
Cloud Load Balancing Algorithms Performance
Evaluation Using a Unified Testing Platform

Bingyan Li, Weiliang Liu, Salim Nader, Jiaqi Song, Chengyu Zhang, Michal Aibin
Khoury College of Computer Sciences at Northeastern University, Vancouver, Canada
{li.bingy, liu.weilia, nader.s, song.jiaqi1, zhang.chengyu1, m.aibin}@northeastern.edu

Abstract—Due to its improved response time, availability, and
efficiency, load balancing emerged as an essential framework
for designing high-performance distributed computing systems.
This paper introduces a unified testing platform that objectively
compares load balancing algorithms and measures their per-
formance. It employs various request patterns and load types
to simulate real-world conditions. We evaluate a selection of
static and dynamic algorithms on throughput, response time,
and failure rate metrics. The results show that most, but not all,
dynamic algorithms perform better than static ones.

Index Terms—load balancing, algorithms, cloud computing

I. INTRODUCTION

In the paradigm of modern computing, cloud computing
has come to be considered the backbone of most technology
services [1]. The last two decades, in particular, saw an
enormous rise in the utilization of cloud computing in all
sorts of applications [2]–[5]. When one thinks of streaming,
mapping, or social media, it is easy for the average user
to forget that the brunt of the computational load is being
offloaded to the cloud. In 2022, the total spending on cloud
computing infrastructure reached $500 billion according to
market research firm Gartner, with a projected 21% year-on-
year increase in 2023 [6]. The most common current model
for the cloud is in the form of substantial network-connected
server farms with hundreds of thousands, if not millions, of
machines. Cloud service providers like Microsoft and Amazon
operate multiple geographically dispersed data centers [7].

With this level of demand and expansion comes the need to
satisfy many customer- and end-user-based metrics. Among
these metrics are response time, availability, and scalability.
This is where the concept of load balancing comes in. A load
balancer’s job is to distribute a workload evenly to a set of
servers. Cloud computing providers have found that this helps
ensure service continuity and high availability.

When load balancing is applied, it provides the flexibility
needed to scale an application to a larger cluster, data set,
or user base. Moreover, load balanced systems result in better
response times for their users. Let alone the benefit of reduced
energy consumption of load balanced systems. For these
reasons, load balancing has become an essential requirement
of any meaningful cloud computing effort.

In general, there are two types of load balancing techniques:
static load balancing and dynamic load balancing [8]. Static
load balancing distributes tasks without considering the current
state of each server, while dynamic load balancing considers
this information when distributing workloads.

Static load balancing algorithms have been well-developed
in the past and are widely adopted in the industry nowadays.
In recent years, researchers have been developing more effec-
tive load balancing algorithms to achieve evenly distributed
workloads and faster execution. However, due to the growth
in cloud computing technologies and the rising demands of
business organizations, traditional static load balancing meth-
ods fail to fulfill several quality of service (QoS) requirements
[9]. Studies have been conducted to improve the existing static
load balancing algorithms [10], [11]. More research focuses on
dynamic load balancing algorithms [12]–[14]. Some proposed
algorithms were compared to state-of-art algorithms in bench-
marks, with the result showing those proposed algorithms can
achieve better service provisioning, lower resource utilization,
and higher overall performance [11], [14], [15].

Although more and more new load balancing algorithms
which aim to solve specific problems have been proposed, it
is still being determined how to select a suitable one from
them once we encounter a new problem. This is because they
were only compared with some classical algorithms, and the
measurement environment was always different, such as vari-
ous application backgrounds or cloud computing platforms. In
our study, we conduct a comparative analysis of multiple load
balancing algorithms with defined metrics to figure out the
best strategy for different workload strengths and load patterns
under a unified architecture and computing environment. Vari-
ous load patterns, i.e., the uniform pattern, the tide pattern, and
the spike pattern, which correspond to different real-life cases,
are simulated to measure the performance of load balancing
algorithms in our study. For instance, when a brand-new album
by a top singer is released, the cloud-based music-streaming
platform that publishes it might experience a daunting spike
which could cause a perceptible delay for users. Based on
the comparison under various performance measurements, a
heuristic strategy is proposed for system designers to select
the appropriate load balancing algorithm.

