

A Lightweight Obfuscated Malware Multi-class Classifier for IoT Using Machine Learning
William Cassel, Nahid Ebrahimi Majd

Department of Computer Science and Information Systems
California State University San Marcos, United States

Casse017@csusm.edu, nmajd@csusm.edu

Abstract—The rapidly growing number of obfuscated malware
attacks in the past few years has emerged as a significant threat
for organizations and individuals, demanding prompt action to
develop systems that accurately detect these attacks to block them
or mitigate their impacts. These types of malwares use obfuscation
techniques to hide their malicious functionalities from intrusion
detection systems, which makes their detection more complicated
than regular malwares. Most of the obfuscated malware detection
systems primarily focus on binary classification. The existing
multi-class classification methods mainly have used CNN-based
deep learning to improve the model’s accuracy. However, this
approach is not suitable for resource constrained network nodes,
such as IoT devices, which are widely used on the Internet to
monitor and control different environments. To tackle this issue,
in this paper, we propose a lightweight model that accurately and
efficiently classifies benign traffic vs. different classes of
obfuscated malwares. Our proposed model uses a hybrid method
of SMOTE oversampling to synthetically create training records
for the minority classes in combination with undersampling the
majority class via Tomek Links algorithm to increase the model’s
performance in malware classification. W applied this hybrid data
augmentation technique to our training dataset extracted from
CIC-MalMem2022 dataset to build a Random Forest model. Our
experimental results demonstrated that the proposed model
outperforms the state-of-the-art with 87.1% accuracy in
classifying obfuscated malwares.

Keywords— Obfuscated Malware Classification; Network
security; Machine Learning; Data Augmentation;

I. INTRODUCTION
During 2022, the worldwide number of malware attacks

reached 5.5 billion [1]. Malware is a type of malicious software
that aims to disrupt a system’s activity, steal sensitive
information, or cause harm in some way to a network or
individual device. Obfuscated malware is a type of malware that
hides its disruptive functionality from malware detectors. One
of the main malware obfuscation detection techniques is
memory analysis, i.e., by extracting aggregated data on memory
handles, code injections, memory modules, etc. In our proposed
framework, we use CIC-MalMem2022 dataset, created by
extracting such features from memory dumps using an extension
to VolMemLyzer tool [2].

This dataset presents data for benign traffic and three types
of malwares: (1) Ransomware, (2) Spyware, and (3) Trojan.
Ransomware gains the control of the victim machine’s system
file, encrypts the files, and holds the encryption key hostage.
Oftentimes Ransomware attacks are extremely difficult to

reverse and may even overwrite or delete all files even if the
ransom is paid. Spyware aims to secretly infiltrate a network in
order to collect sensitive data in the background without raising
attention. The sensitive data collected by Spyware can range
from passwords to social security numbers and can result in
significant financial harm. A Trojan is a type of malware that
disguises itself as a legitimate program to remain undetected.
Once run, this seemingly innocent program can perform a wide
variety of harmful actions from data theft to creating backdoor
access for other attacks to take place on the infiltrated system.

Malware obfuscation is a technique that malware authors use
to make their malware difficult to detect or analyze. There is a
variety of techniques that malware authors use for this purpose.
Most of these techniques mainly aim to hide a critical string in
the malware code, which reveals the patterns of the malwares’
behavior. Often, they use packing technique to compress the
executable code and make it difficult for intrusion detection
systems to reveal its pattern. Another technique is inserting a
dead-code to change the malware’s pattern.

The existing research on obfuscated malware multi-class
classification have used CNN-based models, which are more
suitable for an intrusion detection system located at the network
edge rather than a resource constrained device, such as an IoT.
In our models, rather than computationally expensive deep
learning models, we augmented the training data at the pre-
processing phase, and created a light-weight machine learning
model, which outperforms the existing CNN-based models.

The main contributions of our research are as following.

1. In order to cope with the data imbalanced issue, we
applied a hybrid data augmentation method of SMOTE
and Tomek Links algorithm to the training dataset.

2. We used this augmented training dataset to build a
lightweight multi-class classification machine learning
model that classifies Benign vs. 3 types of obfuscated
malwares: Ransomware, Spyware, and Trojan.

