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Abstract—Device identification is a fundamental issue in the
Internet of Things. A few studies in modern literature indicate
that machine learning approaches could be used for device
identification. However, the hypothesis that device behavior could
be characterized by machine learning techniques for device
identification has not been thoroughly investigated. Therefore, we
conduct a comprehensive study to examine this hypothesis. We
create both a trusted and untrusted environment for experimental
testing scenarios. That contains four testing cases, including
intra-network, network perimeter, cryptojacking, and DOS. Six
supervised machine learning classifiers are selected and evalu-
ated. Among the six classifiers, the AdaBoost classifier with 200
features achieves testing accuracies of 88.23% and is chosen for
the testing cases. Our evaluation results show that the AdaBoost
classifier is promising for a trusted environment. However, the
accuracies of the AdaBoost classifier drop dramatically to less
than 20% in both cryptojacking and DOS cases. While the
results do not support the hypothesis, the challenges faced by
machine learning-assisted approaches in device identification
could be complemented by other safeguards such as whitelists
and intrusion detection and prevention systems. This paper
further discusses future work, including using features from
physical layers to examine the hypothesis.

Index Terms—Device Identification, Internet of Things, Ma-
chine Learning, CICFlowMeter++, Cryptojacking, DOS

I. INTRODUCTION

The Internet of Things (IoT) is the interconnection of com-
puting devices embedded in everyday objects to the Internet
through a home, business, or institutional network [1]. Device
identification is a fundamental issue in the IoT. Many critical
services such as access control and intrusion prevention are
built on correctly identifying each device. The challenges for
identifying IoT devices include, but are not limited to, 1)
scalability: IoT may include billions of connected devices,
and the solution must be scalable; 2) adaptability: IoT devices
come in different form factors, operating systems (OSs),
manufacturers, and protocols to communicate to other devices.
The solution must be able to adapt to a variety of IoT devices;
and 3) resistance: IoT devices might be compromised, and the
solution must be effective even when they are compromised.
Such limitations have been found in existing studies, e.g., [2],
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[3]. Developing a new approach for device identification to
address these issues comprehensively is vital.

We utilize machine learning (ML) analytical approaches
for IoT device identification, as features from network traffic
may be used to characterize IoT devices without interrupting
the examined networks. Few studies, e.g., [2], [3], indicated
that ML-based approaches could be used for device identifi-
cation. However, these studies were all conducted in trusted
environments. Importantly, we have noted two questions that
have not yet been addressed in the literature. First, it is
uncertain if the device classifiers developed from ML are
consistent within the network and on the network perimeter.
Second, further evaluation is required to determine if the
device classifier is effective for device identification when a
device is compromised.

In this paper, we conduct a study to test the hypothesis
that device behavior can be characterized by ML for device
identification. To overcome the limitations of existing studies,
we create a comprehensive testing environment, including both
trusted and untrusted scenarios. We design two testing cases
for the trusted environment, including devices located within a
network and devices located on the network perimeter, to test
ML for device identification. For the untrusted environment,
we design two additional testing cases, including cryptojacking
and DOS attacks, to evaluate if a device classifier is effective
for device identification when a device is compromised. Six
supervised ML classifiers, including AdaBoost, Decision Tree,
K-Nearest Neighbor, Logistic Regression, Random Forest, and
LinearSVC, are selected and experimented with for device
identification. Our detailed evaluation results reveal new fea-
tures as well as new challenges when utilizing ML-assisted
approaches for device identification.

The main contributions of this paper are summarized as
follows. 1) We create four testing cases to demonstrate the per-
formance of supervised ML within a network, on the network
perimeter, and when a device is compromised, 2) We expand
CICFlowMeter (formerly ISCXFlowMeter) [4] and create
a new feature extraction tool known as CICFlowMeter++,
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adding several new features in the process. 3) The existing
research on ML for device identification was conducted in a
trusted environment. While such efforts are important, to the
best of our knowledge, ours is the first effort to study ML for
device identification in a compromised network environment,
and 4) Our experimental evaluation uses a dataset comprised
of 16 typical commercial IoT devices that show promising
results. We will make our datasets and the CICFlowMeter++
implementation available for research use.

