
Towards Automatically Matching Security
Advisories to CPEs: String Similarity-based Vendor

Matching
Kylie McClanahan

University of Arkansas
klmcclan@uark.edu

Qinghua Li
University of Arkansas

qinghual@uark.edu

Abstract—When a vulnerability is reported by the National
Vulnerability Database (NVD), affected products are listed in
the structured Common Platform Enumeration (CPE) format.
Unfortunately, if the vulnerability is in a software library (e.g.,
Log4j), it will not include CPEs for each product containing
that library. In these cases, security operators need to manually
read the vendor’s or third-party security advisories to see if
their product is affected. However, these advisories do not
report affected products in a structured format, which prevents
automated processing.

This paper makes the first effort towards automatically con-
structing structured CPEs for the vulnerable products in a
non-NVD security advisory from the unstructured data in the
advisory. Since this is a very challenging problem, this paper
specifically focuses on the initial but key step of matching the un-
structured vendor names in security advisories to the structured
vendor representations in the standard CPE format. We explore
the feasibility of using string similarity to solve the problem.
The basic idea is to compare a vendor name from the non-NVD
advisory with each vendor in the official CPE dictionary. The
CPE vendor with the highest similarity score to the advisory’s
vendor will be considered as the match. We first conduct an
experimental, comparative study of multiple mainstream string
similarity metrics for this matching problem. To improve the
performance, we then design a new string similarity metric that
is adapted from an existing metric by weighing different tokens
in the advisory’s vendor name differently.

Index Terms—Vulnerability, CPE, Entity Matching

I. INTRODUCTION

Vulnerability and patch management is a difficult and multi-
step process, lasting from the initial notification of a secu-
rity issue to the verification of device functionality after a
successful patch installation. One key step in the process is
determining applicability: whether a device is affected by a
certain vulnerability or not (or should apply a certain patch or
not); indeed, this informs all other actions.

The National Vulnerability Database (NVD) uses the Com-
mon Platform Enumeration (CPE) to inform applicability. A
vulnerability in the NVD, identified by a Common Vulner-
abilities and Exposures (CVE) string, includes a listing of
CPEs, or strings that represent vulnerable products and/or
configurations. A security operator or security analyst could
create a list of CPEs for their organization’s devices and,
in theory, automatically check that list against vulnerabilities
released by the NVD.

One severe limitation with this approach is the case of a
vulnerability in a commonly-used library or framework. The
CVE for a framework will include a CPE for that framework
by default. The MITRE CVE Program takes measures to
prevent duplicate CVEs, and as a part of that, their program
guidelines state that a product which contains a vulnerable
component — when the vulnerability in the component has
already been assigned a CVE identifier— is not enough for
that product to be given its own CVE [1]. Instead, CPEs for
products containing a vulnerable component can be added to
the original CVE for that component. Thus, products that use
or implement a vulnerable library may submit their CPEs to
the NVD to be included in the CPE list for that library’s CVE.
However, in practice, the majority of vendors do not do this,
so the list of vulnerable CPEs for that library is incomplete.

This can be seen most clearly in the Apache Log4j frame-
work and the Log4Shell exploit seen in December of 2021.
Log4Shell was defined by five CVEs. CVE-2021-44228 was
the first released and remediated, while the following four
detailed subsequent issues found in the fixed version. All five
CVEs have the CPE for Log4j listed as the first vulnerable
configuration. In addition to the CPE for Log4j itself, CVE-
2021-44228 lists a number of vulnerable products from 10
unique vendors. Yet, a cursory web search for information
on Log4j and Log4Shell yields nearly 100 vendors who have
released security advisories, notices, or announcements that
one or more of their products was vulnerable to the Log4Shell
exploit. From this example, we can see that the CPEs in a
CVE advisory of the NVD do not paint a complete picture of
vulnerable products.

