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Abstract— We have experimentally confirmed real-time 

detection of optical cross talk noise in photonic network for 

autonomous network diagnosis by applying machine learning to 

tapped raw optical signal data obtained from digital coherent LSI 

for the first time. We have achieved above 98% of accuracy by 

using 200 G bit/s DP-16QAM optical signal. 
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I. INTRODUCTION  

Data traffic has been expanding rapidly so far, and this 

trend is expected to continue to support traffic demands for 

upcoming novel services, including video and mobile data. 

In addition to that, in the 5G and beyond 5G era, 

virtualization in network on top of physical layer will be 

needed to achieve various Key Performance Indicators 

(KPIs) required for 5G or future 6G networks. Moreover, 

various virtual network operators, including Mobile Virtual 

Network Operators (MVNOs), will provide novel services 

and applications by using such virtualized networks. 

Accordingly, future network will become more data 

intensive and complex in operation.  

On the other hand, by making full advantage of Software 

Defined Networking (SDN) and Network Functions 

Virtualization (NFV), future networks will acquire higher 

levels of flexibility and programmability in terms of 

management and service provisioning. So, we can say that 

future networks will have larger capacity, become more 

complex, and need to be more flexible and programmable. 

In such networks, many different types of network slices 

will run on a layered network infrastructure and will be 

operated by different types of network service and/or 

content providers. Therefore, complexity, heterogeneity, 

and scale of networks may exceed the limits of human-

based operation and maintenance.  

To tackle such issues, there is a strong trend toward 

automation in network operation and management. Rapid 

advances in artificial intelligence (AI), machine learning 

(ML), and deep learning (DL) are already paving the way 

toward autonomous operation and management. Various 

use cases in which AI-based techniques are effective in 

optical network operation are summarized [1]. Extensive 

surveys on how ML works in optical network management 

are provided in [2]. They also discuss several network 

management architectures that make use of ML in 

automation for optical networks. The authors in [3] propose 

and demonstrate a monitoring and data analytics 

framework and discuss tools that recognize network status 

in detail by collecting huge amounts of data from many 

devices. For autonomous network diagnosis, we have 

proposed CAT platform for autonomous network diagnosis 

as shown in Fig. 1 [4-8].  

 

Fig. 1. CAT platform 

 

In usual network maintenance operations, we need 

multiple types/times of test measurements to find a root 

cause of failures. We can implement such network 

diagnosis algorithms in the CAT platform which is realized 

by open-source software StackStorm [5]. It runs such 

diagnosing procedures automatically by repeating various 

network tests to find a final cause of failures. The 

procedures are written in Yet Another Markup Language 

(YAML) in the algorithms. 

 

In recent years, there has been a demand for higher 

capacity in the metro/access network domain in preparation 

for beyond 5G and 6G network. Digital coherent 

transmission technologies have been deployed widely in 

core/metro networks and its extension into metro/access 

domain is being considered, i.e. in the design of a 5G 

metro/access network called Centralized Radio Access 

Network (CRAN) [9].  

As of 2015, thousands of 100G+ digital coherent optical 

equipment ports have been deployed for the metro and 

access applications [10]. In addition, with the rapid 

miniaturization of digital coherent transceiver components, 

expectations for simplified digital coherent technology 

have increased rapidly. WhiteBox optical transceivers 

using these simplified digital coherent technologies could 

be suitable for low-complexity optical access systems. As 

a result, more compact optical transceivers based on digital 

coherent technology in WhiteBox are expected to be 

deployed in metro access networks in the near future [11].  

