
systems, offer a transformative paradigm that can significantly
enhance the accuracy and efficiency of maintenance strategies
[13].

In this particular study, FEM is applied to analyze the
natural frequencies of a cantilever beam system constructed
in MATLAB. Eigenvalue analysis is subsequently conducted
on this system to extract the natural frequencies. These first
two natural frequencies serve as the two primary features for
training our ML model. By leveraging the concept of FEM,
we are able to create a robust synthetic dataset [6] to train the
ML model, without the need for costly or difficult experiments
to gather raw real-world data.

This paper provides a detailed account of the development,
experimental validation, and potential impact of our vibration
analysis system. Moreover, our work lays the groundwork for
the broader adoption of digital twin technology in the field of
predictive maintenance [7].

This research aims to address several key objectives:
1) Design a cost-effective and efficient vibration analysis

solution specifically tailored for small and medium-sized
enterprises (SMEs).

2) Employ machine learning techniques to automate fault
detection in mechanical systems using vibrational data.

3) Create synthetic datasets via MatLab to train machine
learning models, thus circumventing the need for costly
and labor-intensive experiments.

4) Integrate a Bluetooth-enabled accelerometer for seam-
less real-time monitoring and data collection, negating
the need for wired systems.

II. ADVANCED MACHINE LEARNING APPROACHES WITH
XGBOOST

The Extreme Gradient Boosting (XGBoost) algorithm
serves as the foundation of the machine learning component
in this research. Originating as an extension of the Gradient
Boosting Machine, XGBoost is an ensemble learning method
that aims to optimize a differentiable loss function. It employs
a set of weak learners, typically decision trees, and boosts their
performance in an iterative manner.

One of the key features that sets XGBoost apart from other
machine learning algorithms is its regularization component.
Specifically, XGBoost incorporates both L1 (Lasso) and L2
(Ridge) regularization terms in its cost function. This not only
helps in controlling the complexity of the individual trees
but also effectively mitigates the risk of model overfitting,
effectively enhancing the model’s generalization capability.

The algorithm is efficiency is further increased as a result
of its parallelization techniques [9]. These features make
XGBoost not only fast but also scalable, capable of handling
large datasets and high-dimensional feature spaces [4].

Given its high predictive accuracy and computational effi-
ciency, XGBoost is an ideal choice for our study.

III. SYNTHETIC DATA GENERATION

A. Finite Element Method

The necessity for a robust training dataset is paramount for
the success of any machine learning model. In this research,
we generate synthetic data by leveraging the Finite Element
Method (FEM) to simulate vibrational behavior for various
configurations of cantilever beams with a randomized lumped
mass being placed at a random location along the beam.

The assumptions at this stage include constant physical
dimensions and material of the cantilever beam. Variability
is introduced through the mass and location of the lumped
element, both of which are randomly generated from a uni-
form distribution within to ensure a comprehensive range of
scenarios. The range for this random distribution is outlined
in TABLE II.

The governing equation for the dynamics of the cantilever
beam is the Euler-Bernoulli beam equation.

To accomplish this, we use Matlab to construct a digital twin
of our system. Eigenvalue analysis is subsequently conducted
on this system to extract the natural frequencies. These first
two natural frequencies serve as the two primary features for
training our ML model.

In this study, the beam is assumed to be made of stainless
steel, characterized by a density (ρ = 7800 kg/m3) and
Young’s Modulus (E = 198 × 109 Pa). These matrices are
assembled using for loops.

TABLE I
CANTILEVER BEAM PARAMETERS

Parameter Symbol Value
Length L 0.3m
Width W 0.03m

Thickness T 0.001m
Cross-sectional Area A W × T

Moment of Inertia I W×T3

12
Young’s Modulus E 198× 109 Pa

Density ρ 7800 kg/m3

We initiate the simulation by randomizing key physical
parameters of the cantilever beam. The following table sum-
marizes the randomized parameters and their ranges.

In the Finite Element Method (FEM), the cantilever beam
is discretized into a number of smaller elements. The stiffness
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TABLE II
RANDOMIZED PARAMETERS

Parameter Range Description
mass-location 0.1− 0.9 Position along the beam as a

fraction of its length.
lumped-mass 0− 1 kg Additional mass added at the

randomized location.

and mass matrices for these elements are assembled to solve
for the natural frequencies of the beam. Here, we describe the
formulation of these matrices.

The boundary conditions describe both the free and fixed
end of the cantilever beam and are then applied to these
matrices to yield the natural frequencies of the system.

A constant mass of 20 g is added at the free end of the
beam to simulate the constant weight of our Bluetooth module,
which will be affixed to the free end of the beam. For our
simulations, we model the sensor as a singular point mass.

This mass matrix is then added to the global mass matrix.
An additional mass is randomly placed along the length of

the beam.

B. Data Collection and Storage

A dataset composed of 50,000 unique simulations is gener-
ated, each with randomized mass and location. To ensure the
reproducibility of the data, a consistent random seed of 42 is
utilized in MATLAB.