The remainder of this paper is structured as follows. Section
IT presents related work. Section III describes the proposed
ML-assisted approach for IoT device identification, followed
by the introduction of implementation in Section IV. The
testing, evaluation results, and discussions are presented in
Section V. Finally, Section VI concludes the paper with future
work.

II. RELATED WORK

Many features from network flows have been used for
characterizing device behavior. In [3], authors demonstrated
supervised ML-assisted approaches using 80 features in CI-
CFlowMeter [4]. In [5], 972 behavioral features across differ-
ent protocols and network layers are extracted from network
traffic for detecting malware.

In [6], supervised ML techniques were adopted for device
identification by utilizing unique flow-based features to create
a fingerprint for each device. In [2], authors apply supervised
ML on network traffic for device identification. Their ML
model includes two stages: 1) a classifier distinguishes be-
tween IoT and non-IoT devices, and 2) a specific IoT device
classifier is used to identify each IoT device.

In [7], the authors propose a classification approach utilizing
the TCP variant as an input feature to identify the OS on
a device by leveraging ML and deep learning techniques.
Supervised ML is used in [8] and [6], where the approaches
use flow statistics to identify IoT devices in real time. [§]
filters out noisy features with a genetic algorithm, and [6]
utilizes 67 relevant features. In [9], the authors propose a
method for traffic classification and application identifica-
tion using an unsupervised ML technique. Features such as
Forward— Pkt— Len—V ar, Backward— Pkt— Len—Var,
and Backward — Bytes are extracted to identify applications
including FTP, Telnet, SMTP, DNS, HTTP, AOL, Messenger,
Napster, and Half-Life. In [10], authors use unsupervised
clustering to identify IoT device types in network flow traffic.
In [11], the authors use unsupervised ML on data captured
directly from the devices to identify cycles in the flow data
relating to how often and how predictable the transmission of
data is. Unsupervised deep learning is used in [12] and [13],
where ML autoencoders combined with clustering algorithms
are used to identify arbitrary device types.

Results from [2] and [3] show that supervised ML is a
promising method for device identification. Approaches such
as [2] and [3] assume device behavior could be characterized
through ML. The assumption appears to be true based on
observation. However, the following important limitations have

been found in the existing ML-assisted approaches used for
device identification and are addressed in this paper.
1) All evaluation was conducted in the intra-network with-
out regard to the perimeter of the network.
2) All evaluation was conducted in a trusted environment
without regard to a compromised environment.

III. SUPERVISED ML ASSISTED APPROACH FOR DEVICE
IDENTIFICATION

A. Device Identification

An IoT device is a physical object that provides one or
more functions within a computer system. Device attributes
in a device profile include OS, version, MAC address, IP
address, model, applications, and other identifying criteria.
Device attributes can be a single element like a MAC address
or a vector of elements, such as running applications.

Device identification is a systematic process that aims to
map attributes in a device profile and uniquely identify each
device in a network. A unique device identifier (UDI) is one
or more device attributes that can be used to uniquely identify
a device. A MAC address can be used as a unique device
identifier in a trusted environment. However, a MAC address
can be easily spoofed if the device is compromised. This raises
security questions regarding the use of such attributes for UDI
development in an untrusted environment. Device identifica-
tion is a fundamental issue in identity and access management.
Note that due to the variety of IoT devices that exist, it is very
challenging to profile every attribute of a device. This paper
utilizes Definition 2 for device identification.

Definition 1. A device is identified when every attribute in
the device profile is known and a unique device identifier is
found.

Definition 2. A device is identified when a unique device
identifier is found.

B. Supervised ML-Based Approach

Fig. 1 shows the approach used to examine the hypothesis
in this research, including three phases, i.e., data preparation,
ML qualification, and ML validation.

1) Data Preparation: Supervised ML requires a large
amount of data to optimize the applied models. Fig. 3 shows
our testing network for data collection.

IoT devices are connected to the testing network and the
network traffic is collected using t cpdump and RaspAP [14].
To test supervised ML on the network perimeter, a network
tapping device, nTAP, is placed before the traffic reaches the
firewall. nTAP is a passive, full-duplex monitoring device that
provides visibility into the network regardless of traffic. The
collected data in pcap files proceed through a data preparation
process before being used for ML.

