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Abstract—The rapidly growing number of obfuscated malware 
attacks in the past few years has emerged as a significant threat 
for organizations and individuals, demanding prompt action to 
develop systems that accurately detect these attacks to block them 
or mitigate their impacts. These types of malwares use obfuscation 
techniques to hide their malicious functionalities from intrusion 
detection systems, which makes their detection more complicated 
than regular malwares. Most of the obfuscated malware detection 
systems primarily focus on binary classification. The existing 
multi-class classification methods mainly have used CNN-based 
deep learning to improve the model’s accuracy. However, this 
approach is not suitable for resource constrained network nodes, 
such as IoT devices, which are widely used on the Internet to 
monitor and control different environments. To tackle this issue, 
in this paper, we propose a lightweight model that accurately and 
efficiently classifies benign traffic vs. different classes of 
obfuscated malwares. Our proposed model uses a hybrid method 
of SMOTE oversampling to synthetically create training records 
for the minority classes in combination with undersampling the 
majority class via Tomek Links algorithm to increase the model’s 
performance in malware classification. W applied this hybrid data 
augmentation technique to our training dataset extracted from 
CIC-MalMem2022 dataset to build a Random Forest model. Our 
experimental results demonstrated that the proposed model 
outperforms the state-of-the-art with 87.1% accuracy in 
classifying obfuscated malwares.  

Keywords— Obfuscated Malware Classification; Network 
security; Machine Learning; Data Augmentation;  

I. INTRODUCTION  
During 2022, the worldwide number of malware attacks 

reached 5.5 billion [1]. Malware is a type of malicious software 
that aims to disrupt a system’s activity, steal sensitive 
information, or cause harm in some way to a network or 
individual device. Obfuscated malware is a type of malware that 
hides its disruptive functionality from malware detectors. One 
of the main malware obfuscation detection techniques is 
memory analysis, i.e., by extracting aggregated data on memory 
handles, code injections, memory modules, etc. In our proposed 
framework, we use CIC-MalMem2022 dataset, created by 
extracting such features from memory dumps using an extension 
to VolMemLyzer tool [2].   

This dataset presents data for benign traffic and three types 
of malwares: (1) Ransomware, (2) Spyware, and (3) Trojan. 
Ransomware gains the control of the victim machine’s system 
file, encrypts the files, and holds the encryption key hostage. 
Oftentimes Ransomware attacks are extremely difficult to 

reverse and may even overwrite or delete all files even if the 
ransom is paid. Spyware aims to secretly infiltrate a network in 
order to collect sensitive data in the background without raising 
attention. The sensitive data collected by Spyware can range 
from passwords to social security numbers and can result in 
significant financial harm. A Trojan is a type of malware that 
disguises itself as a legitimate program to remain undetected. 
Once run, this seemingly innocent program can perform a wide 
variety of harmful actions from data theft to creating backdoor 
access for other attacks to take place on the infiltrated system. 

Malware obfuscation is a technique that malware authors use 
to make their malware difficult to detect or analyze. There is a 
variety of techniques that malware authors use for this purpose. 
Most of these techniques mainly aim to hide a critical string in 
the malware code, which reveals the patterns of the malwares’ 
behavior. Often, they use packing technique to compress the 
executable code and make it difficult for intrusion detection 
systems to reveal its pattern. Another technique is inserting a 
dead-code to change the malware’s pattern.  

The existing research on obfuscated malware multi-class 
classification have used CNN-based models, which are more 
suitable for an intrusion detection system located at the network 
edge rather than a resource constrained device, such as an IoT. 
In our models, rather than computationally expensive deep 
learning models, we augmented the training data at the pre-
processing phase, and created a light-weight machine learning 
model, which outperforms the existing CNN-based models.   

The main contributions of our research are as following.  

1. In order to cope with the data imbalanced issue, we 
applied a hybrid data augmentation method of SMOTE 
and Tomek Links algorithm to the training dataset.  

2. We used this augmented training dataset to build a 
lightweight multi-class classification machine learning 
model that classifies Benign vs.  3 types of obfuscated 
malwares: Ransomware, Spyware, and Trojan.  