 
Optical cross talk noise comes from incomplete fiber 

connection and/or fusion splices in optical fiber links as 
shown in Fig. 2. Almost all optical signal transmits through 
optical amplifiers such as Erbium Doped Fiber Amplifiers 
(EDFAs), optical connectors, optical fiber links, and 
Reconfigurable Optical Add Drop Multiplexers (ROADMs) 
as shown in Fig. 2. However, very small portion of the 
signal may be reflected backward at a connector as shown 
in this figure. When we have another reflection point (in this 
example, before the ROADM), the reflected signal will be 
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reflected again in forward direction. This component will 
arrive at the receiver with some amount of temporal delay. 
Thus, it will interfere with the normal signal without 
reflections. This is the cross-talk noise that will degrade 
quality of the optical signal. Depending on the linewidth of 
the laser diode in the transmitter and the difference in 
transmission distance between the normal and the reflected 
components, it will cause coherent/incoherent cross talk, 
leading to degradation of optical signals [12]. It has also 
been reported that coherent cross talk can generate a large 
power penalty at the optical cross-connects (OXC) in dense 
wavelength division multiplexer (WDM) based optical 
networks [13]. It also comes from inter-core cross talk in 
Multi Core Fibers (MCFs) which will be installed in optical 
network in the near future. To date, various works have been 
reported on the effects of optical cross-talk based on IMDD 
transmission systems. However, there has been little work 
on its real-time detection. 

Real-time detection of such noise will be essential to 
reduce operational workload for fault diagnosis. If we could 
clarify the cause of degradation instantly by machine-
learning of received optical signals among various kinds of 
cause candidates, it will greatly reduce OPEX for fault 
diagnosis. Moreover, the number of digital coherent 
transceivers is expected to increase towards 5G/6G. 
Metro/access networks have aggregation functions to 
accumulate and switch mobile data traffic from huge 
number of base stations. Therefore, they generally have 
large number of connection points including optical 
connectors, optical couplers, and fusion splices. So, 
frequency of incomplete connections or slices may increase 
in these network domains. Therefore, real-time detection of 
optical cross talk noise could contribute to improve 
reliability of metro/access network and to simplify 
maintenance operations. To the best of our knowledge, there 
have been no reports on real-time detection of cross talk 
noise by applying machine learning to the data tapped from 
digital coherent LSIs.  

We propose novel cross talk detection approach where we 

tap digital data just after the Analogue-to-Digital 

Converters (ADCs) in digital coherent LSIs and use them 

for machine learning to train models to detect cross talk 

noise. We trained convolutional neural network for 

detection of cross-talk noise. By applying the approach in 

DP-16QAM optical signals, we have successfully detected 

cross talk noise ranging from -30 to -50dB experimentally. 

We have implemented detection software as one of the 

sensing modules (Docker containers) in the CAT platform. 

Thus, it will work with other detection modules in the 

platform to realize autonomous network diagnosis. 

II. CROSS TALK DETECTION 

A. Our approach 

We have proposed novel network monitoring approach 
which is Tapped Raw Digital Signal (TRDS) monitoring in 
digital coherent optical receivers. Optical signal transmitted 
through optical transmission links experiences various 
impairments including chromatic dispersion, polarization 
mode dispersion, optical losses in connection points, optical 
fiber bending, noise from optical amplifiers, and optical 
spectrum deformation induced by optical filter shift in 
intermediate optical filters in optical add-drop multiplexers. 
Therefore, there will be some information on these 
impairments in the optical signal received in digital-
coherent receivers. In conventional optical receivers, we use 
various powerful signal processing to compensate such 
impairments as shown in Fig. 3.  

 

Fig. 3. Block diagram of coherent receiver 

 
For example, chromatic dispersion can be compensated by 

using finite impulse response (FIR) filters in time domain or 
frequency domain. Polarization mode dispersion can be 
compensated by some butterfly type adaptive filters where 
dynamic update of tap coefficients occurs. From the 
viewpoint of detection of various impairments, such strong 
signal processing may be harmful since they can mask or 
erase the information in the received optical signals. Thus, 
we propose novel approach where we tap digital signals just 
after Analog-to-Digital Converters (ADCs) in optical 
receivers. When we got digital signal at the final stage in the 
block diagram, we could observe clear constellation 
diagram as shown in the bottom right in Fig. 3. On the other 
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hand, when we got digital signal just after the ADCs, we got 
spherical diagram as you can see in the bottom left in Fig. 3. 
This is because we do not recover any impairments and/or 
phase/clock information. 

 

Fig. 4. Tapped Raw Digital Signal (TRDS) 

 
Actual configuration for TRDS is shown in Fig. 4. 