To address this issue, many security operators also monitor
vulnerability information sources outside of the NVD, such as
vendor security advisories or the Industrial Control Systems
(ICS) Advisories published by the Cybersecurity & Infras-
tructure Security Agency (CISA) which cover many vendors.
Security advisories often contain additional information about
a vulnerable device, particularly that data which does not
neatly fit into the standard CVE format, but they rarely, if ever,
report affected products in a structured or standardized format,
which means such data cannot been processed automatically.

We make the first effort towards automatically constructing
structured CPEs for the vulnerable products in a non-NVD se-

2024 Workshop on Computing, Networking and Communications (CNC)

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 233

TABLE I
EXAMPLES OF VENDOR NAMES AND THEIR CPE DICTIONARY ENTRIES

Advisory Vendor Name CPE Vendor Name
1 Automated Logic automatedlogic
2 B&R Industrial Automation br-automation
3 B+B SmartWorx advantech
4 Environmental Systems Corporation envirosys
5 Intellicom intellicom
6 Propump and Controls, Inc propumpservice
7 Schweitzer Engineering Laboratories selinc

curity advisory (e.g., those from CISA) from the unstructured
data in the advisory, in order to supplement CPEs listed in the
NVD. With these additional CPEs in the machine-readable
format, security operators would obtain, in an automated way,
a more complete picture of the vulnerabilities of their system.
Since constructing CPEs from the unstructured advisory data
is a very challenging problem, this paper specifically focuses
on the initial but key step of matching the vendor names
in security advisories (which are in unstructured formats)
to vendor representations in the standard, structured CPE
formats. Table I shows examples of vendor names in security
advisories and their corresponding vendor representations in
CPE standards.

This problem is not trivial due to the variety of vendor
names in advisories and vendor representations in CPEs. In
Table I, rows 2 and 4 require some shortening of the advisory
vendor name, and the CPE for row 7 uses an acronym
not present in the advisory vendor name (SEL). For rows
3 and 6, the CPE vendor name contains some additional
piece of context, while rows 1 and 5 are a straightforward
match. Another challenge is that corporate identifiers may
change over time through mergers, acquisitions, or rebranding.
When a change occurs, existing CPEs that reflect the old
company name are, in most cases, not edited to retroactively
reflect the change. CPEs published after a change occurs will
typically reflect the new name, but this is not a requirement.
Some vendors may choose to not change the vendor name
even for newly published CPEs for the sake of consistency.
Additionally, larger companies may have multiple disparate
teams who report CPEs, where each team may handle security
issues for a single product family. For example, Team A may
submit CPEs with a vendor name of vendor_inc, while
Team B might submit under the vendor name vendorinc.

In this paper, we explore the feasibility of using string
similarity to solve the problem of matching vendors in security
advisories to CPE vendors. The basic idea is to compare
a vendor name from the CISA advisory with each vendor
in the official CPE dictionary (as well as other valid CPEs
in the NVD). The CPE vendor with the highest similarity
score to the advisory’s vendor will be considered as the
match. We first conduct an experimental, comparative study of
multiple mainstream string similarity metrics for this matching
problem. To improve the matching performance, we also
design a new string similarity metric that is adapted from an
existing metric by weighing tokens in the advisory’s vendor

Fig. 1. Commonly-populated attributes of a CPE identifier

name differently.
The paper is structured as follows. Section II covers back-

ground and related work. Section III introduces the mainstream
string similarity metrics used in this study, and also our new
metric. Section IV details our dataset and presents the results
of the comparative study. Section V presents future research
directions, and Section VI concludes the paper.

II. BACKGROUND

A. Vulnerability Landscape

As mentioned in Section I, the National Vulnerability
Database (NVD) is the central repository for vulnerability
information and is maintained through the National Institute
of Standards and Technology (NIST). A reported vulnerability
is given a Common Vulnerabilities and Exposures (CVE)
identifier. A CVE record contains a listing of vulnerable CPEs,
along with other structured data that provides a severity score,
references, weakness types, and others. CVEs are reported by
CVE Numbering Authorities (CNAs); each CNA has a defined
scope in which it can report vulnerabilities. If the CNA is a
software manufacturer, for example, its scope might be limited
to its own products.