3. Our experimental results demonstrated that the
proposed model outperforms the state of the art in terms
of accuracy, precision, recall, and F1-Score.

The rest of this paper is organized as the following. Section
II describes the related work. Section III explains the
methodology, including the dataset and preprocessing. Section
IX explains the proposed machine learning models and
hyperparameter tunning. Section X presents the performance
measures. Section XI presents the results and discussion.
Section XII draws the conclusion.

2024 Workshop on Computing, Networking and Communications (CNC)

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 239

Table 1: A summary of accuracies of existing binary and family
classifications research on CIC-MalMem2022

 Reference Year Model Acc
Binary
Classifi
cation

[3] Carrier et al. 2022 EL 99
[4] Dener et al. 2022 LR 99.97
[5] Ghazi et al. 2022 RF 99.99
[6] Smith et al. 2023 RF, DT, ET, AB 99.99
[7] Talukder et
al.

2023 RF, ANN 100

[8] Louk et al. 2022 RF 100
[9] Mezina et al. 2022 DCNN 99.92
[10] Shafin et al. 2023 CompactCBL

RobustCBL
99.92
99.96

Family
Classifi
cation

[9] Mezina et al. 2022 Decision Tree
DCNN

79.16
83.53

[10] Shafin et al. 2023 CompactCBL
RobustCBL

84.22
84.56

II. RELATED WORK
Machine learning has been used to classify malware attacks.

Carrier et al. [2] created CIC-MalMem2022, a popular dataset
on obfuscated malware memory data, which is publicly
available at the Canadian Institute for Cybersecurity website.
The authors extended the VolMemLyzer tool to extract hidden
and obfuscated memory features. This dataset is constructed of
benign and three types of malwares, namely Spyware,
Ransomware, and Trojan horse. The authors also developed a
stacked ensemble learning framework for a binary classification
of benign vs. malware.

A variety of research work has studied obfuscated malware
classification using CIC-MalMem2022 dataset. They can be
categorized to binary and multi-class (family) classification
models. [3] - [10] worked on binary classification to classify
benign vs. malware and achieved accuracies in range [99% -
100%]. Table 1 presents a summary of existing binary and multi-
class classifications research on CIC-MalMem2022 dataset.

Authors of [9] and [10] studied multi-class classification as
well to classify the traffic to either benign or one of the three
malware classes: Ransomware, Spyware, or Trojan. Mezina et
al. [9] achieved the best accuracy of 83.53% for their Dilated
CNN model and 79.1% for their DT model. Shafin et al. [10]
achieved the best accuracy of 84.22% for their CompactCBL
(Compact CNN-BiLSTM) model and 84.56% for their
RobustCBL (Robust CNN-BiLSTM) model. Our research is
multi-class classification, and we compare our results with
RobustCBL [10], which is the state-of-the-art on multi-class
classification on this dataset. All these models are CNN-based.
[10] used CNN and bidirectional LSTM to propose their models.
Although these models achieved good accuracies, the complex
structure of CNN and LSTM rises the training and prediction
times. To address this issue, we propose a lightweight model
with higher accuracy and simpler structure.

Table 2: Number of records in each family

Class Count Percentage
Benign 29,298 50%
Ransomware 9,791 17.1%
Spyware 10,020 16.7%
Trojan 9,487 16.2%
Total 58,596 100%

III. METHODOLOGY

A. Dataset
We used the CIC-MalMem2022 dataset [3] for our research,

which consists of memory analysis features of real network
scenarios of obfuscated malware attacks. This dataset consists
of four different classes: Benign, Ransomware, Spyware, and
Trojan. There are 29,298 Benign records, 9,791 Ransomware
records, 10,020 Spyware records, and 9,487 Trojan records for
a total of 58,596 entries in the roughly 19 MB dataset. Each
record has 56 features, 54 of which are numerical. The
remaining two features describe the class and subclass of the
record, with each class containing five subclasses. The dataset
classes are broken down in Table 2. In our problem, we build a
model that classifies the traffic to 4 classes.