2) ML Qualification: Fig. 2 shows the procedure for ML
qualification, which includes three steps. Step #1 Feature ex-
traction: Network traffic includes device behavior that cannot
be used for ML directly. Instead, features are extracted from
these network traffic files for ML purposes. Step #2 Data
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Fig. 1. Approach adopted for examining the hypothesis.

labeling: A label is created for each t cp flow based on source
and destination addresses. Step #3 ML training and selection:
A group of supervised ML classifiers is selected for training,
and the best-performing classifier is selected for validating ML
on intra-network and network perimeter traffic.
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Fig. 2. ML-assisted approach for IoT device identification.

We selected six supervised ML classifiers for IoT device
identification, including AdaBoost [15], Decision Tree [16],
K-Nearest Neighbor [17], [18], Logistic Regression [19],
Random Forest [20], and Linear Support Vector Classifier
(LinearSVC) [21]. These six classifiers are selected based on
the literature and their performance when processing large
datasets. The six classifiers are tested and evaluated for ML
validation.

3) ML Validation: When a device is adopted in a network,
we consider a two-step process: device provisioning and
operation. Device provisioning refers to the device onboarding
process where a device is configured, calibrated, and tested for
use in a production environment, and is often conducted in a
controlled environment. Data preparation and ML qualification
take place in this process due to its secure nature. Device
operation refers to the process where a device operates with-

out human intervention, often lacking any form of constant
monitoring. Since devices generally operate in an untrusted
environment and can be compromised, ML validation occurs
in this process.

Two testing scenarios and four testing cases are created.
Testing Scenario #1 intends to test ML for device identifi-
cation in a trusted environment. Testing Scenario 1 includes
two testing cases: Testing Case #1.1 ML within a network:
The selected ML classifiers are tested using traffic collected
from the intranet. 7esting Case #1.2 ML on the perimeter: The
selected ML classifiers are tested using network border traffic.

Testing Scenario #2 intends to test ML for device iden-
tification in an untrusted environment. Testing Scenario 2
includes two testing cases: Testing Case #2.1 ML for crypto-
jacking: Cryptojacking is the unauthorized use of computing
resources to mine cryptocurrency. This testing case validates
if a trained ML classifier can identify a device when it is
compromised with cryptomining malware. Testing Case #2.2
ML for DOS attacks: A denial-of-service (DoS) attack is a
malicious attempt to disrupt the normal traffic of a targeted
device with a flood of Internet traffic. This testing case
validates if a trained ML classifier can identify devices in DOS
attacks.

IV. IMPLEMENTATION

A. Experimental Setup

The testing network was set up as shown in Fig. 3. Table I
shows a list of the networking devices used.

my
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Fig. 3. Testing network setup.

TABLE I
NETWORKING DEVICES USED IN THE TESTING NETWORK.
Device Model Manufacture
Firewall PA-820 Palo Alto Networks
Switch EX4300-24T Juniper
nTAP nTAP Viavi Solutions
Wi-Fi access point | Raspberry Pi 4 Model B | RaspAP
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It is important to differentiate traffic from each device. Cap-
turing traffic through a regular Wi-Fi access point is ineffective
due to network address translation. Two approaches, ARP
poisoning or a Wi-Fi Pineapple device, could be utilized to
collect network traffic and facilitate the data labeling process.
ARP poisoning is intrusive and introduces extra traffic into
the network capture. A Wi-Fi Pineapple is suitable for a small
number of devices but encounters reliability issues when more
testing devices are added to the network. Therefore, RaspAP
is selected for this work because of its reliability and flexibility
[14]. Table II shows a list of IoT devices used in the network.
Two Raspberry Pis are also included in the testing network,
where Raspberry Pi (1) and Raspberry Pi (2) are used to set
up the cryptojacking testing and DOS testing, respectively.

B. Dataset Preparation

The study in [2] used a proprietary tool that was not publicly
available to process data. We have selected an open-source tool
- CICFlowMeter for our work. The study in [3] demonstrated a
supervised ML-assisted approach using the original features in
CICFlowMeter. Further, studies in [2] and [3] show differences
between top features selected by ML for device identification.
In this work, we have developed a tool, CICFlowMeter++ by
enhancing the original CICFlowMeter. CICFlowMeter++ can
extract 233 features from a TCP flow and includes many new
features from [2] for comparison.