A CPE is a collection of key-value pairs, called at-
tributes, that together form a representation of a computer
system, whether software, firmware, or hardware. Attributes
are loosely ordered from least specific to most specific. The
most commonly used attributes are VENDOR, PRODUCT, and
VERSION, as shown in Figure 1. The prefix cpe:2.3 indi-
cates a CPE version 2.3 string. The part attribute can have
a value of “a”, for application, “h”, for hardware, “o”, for
operating system, or “*” for any. All other fields have string
values. For this work, we focus on the vendor attribute.

The NVD maintains an official CPE dictionary. Organiza-
tions can submit potential CPEs to the NVD ad hoc, or a CNA
can include new CPEs not present in the official dictionary
when submitting a new CVE to the NVD. Per the NVD
website, any CPE in a CVE submission that is not present
in the official dictionary will be reviewed and added [2]. In
practice, however, there are many CPEs present in CVEs that
have no corresponding entry in the official CPE dictionary. If
these CPEs were only found in recently released CVEs, that
might simply point to a “backlog” of work; however, they
appear in CVEs that are now many years old.

For this work, we consider vendors from both CPEs present
in the official CPE dictionary and those included in published
CVEs to be valid options.

B. Related Work

1) CPE Matching: There is not much work in this area. [3]
proposes a method to construct CPEs for affected products
from the description of CVEs in the NVD. However, their

2024 Workshop on Computing, Networking and Communications (CNC)

234

method is customized for CVE summaries in the NVD, and
might not work well for other third-party advisories that have
different content and styles of describing vulnerabilities. More
importantly, their method does not address the focus of this
paper: the case where a CVE in a software library does not list
CPEs for products using the vulnerable library or even mention
the products. [4] creates a set of potential CPEs for a software
product and allows a user to select the best option. However,
their solution is not fully automated since users still need to
manually make a selection. [5] chooses CPEs using the list
of Installed Programs on a Windows machine and compares
them against the CPE dictionary. However, this work can only
handle structured software product information obtained from
the Windows installer, and their approach cannot apply in our
case where the vendor names in advisories are unstructured
data. [6] proposes a system to recommend CPEs for an asset
inventory and performs well. Like those above, though, the
NVD is still assumed to be the ground truth of affected
products for a vulnerability.

2) Entity Matching: Entity matching (also called fuzzy
matching, deduplication, record linkage, etc.) is the process
of deciding whether two descriptions or representations refer
to the same entity. String similarity is a well-established
method for entity matching [7, 8, 9]. [10] evaluates string
similarity methods for toponym (place name) matching; [11]
for historical spelling variants. There is some work to use
machine learning techniques for entity matching, like [12],
but in cases with low context and/or limited training data, like
CPEs, string similarity will often still outperform.

3) Vulnerability Management: There is a growing body of
work around automated vulnerability management. [13] uses
Twitter (now X) data for open-source intelligence (OSINT).
[14] identifies mitigation information for vulnerabilities. [15]
processes vulnerability descriptions to determine which net-
work service or protocol is being exploited, which informs
actions to fix the vulnerability. [16, 17] use vulnerability
features to predict remediation actions and scheduling. [18]
studies the use of large language models in vulnerability
management. However, we address a different problem from
them.

III. STRING COMPARISON METHODS

In the following algorithms, |si| is the length of a string si,
and si,j represents the character of the string si at index j.
si,j: represents the substring of si starting at index j to the
end of si.

Finally, similarity is the inversion of distance.

sim = (1− dist) (1)

A. Normalized Levenshtein

The Levenshtein Distance between two strings is the min-
imum number of edits (addition, deletion, and substitution)
required to turn a string s1 into another string s2 [19]. Equation
2 shows a naive recursive definition.