B. SMOTE
Synthetic Minority Over-sampling Technique (SMOTE) is a

data augmentation technique used to synthetically oversample
the minority classes. It first selects a random record from a
minority class, then selects neighboring records of that class and
creates a new synthetic record at a random point between one of
the random neighbors and the first selected record. We first split
out dataset to 70% training set (41,017 records) and 30% test set
(17,579 records). Then, we applied SMOTE on the training set
to get a synthetic distribution of records for 4 classes (benign
and 3 types of malwares).

SMOTE has been used in other research studies to
oversample imbalanced datasets. Basgall et al. [11] and
Ramentol et al. [12] studied the effectiveness of SMOTE on
sparse and imbalanced datasets. Ma et al. [13] studied SMOTE
on Bioinformatics datasets. Seo et al. [14] studied SMOTE on
Intrusion Detection datasets. Kudugunta et al. [15] and Gonzalez
et al. [16] studied SMOTE on Botnet attacks datasets. These
studies demonstrated the effectiveness of SMOTE on machine
learning models on imbalanced datasets.

Table 3: Number of records in each class before applying
SMOTE&TL

Class
Train
records

Train
portion

Test
records

Test
portion

Benign 20,509 35% 8,790 15%
Ransomware 6,854 11.7% 2,937 5%
Spyware 7,014 12% 3,006 5%
Trojan 6,641 11.3% 2,846 5%
Total 41,018 70% 17,579 30%

2024 Workshop on Computing, Networking and Communications (CNC)

240

Table 4: Number of records in each class after applying
SMOTE&TL

Class
Train
records

Train
portion

Test
records

Test
portion

Benign 20,509 21% 8,790 9%
Ransomware 20,276 20% 2,937 3%
Spyware 20,316 20.5% 3,006 3%
Trojan 20,352 20.5% 2,846 3%
Total 81,450 82% 17,579 18%

C. Tomek Links (TL)
The Tomek Links algorithm aims to undersample the

majority class by finding samples of the majority class that most
resemble samples from the minority classes, and then removes
that record from the dataset. After SMOTE, we applied Tomek
Links algorithm on the training set.

After applying the hybrid method of SMOTE and Tomek
Links algorithm (SMOTE&TL), the training set consisted of
81,450 records with roughly 20,300 records for each family,
which is almost 25% of the dataset records. Tables 3 and 4
illustrate the data distribution of classes before and after
applying SMOTE&TL on the training set. Note that we apply
SMOTE&TL only on the training set, not the test set.

D. Data Standardization
To standardize features, we applied the StandardScaler

method from scikit learn library, which scales to unit variance.
The standard score of a sample x is calculated as z = (x-u)/s,
where u is the mean of the training samples and s is the standard
deviation of the training samples.

IV. HYPERPARAMETER TUNNING
We applied the SMOTE&TL data augmentation technique

to the training dataset and then used it to build two machine
learning models: Random Forest (RF) and Extra Tree (ET).
Then, we tunned hyperparameters for each model to get the best
performances. We used grid search for hypertunning. We did
not observe any sign of overfitting in our models during
hypertunning. Table 5 illustrates the tunned hyperparameters for
each model.

V. PERFORMANCE MEASURES
To analyze the effectiveness of our proposed machine

learning models, we used the standard metrics.

1. TP (True Positive): An instance of class B was correctly
predicted to be in class B.

Table 5: Tunned hyperparameters for each ML model

ML Hyperparameters
RF n_estimators = 100, criterion = "log_loss"
ET n_estimators = 100, criterion = "gini", random_state

= 0

2. FP (False Positive): An instance of a non-B class was
incorrectly predicted to be in class B.

3. TN (rue Negative): An instance of a non-B class was
correctly predicted to be in a non-B class.

4. FN (False Negative): An instance of class B was
incorrectly predicted to be in a non-B class.

Accuracy: Accuracy measures the proportion of the
correctly predicted instances of a class to the total number of
predictions in that class. It is measured by equation 1.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁) (1)

Precision: Precision measures the proportion of the
correctly predicted instances of a class to the total number of
instances that were predicted to be in that class, either correctly
or incorrectly. It is measured by equation 2.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (2)

Recall: Recall measures the proportion of the correctly
predicted instances of a class to the total number of instances in
that class that were provided. It is measured by equation 3.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (3)

F1 score: F1 score measures the ‘Harmonic mean’ of
precision and recall values. It is measured by equation 4.