Our major improvements in CICFlowMeter++ include 1)
an improved and simplified feature generation process, 2) the
resolution of multiple errors in CICFlowMeter-V4 that resulted
in the inaccurate calculation of various packet data points, 3)
the addition of 153 new features to assist ML algorithms in
identifying IoT devices based on traffic characteristics.

Since we focus on characterizing device behavior on the
Internet, only TCP flows between the devices and the Internet
are considered in ML. TCP flows between IoT devices are
not considered. TCP flows are labeled by the source and
destination devices’ IP addresses and MAC addresses. Then,
a flow label is added to each TCP flow in the CSV file based
on the single known IoT device in each flow.

C. ML Qualification

There are 8 features, including Origin, Src IP, Src
Port, Src MAC Addr, Dst IP, Dst Port, Dst
MAC Addr, and Timestamp, which are not used to fit
the ML models as they can generally be used as device
identifiers in a trusted environment. The original protocol
feature from the CICFlowMeter++ is further broken into
three new features. A total of 227 features are used for ML.
The ML classifiers are implemented using python 3.8.8 [22]
and Scikit-learn 0.24.1 [21]. The evaluation is conducted in
Jupyter Notebook 6.3.0 [23].

Table III shows the hyperparameters used in the ML clas-
sifiers based on a semi-exhaustive search process. Tuning
occurred in a 5-fold validation schema over the training set
optimizing for (balanced) accuracy.

D. ML Validation

Test Case #1.2 validates the performance of ML classifiers
on the perimeter of the network. The traffic captured from
nTAP could not be used for testing directly since the pcap
file cannot differentiate traffic from multiple devices. nTAP
pcap data needs to be further processed for validation. Fig. 4

shows the process.
nTAP AP Traffic
Data (.pcap)

Filter

nTAP Traffic
Data (.pcap)

nTAP ML Traffic
Data (.pcap)

Modifier

RaspAP Traffic
Data (.pcap)

Fig. 4. nTAP data process flow.

First, a filter is applied to the nTAP pcap file to remove all
non-RaspAP traffic. Next, the RaspAP traffic, which includes
individual device IP addresses and MAC addresses, is used as a
dictionary to reverse the RaspAP IP address and MAC address
back to the device IP addresses and MAC addresses based on
the fields in the TCP segment header including TSval, Src
Port,and Dst Port. A new pcap is generated for the data
labeling process, and then for the validation in Test Case #1.2.

In Test Case #2.1, an open source multi-threaded CPU miner
which is used to mine Monero via the MinerGate pool is
used for cryptojacking. Raspberry Pi (1) is compromised with
the miner after the machine learning training and selection
process. Network traffic is captured when the miner is mining.

In Test Case #2.2, hping3 is used to create and send
custom packets toward an arbitrary victim device with the
intention of blocking network resources. Raspberry Pi (2) is
compromised by a malicious actor. The malicious actor uses
Raspberry Pi (2) to launch DOS attacks on K Smart Plug (2).

V. TESTING AND EVALUATION RESULTS
A. Data Collection

Multiple datasets were collected between March 31, 2022,
and May 9, 2022. tcpdump was used on both the RaspAP
and the nTAP data to collect network traffic. Data collected
through RaspAP is used for ML training and data collected
through nTAP is used to validate the ML classifier on the
network perimeter. Overall, approximately 150GB and 200GB
of data were collected from RaspAP and nTAP, respectively.

B. Sample Dataset

Preliminary testing and results indicated that ML was not
effective in identifying a device if the device did not generate
sufficient data for training. If a device did not generate a
sufficient number of TCP flows, e.g., 2,000 flows, it was not
considered for evaluation. After removing three unmentioned
devices that did not meet this criteria, 16 devices remained in
the dataset. Table IV shows the number of TCP flows for each
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TABLE II
L1ST OF I0T DEVICES USED IN OUR EXPERIMENTS.