II. RELATED WORKS

A. General Surveys

Ghomi et al. introduced the general model of a distributed
system and load balancing [8]. The model sends user requests
to a central server, where the load balancing algorithm is
applied. Requests are then dispatched from the central server
into different worker nodes based on their loads. Several state-
of-art static and dynamic load balancing algorithms were com-

2024 Workshop on Computing, Networking and Communications (CNC)

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 271

pared in their work. The results showed that each algorithm
has its strengths and weaknesses in different applications.

P. Kumar and R. Kumar presented a survey of state-of-the-
art cloud load balancing techniques and defined the challenges
they try to attend to [9]. The study classified the algorithms
into static, following a fixed set of rules, and dynamic, re-
sponding to the system’s current state. We divided our related
works, based on similar approach.

B. Dynamic Algorithms

The control mechanism for dynamic load balancing can be
distributed or non-distributed. The strategies to make a load
distribution decision are divided into information, transfer, and
location. The issues of dynamic load balancing algorithms
based on the system’s current status were explained in detail by
Alakeel et al. [12], alongside with the topics of load measure-
ment, performance measurements, and system stability issues.

Rahmeh et al. presented a technique where the increment
and decrement of the node’s in-degree, which denotes whether
the node completed a job or received a new job, were
performed by Biased Random Sampling – where each node’s
selection depended on the free resources available to it [13].

Ren et al. introduced a dynamic load balancing algorithm
with load forecasting [14]. The proposed algorithm can reduce
load imbalance and improve service quality by using an
exponential smoothing forecasting method for load prediction
plus load estimation.

C. Other Algorithms and Approaches

In a distributed system, the heterogeneous environment
uses machines with different capacities, in contrast to the
homogeneous environment in which machines with similar
capacities are used. Kapoor et al. [16] propose a cluster-based
load balancing algorithm that works in the heterogeneous
environment by grouping machines with similar capacities,
which provides better performance than the traditional throt-
tled load balancing algorithm. Their work also defined critical
performance metrics, including response time, execution time
and throughput.

Nishant et al. modified the Ant Colony Optimization (ACO)
load balancing algorithm by continuously updating a single
result set instead of their own result set [17]. This modified
algorithm is suitable for the situation where the type of loads
on nodes varies. Compared to classical methods, it ensured
more smooth functioning of the cloud.

Wang et al. introduced a new genetic algorithm for load
balancing [18]. They used a greedy algorithm to initialize
the problem and a double-fitness function to evolve solutions
by eliminating the poorest and mutating the best ones. The
solutions refer to node-job allocations, and the fitness function
represents node and job performance metrics.

Chen et al. described a cloud load balancing (CLB) algo-
rithm [10]. The algorithm is based on the weighted round robin
algorithm but keeps track of each node’s load and allocates
only half of the least loaded nodes each round.

In the paper by P. Kumar et al. [11], the authors design
and implement a multi-scheduling load balancing (MTBLB)
algorithm which contains three methods – awscloudwatch,
cron job, and round robin. A comparison was made between
MTBLB and round robin on the AWS platform, and the results
showed that MTBLB has a lower response time, which makes
it faster than the round robin algorithm.

To improve the performance of the distributed system,
Jawad and Mahdi provide a load balancing algorithm with
fuzzy logic (RLBF) [15], which transfers the values of capacity
and queue size to low, medium, or high and then determines
the state of the route. Compared to static and dynamic al-
gorithms, RLBF showed higher throughput and shorter delay
with the help of fuzzy logic to make decisions.

In the paper by Wang et al. [19], opportunistic load bal-
ancing (OLB) and load balance min-min (LBMM) algorithms
were combined to form a new load balancing algorithm which
integrated their advantages. Overall, OLB ensures that each
node in the system works well, and LBMM can achieve a
minimum task execution time.

Nahir et al. introduced a replication-based scheme to im-
prove load balancing performance [20]. This approach creates
several replicas for each task and sends them to different
servers. If one of the replicas arrives at the head of the queue,
then remove the other replicas.