L(s1, s2) =

L(s1,1:, s2,1:) s1,0 = s2,0

1 +min

L(s1,1:, s2)

L(s1, s2,1:)

L(s1,1:, s2,1:)

else
(2)

Because the other metrics used in this work are measures of
similarity, a normalized Levenshtein distance was needed. To
normalize, the Levenshtein distance calculated by Equation 2
is divided by the length of the longer of the two strings.

Lnorm =
L(s1, s2)

max(|s1|, |s2|)
(3)

At that point, the Levenshtein similarity can be obtained
using Equation 1 and compared to other similarity metrics.

B. Discounted Levenshtein

Discounted Levenshtein is a variant of Levenshtein where
edits later in a string are penalized less than edits at the
beginning; it was proposed in [20]. In the implementation of
Discounted Levenshtein used in this paper, the decrease in
cost is applied from the second character of the string. The
value per-edit can be calculated according to the log function
in Equation 4.

di =
1

log(1 + max(0,i−1)
5) + 1

(4)

This changes Equation 2 into:

L(s1, s2) =

L(s1,1:, s2,1:)− di s1,0 = s2,0

1− di +min

L(s1,1:, s2)

L(s1, s2,1:)

L(s1,1:, s2,1:)

else

(5)

C. Jaro

The Jaro similarity between two strings [21] considers the
number of “matching” characters m and the fraction of m that
are “transposed”. Two characters s1,i and s2,j are considered
matching if s1,i = s2,j and if i and j are within a certain
margin defined by Equation 6.

|i− j| ≤ max(|s1|, |s2|)
2

− 1 (6)

The number of transpositions t is determined by counting
the number of matches where s1,i ̸= s2,j and dividing by 2.

Once m and t have been calculated, the Jaro similarity can
be calculated using Equation 7.

simj =

{
0 m = 0
1
3 (

m
|s1| +

m
|s2| +

m−t
m) m ̸= 0

(7)

2024 Workshop on Computing, Networking and Communications (CNC)

235

D. Jaro-Winkler

Jaro-Winkler is a variant of the Jaro similarity where two
strings which match at the beginning are judged to be more
similar than two strings which match at the end [22]. In
Equation 8, simjw is the Jaro-Winkler similarity, simj is the
Jaro similarity calculated by Equation 7, ℓ is the number of
prefix characters which should be scaled if matching, and p is
a scaling factor. In Winkler’s original work [22] defines ℓ = 4
and p = 0.1 as standard; this paper adopts those values as
well.

simjw = simj + ℓp(1− simj) (8)

E. Ratcliff-Obershelp

The Ratcliff-Obershelp is a method of calculating string
similarity by recursively locating common substrings and sum-
ming their lengths. To calculate the total number of matching
characters m, the largest common substring (LCS) is found,
and its length is added to m. Substrings are selected to the left
and right of the LCS: one beginning with the first character of
the string and ending at the first character of the LCS (non-
inclusive), and one beginning at the character after the end of
the LCS and ending at the end of the string. Either of these can
be the empty string. Then, the LCS is found for each of these
substrings. This continues until no further common substrings
exist. At this point, m can be substituted into Equation 9.

simro =
2m

|s1|+ |s2|
(9)

F. Our Proposed Metric: Modified Jaro-Winkler

When considering the vendors that Jaro-Winkler, which has
the highest performance, does not correctly match to the NVD,
a pattern emerges.

Consider the vendor string pdq manufacturing,
inc. The correct CPE for this vendor is pdqinc. The
Jaro-Winkler similarity between pdq manufacturing,
inc. and pdqinc is 0.6836. The CPE vendor with the
highest Jaro-Winkler similarity to the vendor string pdq
manufacturing, inc. is phpmanufaktur, with a
similarity of 0.7612. Even if we consider the 10 CPE vendors
with the highest similarity to the vendor string, pdqinc does
not appear among them.

In this example, the substring with the most information
content (“pdq”) comprises only a small fraction of the char-
acters of the string. The discrepancy in length between the
vendor string and the correct CPE depresses the similarity
between them. Likewise, the commonality of the longer words
“manufacturing” and “manufaktur” leads to the higher simi-
larity of the incorrect suggestion.