3. Our experimental results demonstrated that the 
proposed model outperforms the state of the art in terms 
of accuracy, precision, recall, and F1-Score.  

The rest of this paper is organized as the following. Section 
II describes the related work. Section III explains the 
methodology, including the dataset and preprocessing. Section 
IX explains the proposed machine learning models and 
hyperparameter tunning. Section X presents the performance 
measures. Section XI presents the results and discussion. 
Section XII draws the conclusion. 
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Table 1: A summary of accuracies of existing binary and family 
classifications research on CIC-MalMem2022 

 Reference Year Model Acc 
Binary 
Classifi
cation 

[3] Carrier et al. 2022 EL 99 
[4] Dener et al. 2022 LR 99.97 
[5] Ghazi et al. 2022 RF 99.99 
[6] Smith et al. 2023 RF, DT, ET, AB  99.99 
[7] Talukder et 
al. 

2023 RF, ANN 100 

[8] Louk et al. 2022 RF 100 
[9] Mezina et al. 2022 DCNN 99.92 
[10] Shafin et al. 2023 CompactCBL 

RobustCBL  
99.92 
99.96 

Family 
Classifi
cation 

[9] Mezina et al. 2022 Decision Tree 
DCNN 

79.16
83.53 

[10] Shafin et al. 2023 CompactCBL 
RobustCBL 

84.22 
84.56 

II. RELATED WORK 
Machine learning has been used to classify malware attacks. 

Carrier et al. [2] created CIC-MalMem2022, a popular dataset 
on obfuscated malware memory data, which is publicly 
available at the Canadian Institute for Cybersecurity website. 
The authors extended the VolMemLyzer tool to extract hidden 
and obfuscated memory features. This dataset is constructed of 
benign and three types of malwares, namely Spyware, 
Ransomware, and Trojan horse. The authors also developed a 
stacked ensemble learning framework for a binary classification 
of benign vs. malware.  

A variety of research work has studied obfuscated malware 
classification using CIC-MalMem2022 dataset. They can be 
categorized to binary and multi-class (family) classification 
models. [3] - [10] worked on binary classification to classify 
benign vs. malware and achieved accuracies in range [99% - 
100%]. Table 1 presents a summary of existing binary and multi-
class classifications research on CIC-MalMem2022 dataset.  

Authors of [9] and [10] studied multi-class classification as 
well to classify the traffic to either benign or one of the three 
malware classes: Ransomware, Spyware, or Trojan. Mezina et 
al. [9] achieved the best accuracy of 83.53% for their Dilated 
CNN model and 79.1% for their DT model. Shafin et al. [10] 
achieved the best accuracy of 84.22% for their CompactCBL 
(Compact CNN-BiLSTM) model and 84.56% for their 
RobustCBL (Robust CNN-BiLSTM) model. Our research is 
multi-class classification, and we compare our results with 
RobustCBL [10], which is the state-of-the-art on multi-class 
classification on this dataset. All these models are CNN-based. 
[10] used CNN and bidirectional LSTM to propose their models. 
Although these models achieved good accuracies, the complex 
structure of CNN and LSTM rises the training and prediction 
times. To address this issue, we propose a lightweight model 
with higher accuracy and simpler structure.  

Table 2: Number of records in each family  

Class Count Percentage 
Benign 29,298 50% 
Ransomware 9,791 17.1% 
Spyware 10,020 16.7% 
Trojan 9,487 16.2% 
Total 58,596 100% 

III. METHODOLOGY 

A. Dataset 
We used the CIC-MalMem2022 dataset [3] for our research, 

which consists of memory analysis features of real network 
scenarios of obfuscated malware attacks.  This dataset consists 
of four different classes: Benign, Ransomware, Spyware, and 
Trojan. There are 29,298 Benign records, 9,791 Ransomware 
records, 10,020 Spyware records, and 9,487 Trojan records for 
a total of 58,596 entries in the roughly 19 MB dataset. Each 
record has 56 features, 54 of which are numerical. The 
remaining two features describe the class and subclass of the 
record, with each class containing five subclasses. The dataset 
classes are broken down in Table 2. In our problem, we build a 
model that classifies the traffic to 4 classes.    