The dataset is archived in a structured CSV file. This file
contains four columns:

• First natural frequency (f1)
• Second natural frequency (f2)
• Additional lumped mass (mrandom)
• Location of the additional lumped mass (lrandom)

C. Machine Learning Models

The recorded natural frequencies, f1 and f2, serve as
features for training two separate machine learning models.
Conversely, the additional lumped mass (mrandom) and its
location (lrandom) will serve as target variables for the respective
models.

IV. BLUETOOTH ACCELEROMETER DATA ACQUISITION

The efficacy of any Machine Learning model in a real-world
scenario hinges on the quality of the input data. Even a model
of impeccable accuracy can yield inaccurate predictions if fed
with inaccurate data. In essence, the principle of ”garbage
in, garbage out” applies; accurate predictions require precise
data acquisition. This section delves into the specifics of our
Bluetooth-enabled accelerometer, detailing the methodology
employed to capture precise natural frequencies from vibra-
tional data, thereby ensuring the reliability of our predictive
models.

A wireless setup was essential due to our experimental
configuration; the accelerometer was attached to a beam’s free
end, where wires could have introduced extraneous variables,

such as physical interference from wire entanglement or mea-
surement bias from wire tension. Because of the low cost and
modest 200Hz transmission capability of our accelerometer,
it was crucial to minimize potential signal distortion, which
necessitated the wireless setup to preserve the integrity of the
data.

A. Hardware Components

To conduct the experiment, a high-precision and low-
cost WT-901 Bluetooth accelerometer was used, available for
$47.99 online. This cost-effective choice compares favorably
to traditional accelerometers used in fault detection, which can
cost thousands of dollars. The components are as follows:

• Accelerometer: WT-901 Bluetooth IMU Module
– 3-Axis acceleration measurement
– Range: ±16g
– Data rate: 200Hz

B. Serial Connection and Data Acquisition

1) Serial Initialization: In the first step of our data ac-
quisition procedure, MATLAB clears any existing serial con-
nections. A new serial connection is then established, setting
parameters like the serial port and baud rate. Should this serial
connection attempt fail, an error message alerts the user and
the code terminates.

2) Data Collection: Z-axis acceleration data are continu-
ously monitored and collected from the accelerometer. When
a sufficient amount of data becomes available in the serial
buffer, the Z axis acceleration is extracted and stored. In this
experiment, a total of 2300 Z-axis readings are collected and
validated to ensure data integrity, representing a real-world
sampling window of 11.5 seconds.

3) Data Preprocessing: To improve data accuracy, the first
300 samples are discarded as they are considered transient.
Then a high-pass filter is applied to the remaining data to
remove low-frequency noise. The cut-off frequency for this
filter is set at 1.5 Hz, which was determined empirically.

4) Time Array: A time array is generated that aligns with
the duration and number of Z-axis data samples, at a sampling
rate of 200 Hz (Limited by the accelerometer’s sampling
rate). This array provides the time context for each data
point, which is necessary to perform FFT. In this stage, FFT
(Fast Fourier Transform) is applied in MATLAB to shift the
time-domain acceleration data to the frequency domain. The
frequency range is set between 1 and 100 Hz due to the nyquist
frequency, determined by the accelerometer’s 200 Hz sampling
rate.

MATLAB’s built-in findpeaks function is subsequently
used to identify natural frequencies in the FFT spectrum, ob-
served as local peaks in the frequency-domain plot. Parameters
for this function are fine-tuned for optimal peak detection, with
values determined empirically.

The first two natural frequencies are then extracted, to serve
as input features for the predictive models.
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V. MACHINE LEARNING

A. Algorithm Selection

We chose the eXtreme Gradient Boosting (XGBoost) algo-
rithm for its balance of accuracy with computational efficiency.
XGBoost is especially suited for Small and Medium-sized
Enterprises (SMEs) because it is resource-efficient, supports
parallel computing, and scales well with large datasets [5].

Additionaly, Our empirical tests showed that XGBoost
outperformed alternatives like Random Forest and Support
Vector Machines in predictive accuracy, as measured by R2

scores and Mean Squared Error (MSE). Therefore, XGBoost
was selected as the algorithm for both models.

B. Feature Engineering and Data Preprocessing

We initially use frequency1 and frequency2 as pri-
mary features for training the machine learning model. We
augment this with freq_ratio and freq_product, cal-
culated as the ratio and product of the two natural frequencies.
These additional features were incorporated due to XGBoost
being highly effective with large feature spaces [5]. This four-
feature set is standardized using scikit-learn’s StandardScaler
to ensure zero mean and unit variance.

C. Model Training and Evaluation

1) Data Partitioning: We allocate 80% of the dataset for
training and 20% for testing to validate our model’s predictive
accuracy. The R2 score serves as the principal evaluation
metric, complemented by scatterplots for visual assessment.