𝐹1 𝑠𝑐𝑜𝑟𝑒 = (2u (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 u 𝑟𝑒𝑐𝑎𝑙𝑙))/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
 (4)

VI. RESULTS AND ANALYSIS
The state-of-the-art on obfuscated malware binary

classification, which aims detecting obfuscated malware vs.
benign traffic has been promising. Some proposed models [7],
[8] achieved 100% accuracy. However, to effectively combat
the malicious functionality of malware traffic, it is essential to
detect the malware class, which gives accurate information
about the nature of the malware and the way it infects the
network devices and spreads in the network. This information
could help mitigate the malware’s destructive impacts on the
network devices. Our problem is multi-class classification to
detect the Benign traffic vs. one of the three types of obfuscated
malwares: (1) Ransomware, (2) Spyware, and (2) Trojan.

We explored several machine learning models, including
XGBoost and Decision Tree, and hypertunned them. Here, we
present the best results, which we achieved from our Random
Forest and Extra Tree models. We also explored different
feature selection techniques with different numbers of features,
which did not make significant improvement to our best models.
We created two machine learning models to test the
effectiveness of SMOTE&TL technique data augmentation on
obfuscated malware multi-class classification. We used Random
Forest (RF) and Extra Tree (ET) machine learning algorithms
for our models. Table 6 presents the results. The proposed two
models achieved 87.1% (RF with SMOTE&TL) and 86.1% (ET
with SMOTE&TL) multi-class classification accuracies and
outperformed the state-of-the-art.

2024 Workshop on Computing, Networking and Communications (CNC)

241

Table 6: Comparison of the proposed models and the-state-of-the-art.

No Model Accuracy Precision Recall F1-Score

1 Random Forest
with SMOTE&TL 0.871 0.871 0.871 0.871

2 Extra Tree
with SMOTE&TL 0.861 0.861 0.862 0.862

3 RobustCBL [10] 0.8456 0.85 0.85 0.84

4 CompactCBL [10] 0.8422 0.84 0.84 0.84

5 DCNN [9] 0.8353 0.76 0.75 0.75

6 Decision Tree [9] 0.7916 0.69 0.69 0.69

 The most accurate existing models for obfuscated malwares
multi-class classification are RobustCBL [10] with 84.56%
accuracy, CompactCBL [10] with 84.22% accuracy and DCNN
[9] with 83.53% accuracy, which are much less accurate than
our proposed models. The models proposed by [9] and [10] are
all CNN-based deep learning models, which are heavyweight
for an IoT device. However, our models are lightweight and
remarkably more accurate, which make them suitable for
resource constrained IoT devices.

We implemented and tested our models using Google Colab
with Tesla 4 GPU. Our RF with SMOTE&TL model was built
in 33.53 seconds. It took 0.36 seconds for this model to classify
the test set’s instances. Our ET with SMOTE&TL model was
built in 12.69 seconds, which is shorter than the first model.
However, it took 0.49 seconds for this model to classify the test
set’s instances, which is more than the first model. Thus, we
select our RF with SMOTE&TL model as our best model, a
lightweight model providing the highest accuracy and low
prediction time, suitable for a resource constrained IoT device.
We also ran extensive experiments on other machine learning
algorithms, e.g., XGBoost and Decision Tree. However, the
proposed models outperformed all other models.

Table 6 illustrates that our RF with SMOTE&TL model
remarkably outperforms other models in terms of precision,
recall, and F1-Score as well. We studied these metrics with more
details to investigate the performance of our model in classifying
each type of obfuscated malware. Table 8 presents the confusion
matrix for our best model. Classes 0, 1, 2, 3, and 4 are Benign,
obfuscated Ransomware, obfuscated Spyware, and obfuscated
Trojan respectively.