To handle this, we propose a modified Jaro-Winkler metric
which considers the information value of each token when the
advisory vendor string is tokenized. We define the information
value of a token as the inverse of its frequency in a corpus.

For this work, we defined our corpus as the full text of
every published CISA ICS advisory. The corpus was tokenized

and stemmed using the tokenizer and Snowball Stemmer from
the Natural Language Toolkit (NLTK) for Python. From the
corpus, we created a term frequency dataset by counting the
number of appearances of each token in the corpus to support
our proposed metric. We chose to create our own corpus
because of the specialized vocabulary which appears in vendor
names.

In the above example, the advisory vendor string pdq
manufacturing, inc. is comprised of the tokens pdq,
manufacturing, and inc. Of these tokens, pdq has the
lowest frequency and thus the highest information value. The
Jaro-Winkler similarity between pdq and pdqinc is 0.8833,
significantly higher than the previous highest similarity.

In our approach, each advisory vendor is tokenized using
the NLTK word_tokenize method. If an advisory vendor
string contains only one token, then the Jaro-Winkler similarity
between the full advisory vendor string and the candidate CPE
vendor string is calculated and returned. If the advisory vendor
string consists of many tokens, then each token is stemmed
using the NLTK Snowball Stemmer, and its information value
is computed using the term frequency dataset described above.
The token with the highest information value (i.e., the rarest
token) is chosen. Finally, we compute and return the Jaro-
Winkler similarity between that token and the candidate CPE
vendor string.

IV. EVALUATION AND RESULTS

A. Dataset

For this work, our dataset consisted of the ICS Advisories
published by CISA on or before July 25, 2023, totaling 2364
advisories [23]. While security advisories from Acronis, for
example, could be reasonably expected to always address
Acronis products, advisories from CISA cover many vendors;
this allows us to compare string similarity metrics on a large
list of vendor names. Vendor names were pulled from the
HTML page source of each advisory. Once extracted from the
page source, all vendor names were converted to lowercase.

The vendor names present in CISA advisories were not
standardized, particularly in regards to punctuation. One ex-
treme example can be seen below, where the same entity was
present in seven different advisory, with minor differences in
punctuation each time.

sensormatic electronics, a subsidiary of johnson controls inc.
sensormatic electronics, llc, a subsidiary of johnson controls
sensormatic electronics, llc, a subsidiary of johnson controls inc
sensormatic electronics, llc, a subsidiary of johnson controls inc.
sensormatic electronics, llc, a subsidiary of johnson controls, inc.
sensormatic electronics, llc., a subsidiary of johnson controls, inc.
sensormatic electronics, llc; a subsidiary of johnson controls

However, removing punctuation introduces more complex-
ity, as which characters to include or exclude must be deter-
mined in the system design. Additionally, a CPE attribute can
contain any properly-escaped punctuation character alongside
alphanumeric characters. Some exploratory tests were per-
formed to evaluate this; we found that removing all or even
a subset of punctuation characters via substitution or regular

2024 Workshop on Computing, Networking and Communications (CNC)

236

TABLE II
VENDORS AND ADVISORIES CORRECTLY IDENTIFIED PER-METRIC

String Similarity Metric # Vendors % Vendors % Advisories
Ratcliff-Obershelp 337 74.23 88.92
Jaro 353 77.75 90.78
Jaro-Winkler 372 81.94 91.96
Levenshtein 326 71.81 88.37
Discounted Levenshtein 342 75.33 89.04
Modified Jaro-Winkler 380 83.70 92.39

expression resulted in markedly worse performance. For this
reason, punctuation was not removed for the results presented
in this paper.