D. Gaps in Previous Research

Although lots of approaches were discussed in the literature,
some things need are not covered in their work. In [14],
the forecasting results look promising in an experimental
environment, but they might not perform well with request
patterns that are not in the training set, such as random
spiking. Some dynamic load balancing algorithms need to
actively track server load information and remaining resources
to make the optimal choice when dispatching tasks [19]. The
problem with this approach is that server resource information
is reported periodically with a defined interval, which could
make the information used for decision-making outdated,
leading to imbalanced workloads among servers. Complicated
algorithms can take longer to compute than static algorithms
such as round robin [14], [17], [18]. This will result in
the load balancer being throttled in real-world applications
where the cluster scale is significantly larger than the testing
environment used in the literature. Furthermore, as mentioned
in [11], the processing cost is an important aspect of load
balancing. In our comparative study, we benchmark several
load balancing algorithms using multiple load patterns to
simulate real-world applications and provide insight into their
strengths, limitations, and potential optimization strategies.

III. PROBLEM STATEMENT

We aim to study and compare the performance of several
state-of-the-art load balancing algorithms. The goal is to
develop recommendations that would aid system designers in
choosing a suitable load balancing algorithm for their specific

2024 Workshop on Computing, Networking and Communications (CNC)

272

needs. The following three subsections provide details on the
platform and testing strategies.

A. Platform and Workflow

The application will be deployed on Amazon Elastic Com-
pute Cloud (Amazon EC2) on the Amazon Web Services
(AWS) platform for our study. The application contains three
parts, a client, servers, and a load balancer - the focus of our
study.

1) Platform: EC2 is a platform that provides adjustable
cloud computing capabilities and is designed to simplify web-
scale computing for developers. Furthermore, EC2 reduces the
time to acquire and spin up new server instances to minutes,
allowing us to quickly adjust the scale and architecture to our
needs. We will deploy a single load balancing instance and
several server instances for our purposes. The requests are
generated and sent through the Internet using a request client
application that connects to the load balancing instance.

Fig. 1. Request Flow

2) Workflow: As shown in Fig. 1, to test different patterns
of request flow, mocked user requests will be sent through a
request-client application to the load balancer, where different
load balancing algorithms will be used to conduct the compar-
ative study. Then, the load balancer will distribute the tasks to
different servers. For example, there is a listening platform for
music that collects data on its listeners. Every time a listener
starts playing a song on the client site, the time spent listening
to the song and the listener ID are sent to the server, and the
load balancer will decide which server will accept it.

B. Performance Testing Patterns

In our work, three performance testing patterns with tuned
parameters will simulate the different real-world load cases.
Moreover, random computation, memory, and I/O workload
will be used to reflect various types of requests. For instance,
in navigation applications, requesting a map needs more I/O
workload to access the database, while requesting navigation
routing has the burden of computation. The information about
the workload needed to satisfy each client’s requests is bundled
with the request itself. The request indicates for each of the
three categories (CPU, memory, and I/O) the workload level
on a scale from 1 to 10.

1) Uniform Pattern: The Uniform pattern simulates an
application accessed by a stable request flow in a time, shown
in Fig. 2. For example, streaming sensor images transferred
from a meteorological satellite is stable. Another example is
long polling in the Internet of Things (IoT) to get information

in time, where the intelligent devices send requests to the
controller in a period so that the request rate is approximately
constant. To make the testing reflect the difference between
load balancing, the request rate is tuned deliberately to near
the peak load in order to increase resource utilization.

2) Tide Pattern: The Tide pattern, shown in Fig. 3, aims
to present a pattern similar to a tidal cycle. Many daily
life applications correspond to this pattern. For instance, the
subway fare gates experience morning and evening peaks in
one day while both have similar intensity. Another application
case is the restaurant food ordering app where the customer
traffic is higher during lunch and supper, and the customers
requests may queue up. Here we use two overlapping Gaussian
distributions and repeat them to simulate those cases. It has
two peak periods and a lower but not lowest valley between
two peaks which denotes the off-peak period. The request
flow of the interval between two patterns is lowest in order
to represent the case at night. The peak load surpasses the
server capacity to show if the load balancing could handle the
crowded requests.

3) Spike Pattern: When a long-awaited album is released,
or a shopping festival starts, the customer volume will surge
in an extremely short time as a crowd of people rush to access
the server, and then decrease gradually because the customers
leave when they get the thing happily or do not purchase
successfully. This is a typical long-tailed distribution. Here, we
use the chi-squared distribution, which belongs to the family
of long-tail distributions, to simulate this spike pattern, shown
in Fig. 4. The value of the chi-squared distribution increases
quickly and then reduces smoothly. The peak of the spike
pattern is far beyond the server’s capacity to stress test the
performance of load balancing algorithms.