B. SMOTE 
Synthetic Minority Over-sampling Technique (SMOTE) is a 

data augmentation technique used to synthetically oversample 
the minority classes. It first selects a random record from a 
minority class, then selects neighboring records of that class and 
creates a new synthetic record at a random point between one of 
the random neighbors and the first selected record. We first split 
out dataset to 70% training set (41,017 records) and 30% test set 
(17,579 records). Then, we applied SMOTE on the training set 
to get a synthetic distribution of records for 4 classes (benign 
and 3 types of malwares).  

SMOTE has been used in other research studies to 
oversample imbalanced datasets. Basgall et al. [11] and 
Ramentol et al. [12] studied the effectiveness of SMOTE on 
sparse and imbalanced datasets. Ma et al. [13] studied SMOTE 
on Bioinformatics datasets. Seo et al. [14] studied SMOTE on 
Intrusion Detection datasets. Kudugunta et al. [15] and Gonzalez 
et al. [16] studied SMOTE on Botnet attacks datasets. These 
studies demonstrated the effectiveness of SMOTE on machine 
learning models on imbalanced datasets.  

Table 3: Number of records in each class before applying 
SMOTE&TL 

Class 
Train 
records 

Train 
portion 

Test 
records 

Test 
portion 

Benign 20,509 35% 8,790 15% 
Ransomware 6,854 11.7% 2,937 5% 
Spyware 7,014 12% 3,006 5% 
Trojan 6,641 11.3% 2,846 5% 
Total 41,018 70% 17,579 30% 
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Table 4: Number of records in each class after applying 
SMOTE&TL 

Class 
Train 
records 

Train 
portion 

Test 
records 

Test 
portion 

Benign 20,509 21% 8,790 9% 
Ransomware 20,276 20% 2,937 3% 
Spyware 20,316 20.5% 3,006 3% 
Trojan 20,352 20.5% 2,846 3% 
Total 81,450 82% 17,579 18% 
 

C. Tomek Links (TL) 
The Tomek Links algorithm aims to undersample the 

majority class by finding samples of the majority class that most 
resemble samples from the minority classes, and then removes 
that record from the dataset. After SMOTE, we applied Tomek 
Links algorithm on the training set. 

After applying the hybrid method of SMOTE and Tomek 
Links algorithm (SMOTE&TL), the training set consisted of 
81,450 records with roughly 20,300 records for each family, 
which is almost 25% of the dataset records. Tables 3 and 4 
illustrate the data distribution of classes before and after 
applying SMOTE&TL on the training set. Note that we apply 
SMOTE&TL only on the training set, not the test set.   

D. Data Standardization  
To standardize features, we applied the StandardScaler 

method from scikit learn library, which scales to unit variance. 
The standard score of a sample x is calculated as z = (x-u)/s, 
where u is the mean of the training samples and s is the standard 
deviation of the training samples. 

IV. HYPERPARAMETER TUNNING 
We applied the SMOTE&TL data augmentation technique 

to the training dataset and then used it to build two machine 
learning models: Random Forest (RF) and Extra Tree (ET). 
Then, we tunned hyperparameters for each model to get the best 
performances. We used grid search for hypertunning. We did 
not observe any sign of overfitting in our models during 
hypertunning. Table 5 illustrates the tunned hyperparameters for 
each model. 

V. PERFORMANCE MEASURES 
To analyze the effectiveness of our proposed machine 

learning models, we used the standard metrics.  

1. TP (True Positive): An instance of class B was correctly 
predicted to be in class B.  

 

Table 5: Tunned hyperparameters for each ML model 

ML  Hyperparameters  
RF n_estimators = 100, criterion = "log_loss" 
ET n_estimators = 100, criterion = "gini", random_state 

= 0 

2. FP (False Positive): An instance of a non-B class was 
incorrectly predicted to be in class B.  

3. TN (rue Negative): An instance of a non-B class was 
correctly predicted to be in a non-B class.  

4. FN (False Negative): An instance of class B was 
incorrectly predicted to be in a non-B class.  

Accuracy: Accuracy measures the proportion of the 
correctly predicted instances of a class to the total number of 
predictions in that class. It is measured by equation 1.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)   (1) 

Precision: Precision measures the proportion of the 
correctly predicted instances of a class to the total number of 
instances that were predicted to be in that class, either correctly 
or incorrectly. It is measured by equation 2.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)       (2) 

Recall: Recall measures the proportion of the correctly 
predicted instances of a class to the total number of instances in 
that class that were provided. It is measured by equation 3.  