Device ID | Device Name Product Type | Device ID | Device Name Product Type
1 Amazon Echo Smart Speaker | 9 Google Home Mini Smart Speaker
2 Amazon Echo Dot Smart Speaker | 10 K Smart Plug (1) Smart Plug
3 Amazon Echo Show Smart Show 11 K Smart Plug (2) Smart Plug
4 Amazon Fire TV Stick Smart TV 12 Raspberry Pi (1) Raspberry Pi
5 Lenovo Chromebook Laptop 13 Raspberry Pi (2) Raspberry Pi
6 Samsung Galaxy Tablet | Smart Tablet 14 ZMI Smart Clock Smart Clock
7 Google Nexus Tablet Smart Tablet 15 Amazon Smart Plug | Smart Plug
8 Google Home Smart Speaker | 16 Samsung Smart TV Smart TV
TABLE III of the data set and can prevent overfitting. Additionally, due

CLASSIFIER HYPERPARAMETERS USED IN THIS WORK.

Model Hyperparameters
n_estimators = 100
AdaBoost base_estimator = DecisionTreeClassifier(

class_weight = "balanced’)
class_weight = "balanced’
n_neighbors=5

penalty =12’

C=1.0

max_iter = 1000
class_weight = "balanced’
n_estimators = 100
penalty =12’

C=1.0

max_iter = 1000

Decision Tree
K-Nearest Neighbor

Logistic Regression

Random Forest

LinearSVC

device in the dataset. The dataset is divided into two datasets,
i.e., the training dataset and the testing dataset. The number
of TCP flows in each dataset is shown in Table IV.

TABLE IV
DATASETS GENERATED BY THE DEVICES IN THE EXPERIMENTS.

Device Full Training | Testing

Dataset Dataset Dataset
Amazon Echo 24,492 19,530 4,962
Amazon Echo Dot 21,002 16,748 4,254
Amazon Echo Show 47,804 38,246 9,558
Amazon Fire TV Stick 44,629 35,662 8,967
Lenovo Chromebook 9,307 7,485 1,822
Samsung Galaxy Tablet 10,218 8,221 1,997
Google Nexus Tablet 9,388 7,530 1,858
Google Home 8,722 6,931 1,791
Google Home Mini 20,358 16,333 4,025
K Smart Plug (1) 51,774 41,422 10,352
K Smart Plug (2) 27,386 21,911 5,475
Raspberry Pi (1) 4,964 3,945 1,019
Raspberry Pi (2) 14,517 11,709 2,808
ZMI Smart Clock 7,185 5,712 1,473
Amazon Smart Plug 5,227 4,157 1,070
Samsung Smart TV 94,976 76,017 18,959

C. Features

Not all features are important to characterize device behav-
ior. The Random Forest classifier comprised of 100 estimators
was chosen to rank the features due to its ability to generalize
over the data. Each of these estimators, or in this case, Deci-
sion Trees, are given a random subset of the data to train. As
a result, these trees hold information about different portions

to the tree-like structures that comprise this model, important
features can be trivially chosen by the averaged weighted
decrease in node impurity from splitting. Table V shows the
top 10 features from this Random Forest classifier.

TABLE V
ToP 10 FEATURES.

No. | Feature and Brief Description Avg. Im-
portance
1 FwdInitWinBytes: Number of Bytes Sent in | 0.021
the Initial Window in the Forward Direction
2 T ATpiraqg: Inter-Packet Arrival Time Quartile 3 0.020
3 Packet Lengthmean: Packet Length Average 0.017
4 T ATy, a: Inter-Packet Arrival Time Maximum 0.016
5 Duration: Flow Duration 0.015
6 FlowBytes/s: Bytes Per Second in the Flow 0.015
7 TT Lmean: Time To Live Value Average 0.015
8 T AT secondq: Inter-Packet Arrival Time Quartile 2 | 0.015
9 Packet Lengthmaz: Packet Length Maximum 0.014
10 I AT mean: Inter-Packet Arrival Time Average 0.014

D. ML Classifier Training and Selection

Table VI shows the testing and training accuracies for each
classifier’s top n features. Based on feature ranking in Table V,
we gradually increase the number of features used for ML
training and testing. Due to limited space, Table VI only
includes partial results. As shown in Table VI, the difference
in accuracies is not substantial when comparing the usage of
the top 20 features to the usage of all features. The LinearSVC
classifier is an exception to this observation. The tree-based
models, namely, AdaBoost, Decision Tree, and Random Forest
performed the best among the six classifiers tested.