C. Performance Metrics

Load balancing algorithms assign tasks to a set of servers
evenly. An ideal load balancing target is minimizing resource
consumption while maximizing the efficiency of serving re-
quests. There are various metrics for measuring efficiency
since each has its preference for different application back-
grounds. Metrics that would be used to measure the perfor-
mance of load balancing in our paper are introduced below.

1) Throughput: Throughput is defined as the rate at which
the traffic is passed through the server, measured in bits
per second or requests per second for different targets. Even
though throughput is measured in bits per second, it is usually
considered a multiplication of the packet transmission rate and
size. Throughput can be calculated as follows:

Throughput = RatePacket Transmission×SizePayload (1)

Throughput is significant in sites where file and streaming
media traffic patterns dominate.

2) Response Time: The time that the load balancers respond
to a request is the response time. This includes a sum total
of waiting time, transmission time and service time. It can be
measured by subtracting the time the load balancer receives

2024 Workshop on Computing, Networking and Communications (CNC)

273

Fig. 2. Uniform Pattern Fig. 3. Tide Pattern Fig. 4. Spike Pattern

a request from when a response is received from the server,
indicating completion. Statistics for average, minimum, and
maximum response times are recorded.

Response T ime = Tserver response − Tclient request (2)

3) Failed Connection Count: This metric measures the
number of rejected connections. It inspects the various reasons
for rejected requests, such as overloaded servers, not optimized
load balancers, or uneven load distribution. Besides, failed
connection count also helps to find whether the applications
are scaling appropriately or not.

IV. ALGORITHMS

A. Least Usage First

The first algorithm that we proposed is an algorithm that
prioritizes the server with the lowest resource usage, named
Least Usage First. The algorithm works in two phases, predict
and sync. The sync phase utilizes predefined server APIs to
acquire the current resource usage, including CPU, memory
and IO. Dividing usage information by the current number
of connections each server has, we can estimate how many
resources one request will take for every server.

UsagePerRequest =
Totalusage

Numberconnection
(3)

Before the next sync phase, the algorithm proceeds to
predict phase. When a server is assigned an incoming request,
its usage will increase by the estimated usage per request
calculated in the last sync phase. Similarly, when a server
finishes a request and returns the response, its usage will
decrease by the estimated usage per request. In this manner,
the algorithm can predict servers’ current usage. To choose a
server for handling requests, the algorithm will always pick
the server with the lowest usage.

B. Least Recently Used Based On Least Connection

The second load balancing algorithm is called Least Re-
cently Used Based on Least Connection. In this algorithm
we implement a hash map to store the connection count for
each server and another hash map to store the time length
for each server that has not been chosen. At each request,

it chooses the server with the least count of requests it is
currently processing; if there are several servers with that least
count, then the algorithm chooses the server which has not
been used for the longest time among those.

C. Least Average Response Time First

The Least Average Response Time First algorithm measures
the average response time within a sliding window by sub-
tracting the request time from the response time for a past
fixed number of requests and selects the server with the least
average response time.

We first set the average response time to 0 and choose
servers in turns for the cold start situation. If the request is
still in processing, its response moment is set to the current
moment. Based on the assumption that each request requires a
similar quantity of computing resources, this algorithm utilizes
the average response time to indicate the server’s performance.
In our experiment, this algorithm might be susceptible to the
sliding window to fall into a case that always chooses one
server. An alternative solution is taking the reciprocal of the
average response time as the weight.

D. Consistent Hashing Algorithm

The IP Hashing algorithm can take the client and server IP
address to generate a unique hash key which is used to allocate
the client to a particular server. However, there are still some
things that could be improved. Firstly, the newly added server
will make the initially calculated hash value inaccurate, and
the hash key map must be updated. Secondly, downtime or
shrinking can be attributed to deleting service nodes, leading to
a large-scale update of the hash value. The Consistent Hashing
algorithm solves these problems by constructing a ring-shaped
hash space instead of a linear hash space, and the entire hash
space is constructed as a first-placed ring.

E. Estimated Finish Time

The Estimated Finish Time algorithm, as discussed in [21],
records each server’s estimated finish time. For a server, this
time represents the time of completion of all requests allocated
to it by the algorithm. The algorithm always chooses the server
with the soonest estimated finish time. This ensures that the
request is currently allocated and will be given to the server
to finish it as soon as possible.