Table 7 illustrates the precision, recall, and F1-Score per
class in our best model and compares them with the state-of-the-
art, which are the models proposed by [10]. The results reveal
that all classifiers accurately classify almost all Benign traffic.
This could be associated with the absence of obfuscation in
Benign samples, which make them easier to classify. It could
also be associated with the original number of Benign samples
in the training set, which is much higher than the original
obfuscated malware samples.

All models demonstrate the highest F1-Score for obfuscated
Spyware (78% for the proposed model and 73% and 72% for
[10]), and lower F1-Scores for obfuscated Trojan (72% for the
proposed model and 70% and 71% for [10]) and obfuscated
Ransomware (73% for the proposed model and 64% and 63%
for [10]).

This could be associated with strong association between the
obfuscation features of the dataset [3] and the Spyware class.
This indicates despite obfuscation the model still successfully
classifies a large portion of obfuscated Spywares. On the other
hand, Ransomwares and Trojans are more successful in
obfuscation, and the memory analysis features cause
misclassifications for many samples in these two classes.

Overall, the proposed model remarkably outperforms the
models of [10] in classifying malwares in terms of F1-Score. A
closer look shows that the reason why the models of [10] present
less performance is low precision in classifying some classes of
obfuscated malware and low recall in other classes. For
example, RobustCBL [10] demonstrates low precision of 69%
in classifying obfuscated Spyware, indicating high False
Positives in this class, meaning this model incorrectly classifies
several non-Spywares to be Spywares.

Also, this model demonstrates low recall of 62% in
classifying obfuscated Ransomware, indicating high False
Negatives in this class, meaning this model incorrectly classifies
several Ransomwares to be non-Ransomwares. On the other
hand, our proposed model presents the same high precisions and
recalls in range [72% - 78%] for each class, indicating low False
predictions in our proposed model, meaning the number of False
Positives and False Negatives in each class is almost the same
and relatively low.

This can be observed in Table 8 as well. This makes sense
because the SMOTE&TL data augmentation that we initially
applied to the training dataset added a large number of simulated
samples to the training set, giving more opportunity to the model
to get trained with high number of samples in each class and
correctly classify the class of each malware at prediction time.

2024 Workshop on Computing, Networking and Communications (CNC)

242

Table 7: Family-wise classification performances of our proposed model comparing to [10]

 Proposed RF with SMOTE&TL RobustCBL [10] CompactCBL [10]

Class Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Benign 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Ransomware 0.73 0.73 0.73 0.67 0.62 0.64 0.67 0.60 0.63

Spyware 0.78 0.78 0.78 0.69 0.77 0.73 0.70 0.72 0.72

Trojan 0.72 0.72 0.72 0.71 0.67 0.70 0.68 0.74 0.71

Table 8: Confusion Matrix for RF with SMOTE&TL

 Predicted label
Actual
label

 Class 0 Class 1 Class 2 Class 3
Class 0 8788 0 2 0
Class 1 0 2146 349 442
Class 2 0 308 2329 369
Class 3 0 515 272 2059

VII. CONCLUSION
In this research, we proposed a machine learning model for

an intrusion detection system that classifies obfuscated
malwares. The proposed model is lightweight, suitable for
resource constrained IoT devices on the Internet. We applied a
hybrid method of SMOTE oversampling and Tomek Links
undersampling to our training dataset extracted from CIC-
MalMem2022 dataset and built the model with that. Our
experimental results demonstrated that the proposed model
remarkably improved the performance comparing to the state-
of-the-art in terms of accuracy, precision, recall, and F1-Score.
We also analyzed the performance of our proposed model in
classifying each obfuscated malware class in terms of class-wise
precision, recall, and F1-Score.