Sampling phase is synchronized with symbol rate of optical 
signal by the Phase Lock Loop (PLL) circuit as shown in the 
figure. To enhance accuracy of synchronization, we 
compensated known impairment of chromatic dispersion of 
optical transmission links. The tapped raw digital signals 
can have information on various impairments as they are. 
Therefore, we can expect to detect such impairments by 
analyzing the TRDS signals. We used symbol synchronized 
sampling in TRDS. Asynchronized sampling approaches 
have been proposed to detect Optical Signal to Noise Ratio 
(OSNR) of optical signal [14]. However, such 
asynchronized approach may lose information in optical 
signals by averaging over time domain. Our approach can 
preserve time-dependent variations. So we can expect to get 
more information on impairment.  

We have already succeeded in detection of optical fiber 
bending in optical transmission links and optical filter shift 
(de-tuning from optimum position) in optical add-drop 
multiplexers by using the data obtained from TRDS to train 
machine learning models [15-18]. Thus, we apply our 
approach for detection of optical cross-talk noise. 

Fig. 5. Sensing system configuration 

Figure 5 shows our sensing system configuration where we 
employed a WhiteBox packet transponder called Cassini 
[19] to acquire/store constellation data and to test trained 
CNN models. The Cassini WhiteBox can be used to install 
a variety of container-based applications for different 
purposes, such as data collection and information 
monitoring [19]. A tapping port has been implemented on a 
digital coherent receiver LSI to capture TRDS data. Dual 
Polarization 16 Quadrature Amplitude Modulation (DP-
16QAM) was used in the experiment. Therefore, we can get 
four lanes of digital data (I/Q components for X/Y 
polarizations) as shown in Fig. 5. The captured data is sent 

to a Redis database container and stored in the container. 
The TRDS data is retrieved from the database and used to 
train  CNN models in GPU-installed workstation server. 
Labels (0 and 1) for states with and without cross-talk noise 
are assigned to both the training and evaluation data. Fig. 6 
shows software stack of our WhiteBox transponder system. 
We have implemented network diagnosing containers on 
top of the Kubernetes orchestrator. As you can see, we can 
easily add new sensing, diagnosing, and testing applications 
as we need in this platform. 

Fig. 6. Software Stack of our WhiteBox 

B. Experimental setup for evaluation 

 

Fig. 7. Experimental setup 

Figure 7 shows the experimental setup for cross-talk 
noise detection. A CFP2-ACO transceiver installed in 
Cassini WhiteBox is used as the optical source. The 
transmitter wavelength and corresponding linewidth of the 
CFP2-ACO transceiver are 1550 nm and 300 kHz, 
respectively. Thus, its coherent length can be estimated as 
approximately 300  meters. The output of the transmitter is 
divided into two branches by the optical splitter with 
branching ratio of 1:9 to simulate the effects of cross-talk. 
The optical signal in the upper arm is launched into a fiber 
link that consists of G.652 standard Single Mode Fiber 
(SMF) and an optical variable Attenuator (ATT) and then 
combined by the optical coupler. The G.652 fibers emulate 
optical delay that reflected signal will suffer. The ATT 
emulates level of reflection. Since we have used 
polarization multiplexed signal, we omit polarization 
controller. The signal in the upper/lower arm works as  
reflected/normal signal component, respectively. The 
Angled PC (APC) connectors are used at the connection 
points to avoid residual reflections. By controlling the ATT, 
we set relative residual reflection levels of  -30 dB, -40 dB, 
and -50 dB at the output of the coupler. Four different 
lengths of fiber links are used: 5 m, 2 km, 5 km, and 7 km 
to check the effect of coherent length of 300 m. In total, 12 
different datasets (3 x 4) were captured, varying the residual 
reflection level and the fiber link length. For optical cross 
talk detection, the captured data with the same fiber link 
length and residual reflection level were used for the 
training/evaluation data. Fig. 8 shows block diagram of data 
processing for model training. 
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Fig. 8. Block diagram of data processing 

We used polarization multiplexed 16QAM signal for 
evaluation. So it has two polarization components of X and 
Y. Each component has 128x128 resolution in complex 
plane. There, the size of the input layer of Resnet50 is 
2x128x128 as shown in Fig. 8. The extracted feature is then 
input to fully-connected layer for classification output of 
label “0” (cross talk detected) and “1” (normal).  