2024 Workshop on Computing, Networking and Communications (CNC)

274

Every time a request reaches the load balancer, the algo-
rithm calculates the estimated completion time of the request
on each server and adds it to the existing finish time estimate.
The estimated finish time of a request on a given server
(Equation 4) is calculated as the size of the request, for
example, the number of instructions involved in fulfilling it,
divided by the computational capacity of the server, which
is measured in MIPS (millions of instructions per second).
Accounting for the server capacity enables the algorithm to
operate in a heterogeneous server pool. The algorithm then
finds the server with the lowest sum of the estimated finish
time and requests’ completion time. That server is allocated
the new incoming request and its estimated finish time is
incremented by the estimated time to complete this request.

Trequest =
LOAD(Request)

CAPACITY(Server)
(4)

F. Baseline Algorithms (Controls)

1) Round Robin: Round Robin algorithm is a basic static
load balancing algorithm that forwards requests to each server
in a group of servers in turns. This algorithm does not consider
the performance difference among servers.

2) Random: The random load balancing algorithm is a
static algorithm that randomly chooses a server from the pool
and allocates the incoming client request to it. It is meant as
a baseline or control in the context of this study.

V. RESULTS

Our testing platform consists of a single load balancing
instance and eight worker instances of varying capacities
for processing requests. For the following test results, the
requesting client was configured to send 70k requests per
second on the spike pattern, 55k on the tide pattern, and 40k
in the uniform pattern. Requests have randomized parameters,
including CPU, memory, and IO ranging from 1 to 10,
indicating the task load levels.

A. Response Time and Failure Rate

In Fig. 5, Fig. 7, and Fig. 9, blue bars denote the average
response time while red bars denote the failed request rate
for each algorithm. The results of those patterns show some
similarities. The out-performer is the Estimated Finish Time
algorithm. Then, the Least Recently Used algorithm and the
Least Usage algorithm show similar but slightly weaker perfor-
mances. The above three algorithms are better than comparing
groups, so they suit this simulated environment. The Least
Response Time algorithm is better than the Random algorithm
but worse than the Round Robin algorithm. Moreover, the
Consistent Hashing algorithm is worse than the Random
algorithm. Also, since overloading the servers results in more
failed requests, there is a positive correlation between the
average response time and failure rate.

B. Throughput

Fig. 6, Fig. 8, and Fig. 10 depict the throughput curve
along with time in the uniform, tide, and spike pattern test,
respectively. The grey line shows the request pattern we
simulated, where the number of issued requests hovers near
the capacity limitation of our testing environment in the
case of the uniform pattern, briefly surpasses it in the case
of the tide pattern and far surpasses it in the case of the
spike pattern. Therefore, in the starting stage, each algorithm
temporarily follows the request pattern line until it reaches
its peak throughput and then keeps at that maximum capacity
until it processes the backlog of requests it has issued. The
three best performers, the Estimated Finish Time, the Least
Recently Used, and the Least Usage algorithms, have the
ability to keep the throughput at the maximum capacity. The
Least Response Time and the Consistent Hashing algorithm
could not assign the tasks appropriately, so they fluctuate
frequently but do not get the maximum capacity point leading
to the intensive requests overwhelming servers. In the worst
case, these algorithms complete the backlog of requests later
than the end of the request pattern by up to 75 seconds.

VI. DISCUSSION

A. Static Algorithms

Static algorithms are widely used in cloud computing plat-
forms today. Round Robin, a popular static algorithm, is
the default load balancing algorithm on AWS’ elastic load
balancer [22]. It performs reasonably well given its simple
nature, and an improvement is the Weighted Round Robin
algorithm which adds a weight factor to the servers, thus
giving more powerful ones proportionally more requests. The
Consistent Hashing algorithm guarantees that the request from
a specific IP address is sent to the same server, so the external
session storage is unnecessary. However, this algorithm does
not send the request by evaluating the server’s capacity, so
overloading is possible. Furthermore, from the throughput, the
Random algorithm and Consistent Hashing algorithm showed
similar results since the general idea of them are both assigning
the request to a server directly. However, to assign to the
specific server, a consistent hashing algorithm has a hashing
calculation process and comparisons among the hash value
of requests and servers’ IP, which explains why a consistent
hashing algorithm has a longer response time and higher
failure rate for all three patterns.