REFERENCES
[1] Available online, https://www.statista.com/statistics/873097/malware-
attacks-per-year-worldwide/ (accessed on July 30, 2023).
[2] A.H. Lashkari, B. Li, T.L. Carrier, and G. Kaur, “Volmemlyzer: Volatile
memory analyzer for malware classification using feature engineering,” 2021
IEEE Reconciling Data Analytics, Automation, Privacy, and Security: A Big
Data Challenge (RDAAPS), 2021. doi:
10.1109/RDAAPS48126.2021.9452028.
[3] T. Carrier, P. Victor, A. Tekeoglu, and A.H. Lashkari, “Detecting
Obfuscated Malware using Memory Feature Engineering,” ICISSP, 2022. doi:
10.5220/0010908200003120.
[4] M. Dener, G. Ok, and A. Orman, “Malware detection using memory
analysis data in big data environment,” Applied Sciences, 2022. doi:
10.3390/app12178604.
[7] M.A. Talukder, K.F. Hasan, M.M. Islam, M.A. Uddin, A. Akhter, M.A.
Yousuf, F. Alharbi, and M.A. Moni, “A dependable hybrid machine learning
model for network intrusion detection,” Journal of Information Security and
Applications, 2023. doi: 10.1016/j.jisa.2022.103405.

[8] M.H.L. Louk, and B.A. Tama, “Tree-based classifier ensembles for PE
malware analysis: A performance revisit,” Algorithms, 2022. doi:
10.3390/a15090332.
[6] D. Smith, S. Khorsandroo, and K. Roy, “Supervised and unsupervised
learning techniques utilizing malware datasets,” IEEE 2nd International
Conference on AI in Cybersecurity (ICAIC), 2023. doi:
10.1109/ICAIC57335.2023.10044169.
[5] M.R. Ghazi and N.S. Raghava, “Machine Learning Based Obfuscated
Malware Detection in the Cloud Environment with Nature-Inspired Feature
Selection,” IEEE 5th International Conference on Multimedia, Signal
Processing and Communication Technologies (IMPACT), 2022. doi:
10.1109/IMPACT55510.2022.10029271.
[9] A. Mezina and R. Burget, “Obfuscated malware detection using dilated
convolutional network,” 14th International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT), 2022.
doi: 10.1109/ICUMT57764.2022.9943443.
[10] S.S. Shafin, G. Karmakar, and I. Mareels, “Obfuscated Memory Malware
Detection in Resource-Constrained IoT Devices for Smart City Applications,”
Sensors, vol. 23, no. 11, p. 5348, Jun. 2023, doi: 10.3390/s23115348.
[11] M.J. Basgall, W. Hasperué, M. Naiouf, A. Fernández, and F. Herrera,
“SMOTE-BD: An exact and scalable oversampling method for imbalanced
classification in big data,” Journal of Cloud Computing & Big Data (JCC&BD),
2018.
[12] E. Ramentol, Y. Caballero, R. Bello, and F. Herrera, “Smote-rsb: a hybrid
preprocessing approach based on oversampling and undersampling for high
imbalanced data-sets using smote and rough sets theory,” Knowledge and
information systems, 2012. doi: 10.1007/s10115-011-0465-6.
[13] L. Ma, and S. Fan, “CURE-SMOTE algorithm and hybrid algorithm for
feature selection and parameter optimization based on random forests,” BMC
bioinformatics, 2017. doi: 10.1186/s12859-017-1578-z.
[14] J.H. Seo, and Y.H. Kim, “Machine-learning approach to optimize smote
ratio in class imbalance dataset for intrusion detection,” Computational
intelligence and neuroscience, 2018. doi: 10.1155/2018/9704672.
[15] S. Kudugunta, and E. Ferrara, “Deep neural networks for bot detection,”
Information Sciences, 2018. doi: 10.1016/j.ins.2018.08.019.
[16] D. Gonzalez-Cuautle, A. Hernandez-Suarez, G. Sanchez-Perez, L.K.
Toscano-Medina, J. Portillo-Portillo, J. Olivares-Mercado, H.M. Perez-Meana,
and A.L. Sandoval-Orozco, “Synthetic minority oversampling technique for
optimizing classification tasks in botnet and intrusion-detection-system
datasets,” Applied Sciences, 2020. doi: 10.3390/app10030794.
[17] Y. Wang, H. Yao, and S. Zhao, “Auto-encoder based dimensionality
reduction,” Neurocomputing, 2016. doi: 10.1016/j.neucom.2015.08.104.
[18] Available online, https://github.com/chasedehan/BoostARoota/blo
b/master/README.md (accessed on July 30, 2023).

2024 Workshop on Computing, Networking and Communications (CNC)

243