The Python library cleanco was used to remove terms
which indicate company type, like “inc.”, “co.”, or “LLC”
[24]. Using cleanco to process the list of examples earlier
in this section leaves just one string: “sensormatic electronics,
a subsidiary of johnson controls”. After processing, the list
of vendors was deduplicated, leaving 454 unique vendors.
Ground-truth data was manually collected by searching the
NVD and reading CISA advisories to locate the correct CPE
vendor value.

As mentioned previously, we considered as potential CPE
vendor matches both those vendors present in the official CPE
dictionary and those reported in CVEs.

B. Results

For each metric, similarity measures were calculated be-
tween each vendor from the CISA ICS advisories and each
vendor from the list of candidate CPE vendors. The vendor
from the CPE dictionary with the highest similarity score to the
advisory vendor was checked against the correct CPE vendor
from our ground-truth list.

Table II shows the number of vendors correctly identi-
fied, the percentage of vendors correctly identified, and the
percentage of advisories for which the vendor was correctly
identified. The percentage of vendors and advisories differ
because of the one-to-many relationship between vendors and
advisories. One vendor may appear in multiple advisories;
some vendors publish advisories more frequently than other
vendors. Consider the example shown in Figure 2. If the
CPE vendor for Vendor A was found and the CPE vendor
for B was not, one-half of the vendors would have been
correctly identified (i.e., % Vendor = 50.00%), but two-thirds
of the advisories would have been correctly identified (i.e., %
Advisories = 66.67%). This becomes an important distinction,
particularly with the CISA ICS Advisories used, where, for
example, Siemens is the vendor for 620 of the advisories in
the dataset, much more than most vendors.

As it can be seen from Table II, among the existing metrics,
Jaro-Winkler performs best. Our proposed metric, Modified
Jaro-Winkler, performs even better than the basic Jaro-Winkler
metric, showing the effectiveness of our design.

C. Discussions

1) Acronyms and Corporate Context: Some companies
use acronyms in their CPE names. A few examples can be

Fig. 2. An example to demonstrate the difference between the percentage
of correctly-identified vendors vs. the percentage of correctly-identified of
advisories. Correctly identifying Vendor A would give a % Vendor = 50%
but a % Advisory = 66.67%.

TABLE III
EXAMPLES OF VENDOR CPES WITH ACRONYMS OR SHORTENINGS

CISA Vendor CPE Vendor Matched?
national renewable energy laboratory (nrel) nrel Yes
7-technologies 7t No
texas instruments ti No
schweitzer engineering laboratories selinc No

seen in Table III. The exact string compared against the
CPE dictionary is in the “CISA Vendor” column, and the
“CPE Vendor” column lists the correct CPE vendor entry.
The “Matched?” column shows whether the modified Jaro-
Winkler metric described in Section III-F returns the correct
CPE vendor. Consider Schweitzer Engineering Laboratories
(SEL) with a CPE vendor of selinc and the National
Renewable Energy Laboratory (NREL), whose CPE vendor
name is nrel. The CISA vendor string for SEL does not
include the acronym, while the CISA vendor string for NREL
does. Accordingly, our hybrid similarity metric can correctly
match nrel to the National Renewable Energy Laboratory,
but not selinc to Schweitzer Engineering Laboratories.

2) No Match: Sixteen vendors from our dataset have no
CPE at all. Despite this, the first suggestion returned for each
of these when using Jaro-Winkler to compare against possible
CPE vendors has a similarity score greater than 0.75. The
strings “multiple” and “other”, which appeared 4 and 18 times
respectively, both returned matches with a similarity greater
than 0.9. This highlights the difficulty of using a similarity
threshold to select the correct CPE recommendation.

We chose not to remove these “NULL” matches from
our dataset for two reasons. First, we wanted to more fully
consider the edge cases that arise in this problem. More impor-
tantly, though, the “NULL” cases create a problem that cannot
be easily solved even by a naive technical implementation.

The issues caused by acronyms and corporate structure that
are discussed in the previous section can be addressed by
creating a mapping table which contains acronyms, related
company names, or other contextual data for a given vendor
name. Then, string similarity methods could be used with this
extra data.