B. Dynamic Algorithms

As for dynamic algorithms, they can achieve better perfor-
mance at the cost of more complex implementation. Despite
the implementation details, the difference in performance
ultimately comes to what information the dynamic algorithm
can access. In our experiment, the Estimated Finish Time algo-
rithm analyzes the requested content to evaluate the resource
usage of each request. This algorithm relies on clearly defined,
parsable requests to estimate the server’s load accurately. The
Least Usage algorithm periodically polls the server’s load
information and chooses the server with the least estimated

2024 Workshop on Computing, Networking and Communications (CNC)

275

Fig. 5. Response Time and Failed Request Count Results for Uniform Pattern Fig. 6. Throughput Results for Uniform Pattern

Fig. 7. Response Time and Failed Request Count Results for Tide Pattern Fig. 8. Throughput Results for Tide Pattern

Fig. 9. Response Time and Failed Request Count Results for Spike Pattern Fig. 10. Throughput Results for Spike Pattern

2024 Workshop on Computing, Networking and Communications (CNC)

276

load. This algorithm requires a pre-deployed resource monitor
on each server, which is some extra work if the platform does
not come with real-time resource monitor and query APIs. The
Least Recently Used Based On Least Connection algorithm
chooses the server with the least active connection count;
if there are several servers with the least connection count,
then it chooses the server with the longest unused time. This
algorithm can minimize the chance of server overload and
improve the average response time performance. However, its
main limitation is that it assumes all requests have the same
load and thus cannot quickly adapt to fluctuations.

On the other hand, the Least Average Response Time
algorithm is purely results-based without the need to know
each server’s status. It simply prioritizes the server that re-
sponds faster, which makes it easy to implement. However, it
sometimes overloads the server with the lowest response time
because the algorithm relies on a moving average which could
be more responsive. Therefore, choosing what information to
access can significantly affect the scope and complexity of the
algorithm.

C. Scalability

When choosing a load balancing algorithm, developers
should also consider future scalability. There are two ways of
scaling, horizontal scaling – adjusting the number of servers,
and vertical scaling – adjusting the capacities of existing
servers. Depending on the pricing of the cloud computing
platforms, system designers need to choose the best scaling
solution with a higher performance-cost ratio. However, static
algorithms do not work well with vertical scaling, as the algo-
rithms do not know the capacity difference between servers.
Even though upgrading all servers is an option, downtime
might be infeasible for the business.

On the other hand, dynamic algorithms can handle both
scaling methods well. Not only do dynamic algorithms support
vertical scaling without downtime, but upgrading a subset of
servers is also possible. This provides much more flexibility
to the scaling solutions, making dynamic algorithms superior
to static algorithms.

VII. CONCLUSION

In this study, we explored the design of a unified testing plat-
form for load balancing algorithms. To exhibit the use of this
platform, five load balancing algorithms were benchmarked
against two baseline algorithms on metrics of throughput,
response time, and failure rate. Overall, dynamic algorithms
are better than static algorithms in terms of adapting to het-
erogeneous environments, performance fluctuations, and future
scaling. Nevertheless, that ultimately comes at the cost of
increased complexity and the requirement of varying degrees
of information.

REFERENCES

[1] L. Qian, Z. Luo, Y. Du, and L. Guo, “Cloud computing: An overview,”
in Cloud Computing First International Conference, CloudCom 2009,
Beijing, China, December 1-4, 2009, Proceedings, vol. 5931, 01 2009,
pp. 626–631.

[2] J. Bourne, “The decade in cloud: Analysing the ’remarkable
transformation’ through saas, iaas and paas rise,” Jan
2020. [Online]. Available: https://www.cloudcomputing-
news.net/news/2020/jan/07/decade-cloud-analysing-remarkable-
transformation-through-saas-iaas-and-paas-rise/

[3] M. Aibin and M. Blazejewski, “Complex elastic optical network sim-
ulator (ceons),” in 2015 17th International Conference on Transparent
Optical Networks (ICTON), 2015, pp. 1–4.

[4] M. Aibin, “Dynamic routing algorithms for cloud-ready elastic optical
networks,” Ph. D. dissertation, 2017.