III. RESULT AND DISCUSSION 

A. Cross talk detection with trained models  

We used Resnet50 to classify whether there was cross-
talk noise or not. For training and evaluation, the data of 
labels “0” and “1” were split by 1:1 for all 12 datasets.  As 
a result, we prepared and obtained 12 trained models in 
total. Each trained model was tested with evaluation data 
which was collected under the same conditions but at 
different timeframe. The size of the dataset was 1240 for all 
the conditions. Thus, the size of training/evaluation datasets 
was 620. The 128x128 constellation generated from the 
TRDS data for each condition is shown in Figure 9 a), b), 
c), and d). We observed slight variations that reflected cross-
talk noise in these constellations. The corresponding 
evaluation results for cross-talk detection for all the 
evaluations are shown in Figure 10. For evaluation, we 
adopted the scores of accuracy.  

a) SMF length of 5 m 

b) SMF length of 2 km 

c) SMF length of 5 km 

d) SMF length of 7 km 

Fig. 9. Constellation from TRDS data 
(Left: w/, right: w/o cross talk noise) 

 

 

 

 

 

 

 

 

 

Fig. 10. Cross talk detection accuracy  (%)  

We tried 18 times of evaluation tests for different 
combinations of models and datasets. All of which gave 
stable and high accuracy. The values in Fig. 10 show the 
averaged values over 18 times of trials. These results 
indicate successful learning of cross talk noise for each test 
condition. Especially, we have succeeded in cross talk noise 
detection at down to -50 dB level. Usually, power penalty 
resulted from cross talk noise can occur around as small as 
-50dB [10], therefore we can say that our proposed approach 
showed sufficient sensitivity for actual applications. In this 
work, we have used a specific condition of optical signals. 
Further experiments with different network conditions and 
optical signals will be needed to verify this study. 

B. Generality of machine learning models 

We have carried out further experiments to test generality 

of the trained models whether they can be applied to 

different cross talk levels or not. Datasets collected at 

different cross talk levels were used to evaluate the trained 
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models.  For example, a model trained with dataset at cross 

talk level of -30dB was used to evaluate data obtained at -

40dB and -50dB. This specific experiment was performed 

over the SMF fiber link length of 7 km. 

 

Table 1. Results of model generality tests 

cross talk level 

of trained model 

cross talk level of 

evaluation data 
Accuracy [%] 

-30dB 
-40dB 90 

-50dB 100 

-40dB 
-30dB 100 

-50dB 93 

-50dB 
-30dB 100 

-40dB 95 

 

These results showed a high accuracy of 90-100% as 

shown in Table 1. We have confirmed generality of the 

trained models for different cross talk levels at the SMF 

fiber link length of 7 km. Looking at the results, we can 

achieve high detection accuracy for cross talk levels of -30 

and -40dB, if we used models trained at cross talk level of 

-50dB. Accordingly, we can expect to reduce the number 

of models for detection. For actual application to 

metro/access network, the number of required models 

should be minimized to reduce workload and/or cost of 

model training, so further reduction and/or sophistication 

of machine learning models will be needed and will be for 

further study. In our work, we supposed the simplest case 

where cross talk noise comes from two reflection points. In 

actual network operation, frequency of incomplete and 

problematic connections will be very low, so the model we 

used in this work seems to cover almost all the cases of 

cross-talk noise. 

IV. CONCLUSION 

We have successfully confirmed real-time detection of 

cross-talk noise by applying TRDS data to machine 

learning in dual polarization 16QAM optical signal. The 

detection accuracy above 98% has been achieved for all 

experimental conditions ranging from -30 to -50dB of 

relative cross-talk level. We observed no significant impact 

of coherent length on the detection accuracy. Thus, our 

approach could be applicable to both coherent and 

incoherent cross-talk. Our approach is based on usual 

configuration of digital coherent receivers. We only need 

to insert tapping interface and add the software component 

for detection. Thus, the cost for practical implementation 

will be relatively small. The successful result of cross-talk 

detection contributes the enhancement of sensing/detection 

functions in CAT platform in addition to optical fiber 

bending detection and optical filter shift detection. 

Moreover, such cross-talk can occur in MCFs which will 

be installed in the near future. Thus, cross-talk detection by 

TRDS will help to reduce OPEX in future large capacity 

photonic networks. 
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