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)        (3) 

F1 score: F1 score measures the ‘Harmonic mean’ of 
precision and recall values. It is measured by equation 4.  

𝐹1 𝑠𝑐𝑜𝑟𝑒 = (2u (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 u 𝑟𝑒𝑐𝑎𝑙𝑙))/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙) 
           (4) 

VI. RESULTS AND ANALYSIS 
The state-of-the-art on obfuscated malware binary 

classification, which aims detecting obfuscated malware vs. 
benign traffic has been promising. Some proposed models [7], 
[8] achieved 100% accuracy. However, to effectively combat 
the malicious functionality of malware traffic, it is essential to 
detect the malware class, which gives accurate information 
about the nature of the malware and the way it infects the 
network devices and spreads in the network. This information 
could help mitigate the malware’s destructive impacts on the 
network devices. Our problem is multi-class classification to 
detect the Benign traffic vs. one of the three types of obfuscated 
malwares: (1) Ransomware, (2) Spyware, and (2) Trojan. 

We explored several machine learning models, including 
XGBoost and Decision Tree, and hypertunned them. Here, we 
present the best results, which we achieved from our Random 
Forest and Extra Tree models. We also explored different 
feature selection techniques with different numbers of features, 
which did not make significant improvement to our best models. 
We created two machine learning models to test the 
effectiveness of SMOTE&TL technique data augmentation on 
obfuscated malware multi-class classification. We used Random 
Forest (RF) and Extra Tree (ET) machine learning algorithms 
for our models. Table 6 presents the results. The proposed two 
models achieved 87.1% (RF with SMOTE&TL) and 86.1% (ET 
with SMOTE&TL) multi-class classification accuracies and 
outperformed the state-of-the-art.   

2024 Workshop on Computing, Networking and Communications (CNC)

241



 

Table 6: Comparison of the proposed models and the-state-of-the-art. 

No Model Accuracy Precision Recall F1-Score 

1 Random Forest 
with SMOTE&TL 0.871 0.871 0.871 0.871 

2 Extra Tree 
with SMOTE&TL 0.861 0.861 0.862 0.862 

3 RobustCBL [10] 0.8456 0.85 0.85 0.84 

4 CompactCBL [10] 0.8422 0.84 0.84 0.84 

5 DCNN [9] 0.8353 0.76 0.75 0.75 

6 Decision Tree [9] 0.7916 0.69 0.69 0.69 
 

 The most accurate existing models for obfuscated malwares 
multi-class classification are RobustCBL [10] with 84.56% 
accuracy, CompactCBL [10] with 84.22% accuracy and DCNN 
[9] with 83.53% accuracy, which are much less accurate than 
our proposed models. The models proposed by [9] and [10] are 
all CNN-based deep learning models, which are heavyweight 
for an IoT device. However, our models are lightweight and 
remarkably more accurate, which make them suitable for 
resource constrained IoT devices.   

We implemented and tested our models using Google Colab 
with Tesla 4 GPU. Our RF with SMOTE&TL model was built 
in 33.53 seconds. It took 0.36 seconds for this model to classify 
the test set’s instances. Our ET with SMOTE&TL model was 
built in 12.69 seconds, which is shorter than the first model. 
However, it took 0.49 seconds for this model to classify the test 
set’s instances, which is more than the first model. Thus, we 
select our RF with SMOTE&TL model as our best model, a 
lightweight model providing the highest accuracy and low 
prediction time, suitable for a resource constrained IoT device. 
We also ran extensive experiments on other machine learning 
algorithms, e.g., XGBoost and Decision Tree. However, the 
proposed models outperformed all other models. 