Fig. 5 shows the confusion matrix for the AdaBoost classi-
fier. As shown in Fig. 5, the AdaBoost classifier shows 90%
or higher accuracies in identifying 10 out of the 16 devices in
our experiments.

We also evaluate each classifier on training balanced accu-
racy, testing balanced accuracy, training F1 weighted score,
testing F1 weighted score, fit time, training predict time, and
testing predict time in addition to training accuracy and testing
accuracy. Of the six classifiers, the AdaBoost classifier was
chosen for static analysis due to its high testing balanced
accuracy of 89.02% while utilizing the top 200 features.
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TABLE VI
TRAINING ACCURACY AND TESTING ACCURACY.
AdaBoost Decision Tree KNN Logistic Regression Random Forest LinearSVC

Top n | Training | Testing | Training | Testing | Training | Testing | Training | Testing Training | Testing | Training | Testing
Features | ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC

5 95.93% | 83.23% | 95.93% | 83.23% | 87.72% | 82.53% | 36.43% | 36.52% 95.71% | 83.14% | 34.15% | 34.09%
10 97.18% | 8531% | 97.19% | 83.48% | 88.96% | 84.15% | 51.35% | 51.61% 97.01% | 85.35% | 48.33% | 48.50%
15 97.22% | 85.60% | 97.19% | 83.67% | 89.01% | 84.26% | 55.30% | 55.31% 96.77% | 85.50% | 53.03% | 53.06%
20 97.22% | 86.85% | 97.20% | 84.91% | 89.13% | 84.42% | 57.48% | 57.57% 96.88% | 86.76% | 55.22% | 55.23%
25 97.22% | 86.95% | 97.20% | 84.96% | 89.13% | 84.42% | 59.83% | 59.90% 96.89% | 86.78% | 57.75% | 57.89%
30 97.23% | 86.93% | 97.20% | 85.08% | 89.15% | 84.35% | 61.37% | 61.58% 96.82% | 86.82% | 59.79% | 59.87%
200 97.14% | 88.23% | 97.22% | 86.21% | 89.39% | 84.63% | 70.59% | 70.61% 96.65% | 87.68% | 72.24% | 72.28%
220 97.15% | 88.19% | 97.22% | 86.30% | 89.25% | 84.45% | 70.42% | 70.50% 96.62% | 87.54% | 72.24% | 72.28%
227 97.24% | 88.14% | 97.22% | 86.22% | 89.42% | 84.65% | 70.63% | 70.64% 96.64% | 87.68% | 71.32% | 71.43%
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Fig. 5. Device identification confusion matrix normalized across the actual
device axis: 1. Amazon Echo 2. Amazon Echo Dot 3. Amazon Echo Show
4. Amazon Fire TV Stick 5. Lenovo Chromebook 6. Samsung Galaxy Tablet
7. Google Nexus Tablet 8. Google Home 9. Google Home Mini 10. K Smart
Plug (1) 11. K Smart Plug (2) 12. Raspberry Pi (1) 13. Raspberry Pi (2) 14.
ZMI Smart Clock 15. Amazon Smart Plug 16. Samsung Smart TV.

E. ML for Device Identification Validation

The trained AdaBoost classifier utilizing the top 200 fea-
tures was used to validate ML for device identification in both
trusted and untrusted environments.

1) Testing Case #1.1: ML within the Network: We collected
testing datasets from intra-network through RaspAPs. We
then split them into training and testing datasets as shown
in Table IV. The trained AdaBoost classifier shows 88.23%
testing accuracy on the testing dataset.

2) Testing Case #1.2: ML on the Network Perimeter:
Using the process shown in Fig. 4, a testing dataset (pcap)
was derived from the pcap files collected from the nTAP.
The trained AdaBoost classifier has an accuracy of 97.22%
identifying devices in the derived pcap files.

3) Testing Case #2.1: cryptojacking: The trained AdaBoost
classifier shows 90% testing accuracy in identifying Raspberry
Pi (1), as shown in Fig. 5. The same classifier is used to predict
the network traffic of Raspberry Pi (1) in the cryptojacking test
case. Our evaluation shows 16.24% accuracy in identifying
Raspberry Pi (1) after it was compromised.