By contrast, though, consider the difficulty of creating and
maintaining a list of all companies who do not have an
associated CPE vendor name. We find that using a threshold

2024 Workshop on Computing, Networking and Communications (CNC)

237

on the similarity value is not a reliable method of detecting
when an advisory vendor has no CPE vendor, and so more
work is needed.

V. FUTURE RESEARCH DIRECTIONS

It is not as straightforward as it may appear to identify
an entity as the vendor, as there is little specification and no
standardization about how to handle parent companies, sub-
sidiaries, product families, or extended corporate hierarchies.

For instance, CISA ICS Advisory ICSA-17-234-04 reports
the vendors as General Motors and Shanghai OnStar. In fact,
OnStar is a subsidiary of General Motors and SIAC-GM
(Shanghai General Motors). Nevertheless, the CPE vendor is
reported as gm with the product shanghai_onstar.

The CPE dictionary is not an accurate representation of the
current state of corporate mergers, acquisitions, or subsidiary
structures. Detcon, a company which manufactures gas detec-
tion sensors, analyzers, and controllers, was previously owned
by 3M but was sold to Teledyne in 2019 [25]. Detcon is listed
in the NVD, but the vendor is still listed as 3m with an product
name of detcon_sitewatch_gateway.

CISA ICS Advisory ICSA-23-037-01 reports a vulnerability
in the EnOcean SmartServer product, but the webpage for the
associated CVE does not mention EnOcean at all and lists the
CPE vendor as echelon and the product as smartserver.
Searching for information on Echelon shows that it was
acquired by Avesta in 2018, but there is no easily-seen link to
EnOcean.

To address this, one future research direction is to combine
CPE vendor and product searches. Rather than limiting the
search to existing CPE vendors, there is merit in searching
both existing vendors and existing product strings. This would
significantly increase computation cost but would have a better
chance of correctly identifying CPEs for these edge cases.
Another future research direction is to construct full CPEs
from the unstructured information in CISA advisories.

VI. CONCLUSION

Identifying the affected assets in security advisories and
mapping them onto a structured representation like the CPE
is a difficult and time-consuming task. To automate this
task, we explored the performance of several mainstream
string similarity methods on matching vendors reported in the
CISA ICS Security Advisories to vendors in the NVD’s CPE
dictionary. Additionally, we proposed a modified Jaro-Winkler
metric that prioritizes tokens with a higher information value,
and experiments showed that it out-performs all other metrics.

ACKNOWLEDGEMENT

This material is based upon work supported by the Depart-
ment of Energy under Award Number DE-CR0000003.

REFERENCES

[1] CVE Numbering Authority (CNA) Rules. URL: https://www.cve.org/
ResourcesSupport/AllResources/CNARules#section 7-3 cna scope.

[2] Product Identification. URL: https://nvd.nist.gov/products.

[3] Emil Wåreus and Martin Hell. “Automated CPE Labeling of CVE
Summaries with Machine Learning”. In: Detection of Intrusions and
Malware, and Vulnerability Assessment. Ed. by Clémentine Maurice
et al. Cham: Springer International Publishing, 2020, pp. 3–22. ISBN:
978-3-030-52683-2.

[4] Luis Alberto Benthin Sanguino and Rafael Uetz. “Software vulnerabil-
ity analysis using CPE and CVE”. In: arXiv preprint arXiv:1705.05347
(2017).

[5] Roman Ushakov et al. “CPE and CVE based Technique for Soft-
ware Security Risk Assessment”. In: IEEE International Conference
on Intelligent Data Acquisition and Advanced Computing Systems:
Technology and Applications (IDAACS). Vol. 1. 2021, pp. 353–356.

[6] Philip Huff et al. “A Recommender System for Tracking Vulnera-
bilities”. In: International Conference on Availability, Reliability and
Security (ARES). 2021.