[5] M. Karimibiuki, M. Aibin, Y. Lai, R. Khan, R. Norfield, and A. Hunter,
“Drones’ face off: Authentication by machine learning in autonomous iot
systems,” in 2019 IEEE 10th Annual Ubiquitous Computing, Electronics
Mobile Communication Conference (UEMCON), 2019, pp. 0329–0333.

[6] “Gartner forecasts worldwide public cloud end-user spending
to reach nearly $500 billion in 2022,” Apr 2022. [Online].
Available: https://www.gartner.com/en/newsroom/press-releases/2022-
04-19-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-
reach-nearly-500-billion-in-2022

[7] M. Aibin and K. Walkowiak, “Resource requirements in fixed-grid and
flex-grid networks for dynamic provisioning of data center traffic,” in
2016 IEEE Canadian Conference on Electrical and Computer Engineer-
ing (CCECE), 2016, pp. 1–4.

[8] E. J. Ghomi, A. M. Rahmani, and N. N. Qader, “Load-balancing
algorithms in cloud computing: A survey,” Journal of Network and
Computer Applications, vol. 88, pp. 50–71, 2017.

[9] P. Kumar and R. Kumar, “Issues and challenges of load balancing
techniques in cloud computing: A survey,” ACM Computing Surveys
(CSUR), vol. 51, no. 6, pp. 1–35, 2019.

[10] S.-L. Chen, Y.-Y. Chen, and S.-H. Kuo, “Clb: A novel load balancing
architecture and algorithm for cloud services,” Computers & Electrical
Engineering, vol. 58, pp. 154–160, 2017.

[11] P. Kumar, D. M. Bundele, and D. Somwansi, “An adaptive approach for
load balancing in cloud computing using mtb load balancing,” in 2018
3rd International Conference and Workshops on Recent Advances and
Innovations in Engineering (ICRAIE), 2018, pp. 1–5.

[12] A. M. Alakeel et al., “A guide to dynamic load balancing in distributed
computer systems,” International Journal of Computer Science and
Information Security, vol. 10, no. 6, pp. 153–160, 2010.

[13] O. A. Rahmeh, P. Johnson, and A. Taleb-Bendiab, “A dynamic biased
random sampling scheme for scalable and reliable grid networks,”
INFOCOMP journal of computer science, vol. 7, no. 4, pp. 1–10, 2008.

[14] X. Ren, R. Lin, and H. Zou, “A dynamic load balancing strategy for
cloud computing platform based on exponential smoothing forecast,” in
2011 IEEE international conference on cloud computing and intelligence
systems. IEEE, 2011, pp. 220–224.

[15] M. M. Jawad and N. M. Mahdi, “Prototype design for routing load
balancing algorithm based on fuzzy logic,” in 2019 4th Scientific
International Conference Najaf (SICN), 2019, pp. 92–96.

[16] S. Kapoor and C. Dabas, “Cluster based load balancing in cloud
computing,” in 2015 Eighth International Conference on Contemporary
Computing (IC3), 2015, pp. 76–81.

[17] K. Nishant, P. Sharma, V. Krishna, C. Gupta, K. P. Singh, Nitin, and
R. Rastogi, “Load balancing of nodes in cloud using ant colony opti-
mization,” in 2012 UKSim 14th International Conference on Computer
Modelling and Simulation, 2012, pp. 3–8.

[18] T. Wang, Z. Liu, Y. Chen, Y. Xu, and X. Dai, “Load balancing task
scheduling based on genetic algorithm in cloud computing,” in 2014
IEEE 12th international conference on dependable, autonomic and
secure computing. IEEE, 2014, pp. 146–152.

[19] S.-C. Wang, K.-Q. Yan, W.-P. Liao, and S.-S. Wang, “Towards a
load balancing in a three-level cloud computing network,” in 2010
3rd International Conference on Computer Science and Information
Technology, vol. 1, 2010, pp. 108–113.

[20] A. Nahir, A. Orda, and D. Raz, “Replication-based load balancing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 2,
pp. 494–507, 2016.

[21] N. K. Chien, N. H. Son, and H. Dac Loc, “Load balancing algorithm
based on estimating finish time of services in cloud computing,” in 2016
18th International Conference on Advanced Communication Technology
(ICACT), 2016, pp. 228–233.

[22] “How elastic load balancing works.” [Online]. Available:
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/how-
elastic-load-balancing-works.html

2024 Workshop on Computing, Networking and Communications (CNC)

277