4) Testing Case #2.2: DOS Attacks: The trained AdaBoost
classifier shows 42% accuracy in identifying Raspberry Pi (2)
and 99% in identifying K smart Plug (2), as shown in Fig. 5. In
the DOS attack test case, Raspberry Pi (2) was used to launch
the DOS attack, and K smart Plug (2) was the target of this
DOS attack. Using the same AdaBoost classifier, the testing
results show 16.24% accuracy in identifying Raspberry Pi (2)
and 19.04% accuracy in identifying K smart Plug (2).

F. Discussions

CICFlowMeter++ includes the 14 most important features
from [2]. We successfully conducted a comparison of the
top features between [2] and our work. A few features
including TTL¢irst@, TT Linirag, TT Lavg, TT Lppey are
among the top 20 features in both [2] and our work. How-
ever, our study includes unique, relevant features such as
FwdInitWinBytes, I ATipiraq, and PacketLengthmean as
shown in Table V, which have not been reported before.
Additionally, the work in [2] focuses on identifying device
types, whereas our work focuses on device identification. We
found that certain features are important to characterize device
behavior based on our results. Fig. 6 shows the ratio of Fwd
Packet Count to Bwd Packet Count for each IoT
device in the dataset. 83 outlier samples were removed from
Fig. 6, which had a Bwd Packet Count or Fwd Packet
Count of over 10,000 for viewing purposes. Fig. 6 shows
an interesting pattern that might be used to distinguish IoT
devices. Further study also reveals correlations among features
used for device identification. For example, I ATscconqq and
1 AT, can have high positive correlations with I AT}pirqq, 0.85
and 0.92 correspondingly. More study is desired to examine
how feature correlations affect accuracies.

VI. CONCLUSIONS AND FUTURE WORK

The ML-assisted approaches for device identification as-
sume device behavior does not change and can be char-
acterized through ML. However, the hypothesis that device
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behavior does not change and can be characterized through
ML has not been thoroughly investigated. In this paper,
we conducted a comprehensive study on supervised ML-
assisted approaches for device identification. We tested the
hypothesis in two scenarios using four testing cases. Our
testing and results show that supervised ML is promising for
device identification in a trusted environment. However, our
results reveal that supervised ML has difficulty identifying a
device correctly when it is compromised. In combination with
other safeguards such as white lists and intrusion detection
and prevention systems in a network, supervised ML-assisted
approaches could still be practicable. However, in consider-
ation of scalability, adaptability, and resistance, supervised
ML-assisted approaches for device identification may have
challenges in resolving resistance issues.

In this research, features used for supervised ML are ex-
tracted from TCP flows. However, features from other layers,
e.g., the physical layer, could also be used for supervised ML
[24], [25], [26]. Further, supervised ML requires a fully labeled
dataset to train the models, which may be expensive to acquire.
Additionally, as shown in [10], [11], [12], [13], and [27],
unsupervised ML can reach accuracies as good as or better
than those in supervised ML approaches while having higher
accuracies in both unseen and compromised devices. We plan
to expand our features to include physical layer features and
integrate supervised and unsupervised ML. Even though we
have focused on Wi-Fi-enabled devices IoT devices, we also
plan to work with multiple protocols, including ZigBee, Z-
Wave, or Bluetooth.

REFERENCES

[1] A. Al-Fugaha, M. Guizani, M. Mohammadi, et al., “Internet of things:
A survey on enabling technologies, protocols, and applications,” IEEE
Commun. Surv. Tut., vol. 17, no. 4, pp. 2347-2376, 2015.

[2]

[3]
[4]
[5]

[6]

[7]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

227

Y. Meidan, M. Bohadana, A. Shabtai, et al., “ProfilloT: A machine
learning approach for IoT device identification based on network traffic
analysis,” in Proc. ACM SAC, p. 506-509, 2017.

Y. Wang, B. P. Rimal, M. Elder, et al., “IoT device identification using
supervised machine learning,” in Proc. IEEE ICCE, pp. 1-6, 2022.

A. H. Lashkari, G. Draper-Gil, et al., “Characterization of Tor traffic
using time based features,” in ICISSp, pp. 253-262, 2017.