[7] L. Karl Branting. “A Comparative Evaluation of Name-Matching
Algorithms”. In: Proceedings of the 9th International Conference on
Artificial Intelligence and Law. ICAIL ’03. Scotland, United Kingdom:
Association for Computing Machinery, 2003, pp. 224–232.

[8] William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. “A
Comparison of String Distance Metrics for Name-Matching Tasks”.
In: International Conference on Information Integration on the Web
(IIWEB). 2003, pp. 73–78.

[9] Peter Christen. Data Matching: Concepts and Techniques for Record
Linkage, Entity Resolution, and Duplicate Detection. Springer Publish-
ing Company, Incorporated, 2012. ISBN: 3642311636.

[10] Gabriel Recchia and Max Louwerse. “A Comparison of String Simi-
larity Measures for Toponym Matching”. In: Proceedings of The First
ACM SIGSPATIAL International Workshop on Computational Models
of Place (COMP). 2013, pp. 54–61.

[11] S. Kempken, W. Luther, and T. Pilz. “Comparison of distance measures
for historical spelling variants”. In: Artificial Intelligence in Theory and
Practice. Springer US, 2006, pp. 295–304.

[12] Nils Barlaug and Jon Atle Gulla. “Neural Networks for Entity Match-
ing: A Survey”. In: ACM Trans. Knowl. Discov. Data 15.3 (Apr. 2021).

[13] Dakota Dale, Kylie McClanahan, and Qinghua Li. “AI-based Cyber
Event OSINT via Twitter Data”. In: International Conference on Com-
puting, Networking and Communications (ICNC). 2023, pp. 436–442.

[14] Kylie McClanahan and Qinghua Li. “Automatically Locating Mitiga-
tion Information for Security Vulnerabilities”. In: IEEE International
Conference on Communications, Control, and Computing Technologies
for Smart Grids (SmartGridComm). 2020, pp. 1–7.

[15] Philip Huff and Qinghua Li. “Towards Automated Assessment of
Vulnerability Exposures in Security Operations”. In: EAI International
Conference on Security and Privacy in Communication Networks
(SecureComm). 2021, pp. 62–81.

[16] Fengli Zhang and Qinghua Li. “Dynamic Risk-Aware Patch Schedul-
ing”. In: IEEE Conference on Communications and Network Security
(CNS). 2020, pp. 1–9.

[17] Fengli Zhang et al. “A Machine Learning-based Approach for Auto-
mated Vulnerability Remediation Analysis”. In: IEEE Conference on
Communications and Network Security (CNS). 2020, pp. 1–9.

[18] Kylie McClanahan et al. “When ChatGPT Meets Vulnerability Man-
agement: the Good, the Bad, and the Ugly”. In: IEEE Int’l Conf. on
Computing, Networking and Communications (ICNC). 2024.

[19] Vladimir I Levenshtein. “Binary codes capable of correcting deletions,
insertions, and reversals”. In: Soviet physics doklady. Vol. 10. 8. 1966,
pp. 707–710.

[20] Mathilde Boltenhagen, Thomas Chatain, and Josep Carmona. “A
Discounted Cost Function for Fast Alignments of Business Processes”.
In: Business Process Management. Springer International Publishing,
2021, pp. 252–269.

[21] Matthew A. Jaro. “Advances in Record-Linkage Methodology as
Applied to Matching the 1985 Census of Tampa, Florida”. In: Journal
of the American Statistical Association 84.406 (1989), pp. 414–420.

[22] William E Winkler. “String comparator metrics and enhanced decision
rules in the Fellegi-Sunter model of record linkage”. In: (1990).

[23] Cybersecurity Alerts & Advisories. URL: https://www.cisa.gov/news-
events/cybersecurity-advisories.

[24] cleanco - PyPI. URL: https://pypi.org/project/cleanco/.
[25] 3M Completes Sale of Gas and Flame Detection Business. URL: https:

//news.3m.com/2019-08-01-3M-Completes-Sale-of-Gas-and-Flame-
Detection-Business.

2024 Workshop on Computing, Networking and Communications (CNC)

238