Table 6 illustrates that our RF with SMOTE&TL model 
remarkably outperforms other models in terms of precision, 
recall, and F1-Score as well. We studied these metrics with more 
details to investigate the performance of our model in classifying 
each type of obfuscated malware. Table 8 presents the confusion 
matrix for our best model. Classes 0, 1, 2, 3, and 4 are Benign, 
obfuscated Ransomware, obfuscated Spyware, and obfuscated 
Trojan respectively.  

Table 7 illustrates the precision, recall, and F1-Score per 
class in our best model and compares them with the state-of-the-
art, which are the models proposed by [10]. The results reveal 
that all classifiers accurately classify almost all Benign traffic. 
This could be associated with the absence of obfuscation in 
Benign samples, which make them easier to classify. It could 
also be associated with the original number of Benign samples 
in the training set, which is much higher than the original 
obfuscated malware samples.  

All models demonstrate the highest F1-Score for obfuscated 
Spyware (78% for the proposed model and 73% and 72% for 
[10]), and lower F1-Scores for obfuscated Trojan (72% for the 
proposed model and 70% and 71% for [10]) and obfuscated 
Ransomware (73% for the proposed model and 64% and 63% 
for [10]).  

This could be associated with strong association between the 
obfuscation features of the dataset [3] and the Spyware class. 
This indicates despite obfuscation the model still successfully 
classifies a large portion of obfuscated Spywares. On the other 
hand, Ransomwares and Trojans are more successful in 
obfuscation, and the memory analysis features cause 
misclassifications for many samples in these two classes.     

Overall, the proposed model remarkably outperforms the 
models of [10] in classifying malwares in terms of F1-Score. A 
closer look shows that the reason why the models of [10] present 
less performance is low precision in classifying some classes of 
obfuscated malware and low recall in other classes. For 
example, RobustCBL [10] demonstrates low precision of 69% 
in classifying obfuscated Spyware, indicating high False 
Positives in this class, meaning this model incorrectly classifies 
several non-Spywares to be Spywares.  

Also, this model demonstrates low recall of 62% in 
classifying obfuscated Ransomware, indicating high False 
Negatives in this class, meaning this model incorrectly classifies 
several Ransomwares to be non-Ransomwares. On the other 
hand, our proposed model presents the same high precisions and 
recalls in range [72% - 78%] for each class, indicating low False 
predictions in our proposed model, meaning the number of False 
Positives and False Negatives in each class is almost the same 
and relatively low.  

This can be observed in Table 8 as well. This makes sense 
because the SMOTE&TL data augmentation that we initially 
applied to the training dataset added a large number of simulated 
samples to the training set, giving more opportunity to the model 
to get trained with high number of samples in each class and 
correctly classify the class of each malware at prediction time.  
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Table 7: Family-wise classification performances of our proposed model comparing to [10] 

 Proposed RF with SMOTE&TL RobustCBL [10] CompactCBL [10] 

Class Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score 

Benign 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Ransomware 0.73 0.73 0.73 0.67 0.62 0.64 0.67 0.60 0.63 

Spyware 0.78 0.78 0.78 0.69 0.77 0.73 0.70 0.72 0.72 

Trojan 0.72 0.72 0.72 0.71 0.67 0.70 0.68 0.74 0.71 
 

Table 8: Confusion Matrix for RF with SMOTE&TL 

 Predicted label 
Actual 
label 

 Class 0 Class 1 Class 2 Class 3 
Class 0 8788 0 2 0 
Class 1 0 2146 349 442 
Class 2 0 308 2329 369 
Class 3 0 515 272 2059 

VII. CONCLUSION 
In this research, we proposed a machine learning model for 

an intrusion detection system that classifies obfuscated 
malwares. The proposed model is lightweight, suitable for 
resource constrained IoT devices on the Internet. We applied a 
hybrid method of SMOTE oversampling and Tomek Links 
undersampling to our training dataset extracted from CIC-
MalMem2022 dataset and built the model with that. Our 
experimental results demonstrated that the proposed model 
remarkably improved the performance comparing to the state-
of-the-art in terms of accuracy, precision, recall, and F1-Score. 
We also analyzed the performance of our proposed model in 
classifying each obfuscated malware class in terms of class-wise 
precision, recall, and F1-Score. 
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