2) Hyperparameter Tuning: We performed a grid search
with three-fold cross-validation to optimize the model’s hyper-
parameters, targeting the R2 score as the objective function to
maximize. Post-optimization, two sets of hyperparameters are
identified and applied for the final model training, to enhance
predictive accuracy.

TABLE III
OPTIMIZED MODEL HYPERPARAMETERS

Parameter Mass Prediction Location Prediction
learning rate 0.3 0.1
max depth 5 5
n estimators 300 300

D. Performance Metrics and Results

1) Evaluation Metrics: The effectiveness of the models
was evaluated using the R2 score, a statistical measure that
represents the proportion of the variance for a dependent vari-
able that’s explained by an independent variable or variables.
An R2 score of 1 implies an ideal fit between the model
predictions and the actual outcomes.

2) Performance: The model developed for predicting the
mass variable achieved a high R2 score of 0.9995. Similarly,
the model designated for predicting location recorded an R2

score of 0.9984.
It is worth noting that R2 scores approaching 1.00 often

raise concerns of potential issues such as overfitting or data

leakage, where the model could have inadvertent access to
the target variable [11]. In our specific context, however,
these near-perfect R2 scores can be attributed to the inherent
simplicity of the physical system under study. Our objective
was to validate the efficacy of our modeling approach using
a less complex case as a starting point. Additionally, the risk
of overfitting is mitigated in our scenario, as the model is
intentionally fine-tuned to represent a specific, well-defined
physical system [1].

3) Graphical Evaluation: We employed graphical meth-
ods to offer additional insights into the performance of our
models. Specifically, scatter plots were created to compare
the predicted values with their corresponding actual values.
A 45-degree reference line was superimposed on the graphs
to improve interpretability. A tighter fit relative to this line
represents a more accurate model.

Fig. 2. Predicted vs. Actual Mass

Fig. 3. Predicted vs. Actual Location

4) Real-World Validation: While our model exhibited high
performance metrics in a controlled synthetic environment, as
evidenced by near-perfect R2 scores and graphical evaluations,
these measures alone do not guarantee real-world efficacy. It is
critical to assess whether the model can be applied practically
and yield reliable results outside of simulation.

To this end, following the initial training with FEM-
generated data, we conducted real-world testing. To assess the
model’s accuracy, we placed a 50g mass at specific points on
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the beam and input the resulting vibration frequencies into
the model. This allowed us to directly compare the model’s
predictions with the actual mass positions. The consistency
between our model’s predictions and the actual test results
affirms its practical effectiveness in real-world settings, and
extending its utility beyond simulated environments.

E. Results
We achieved successful integration of the accelerometer and

machine learning models. Our system operates in a multi-step
process as a) Time-Domain Data Acquisition b) Frequency
Transformation c) Natural Frequency Identification d) Mass
and Location Prediction.

Figures showcasing the various stages of this process are
presented below. These include plots of the time-domain
readings, frequency domain representations, and the predicted
values for mass and location achieved by the machine learning
models. As can be seen in the test cases, as the mass gets
smaller or closer to the fixed end, the variations in frequencies
are diminished so the model accuracy increases as the mass
is placed further along the beam.

Fig. 4. Test 3 Results

TABLE IV
TEST SERIES

Test Target Predicted
Test 1 Mass: 0.2 Mass: 0.244836

Location: 0.33 Location: 0.282615
Test 2 Mass: 0.2 Mass: 0.193305

Location: 0.5 Location: 0.531582
Test 3 Mass: 0.2 Mass: 0.20474

Location: 0.67 Location: 0.657067

VI. CONCLUSION

This research has succeeded in developing a highly accurate
and well-validated framework for the specific case of ana-
lyzing vibrational behavior in cantilever beams. Utilizing a

approach that combines Finite Element Modeling, advanced
machine learning techniques through XGBoost, and Bluetooth-
enabled data acquisition, we have achieved remarkable predic-
tive accuracy. This accomplishment is particularly notewor-
thy given the challenges associated with developing a cost-
effective and user-friendly solution that is accessible to small
and medium-sized enterprises.

Despite the significant strides made in this research, it
is crucial to acknowledge its limitations. Our framework is
tailored to a simplified model that focuses on cantilever beams
with lumped masses. While this allows for high-precision
predictions, it may not fully encapsulate the complexities
and nuances of more diverse real-world mechanical systems.
Therefore, the current model serves as a proof of concept
and should be interpreted within the confines of its design
parameters.

Looking ahead, there is considerable scope for extending
this research. Future endeavors should aim to generalize
the model to accommodate a wider range of mechanical
systems, including those with varying boundary conditions,
structural complexities, and different types of loadings. The
high predictive accuracy achieved in this study serves as a
promising indicator of the model’s potential for scalability
and adaptability [14]. We are optimistic that with further
refinement, our framework can serve as a cornerstone for the
development of more versatile and comprehensive predictive
maintenance solutions.
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