D. Bekerman, B. Shapira, L. Rokach, et al., “Unknown malware detec-
tion using network traffic classification,” in Proc. IEEE CNS, pp. 134—
142, 2015.

S. A. Hamad, W. E. Zhang, Q. Z. Sheng, et al., “IoT device identification
via network-flow based fingerprinting and learning,” in Proc. IEEE
TrustCom/BigDataSE, pp. 103—111, 2019.

D. H. Hagos, A. Yazidi, O. Kure, ef al., “A machine-learning-based tool
for passive os fingerprinting with tcp variant as a novel feature,” IEEE
Internet Things J., vol. 8, 2021.

A. Aksoy and M. H. Gunes, “Automated IoT device identification using
network traffic,” in Proc. IEEE ICC, pp. 1-7, 2019.

S. Zander, T. Nguyen, and G. Armitage, “Automated traffic classification
and application identification using machine learning,” in Proc. IEEE
LCN, pp. 250-257, 2005.

A. Sivanathan, H. H. Gharakheili, and V. Sivaraman, “Inferring IoT
device types from network behavior using unsupervised clustering,” in
Proc. IEEE LCN, pp. 230-233, 2019.

S. Marchal, M. Miettinen, T. D. Nguyen, et al., “AuDI: Toward au-
tonomous IoT device-type identification using periodic communication,”
IEEE J. Sel. Areas Commu., vol. 37, no. 6, pp. 1402-1412, 2019.

R. Bhatia, S. Benno, J. Esteban, et al., “Unsupervised machine learning
for network-centric anomaly detection in IoT,” in Proc. ACM CoNEXT
Workshop on Big DAta, Machine Learning and Artificial Intelligence for
Data Communication Networks, p. 42-48, 2019.

S. Zhang, Z. Wang, J. Yang, et al., “Unsupervised IoT fingerprinting
method via variational auto-encoder and k-means,” in Proc. IEEE ICC,
pp. 1-6, 2021.

RaspAP, “RaspAP: Simple wireless AP setup & management for
Debian-based devices,” GitHub, 2022.

Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of computer
and system sciences, vol. 55, no. 1, pp. 119-139, 1997.

X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, P. S. Yu, et al., “Top 10 algorithms in data
mining,” Knowledge and information systems, vol. 14, no. 1, pp. 1-37,
2008.

E. Fix and J. L. Hodges, “Discriminatory analysis. nonparametric
discrimination: Consistency properties,” Int. Statistical Review/Revue
Internationale de Statistique, vol. 57, no. 3, pp. 238-247, 1989.

N. S. Altman, “An introduction to kernel and nearest-neighbor nonpara-
metric regression,” The American Statistician, vol. 46, no. 3, pp. 175-
185, 1992.

D. G. Kleinbaum, K. Dietz, M. Gail, M. Klein, et al., Logistic regression.
Springer, 2002.

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5—-
32, 2001.

F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine
learning in python,” Journal of Machine Learning Research, vol. 12,
pp- 2825-2830, 2011.

G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009.

T. Kluyver, B. Ragan-Kelley, et al., “Jupyter notebooks - a publish-
ing format for reproducible computational workflows,” in Positioning
and Power in Academic Publishing: Players, Agents and Agendas
(F. Loizides and B. Scmidt, eds.), pp. 87-90, IOS Press, 2016.

H. Jafari, O. Omotere, D. Adesina, et al., “IoT devices fingerprinting
using deep learning,” in Proc. IEEE MILCOM, pp. 1-9, 2018.

D. Nouichi, M. Abdelsalam, Q. Nasir, ef al., “IoT devices security using
rf fingerprinting,” in Advances in Science and Engg. Tech. Int. Conf.
(ASET), pp. 1-7, 2019.

Y. Tu, Z. Zhang, Y. Li, et al., “Research on the Internet of Things
device recognition based on RF-fingerprinting,” IEEE Access, vol. 7,
pp. 37426-37431, 2019.

X. Liu, M. Abdelhakim, P. Krishnamurthy, et al., “Identifying malicious
nodes in multihop IoT networks using diversity and unsupervised
learning,” in Proc. IEEE ICC, pp. 1-6, 2018.



