
Algorithm for Server Allocation in Delay-Sensitive
Internet-of-Things Monitoring Services

Shoya Imanaka†, Akio Kawabata‡, Bijoy Chand Chatterjee§, and Eiji Oki†
†Kyoto University, Kyoto, Japan ‡Toyohashi University of Technology, Aichi, Japan

§South Asian University, Delhi, India

Abstract—This paper proposes a polynomial-time algorithm
for a server allocation problem in delay-sensitive Internet-of-
Things (IoT) monitoring services. The server allocation problem
determines the appropriate servers to which the database and
application are allocated to minimize the maximum delay between
the latest update of reference data and the start of application
processing for monitoring data. The proposed algorithm com-
prises two components. The initial phase involves the selection of
usage servers for both the database and the application. Subse-
quently, the second phase entails matching each usage server and
its corresponding IoT device. The proposed algorithm obtains an
optimal allocation solution in polynomial time. Numerical results
show that the proposed algorithm obtains the optimal solution
faster than an integer linear programming approach.

Index Terms—server allocation problem, Internet of things,
monitoring service, polynomial-time algorithm

I. Introduction
The Internet of Things (IoT) has recently become

widespread in various areas and fields [1]. A typical example
of an IoT-applied service is a monitoring service. The mon-
itoring service employs multi-access edge computing (MEC)
technology, with telecommunication providers, in charge of
network design, deploying a group of MEC servers in a
distributed rather than a centralized manner to shorten the
overall transmission distance between the IoT device and the
server.

A monitoring service uses two types of data (reference
data and monitoring data) to determine the next actions to be
taken. Reference data is association data that characterizes and
categorizes specific data and is usually stored as a database
and utilized in application processing. Monitoring data is
collected by sensors and used in application analysis and
processing. For example, camera sensors are used to detect
particular people and vehicles for smart cities [2], or detect
some problems when monitoring the real-time status of factory
production lines for smart factories [3]. In monitoring systems
where decisions should be based on the latest data, such as
cases where detecting criminals by surveillance cameras or
automated driving usage situations, the application needs to
process the latest reference data as there is a change in data.

When the IoT-based service is provided over a large net-
work, the reference data is usually located at the center of the
network, applications are situated at the network edges [4], [5],

This work was supported in part by the Japan Society for the Promotion
of Science (JSPS) KAKENHI, Japan, under Grant Numbers 21H03426 and
23H03382.

and IoT-sensor devices are widely distributed as network
terminal endpoints. The data is exchanged between database
(reference data) and application, and between the IoT device
and application. The application must receive reference data
and monitoring data to quickly detect and process the latest
data and accelerate application processing. Application pro-
cessing can be accelerated by improving the server’s comput-
ing performance and resources. On the other hand, to reduce
transmission delays, it is necessary to shorten the transmission
distance between the database server storing reference data and
the application server, and between the IoT device and the
application server. The magnitude of data transmission delays
is directly proportional to the extent of network coverage.

In the operation of the monitoring service, the latest mon-
itoring data needs to be analyzed with low latency based on
the latest reference data. For example, monitoring services for
criminal detection needs to quickly and accurately analyze
facial image data (monitoring data) observed by security
camera sensors based on the latest criminal database (reference
data). Reference data is sent to the application when it is
updated, and an IoT device located at a terminal endpoint
(TE) sends monitoring data to the application (APL) server
on a regular basis. Even if the transmission delay between a
TE and an APL server is so small, when the delay between
the database (DB) server and an APL server is extremely
large, the monitoring service might not be able to accurately
and properly analyze the new monitoring data based on the
latest reference data. In this case, application processing of
the monitoring data is rewound when the updated reference
data is received at APL after receiving monitoring data and
restarted so that the analysis is based on the latest reference
data. In the opposite case, the monitoring service will not
be able to quickly analyze the latest monitoring data. Let 𝑇te
denote the transmission delay between a TE and an APL server,
and 𝑇db denote the transmission delay between the DB server
and an APL server. For a given network configuration, there are
some transmission paths for reference data from the DB server
to multiple APL servers, and for each APL server, there are
transmission paths for monitoring data from multiple devices to
the APL server. For all data transmission delays, let 𝑇max

te and
𝑇max

db denote the maximum values of𝑇te and𝑇db, respectively. To
reduce the overall data transmission delay in monitoring service
and to analyze any latest monitoring data quickly and properly,
max(𝑇max

te , 𝑇max
db) needs to be reduced [6], [7].

For reducing max(𝑇max
te , 𝑇max

db), it is necessary to appropri-

2024 Workshop on Computing, Networking and Communications (CNC)

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 21

ately select the server to which DB and APL are allocated and
the server to which TE connects, TE is allocated, taking into
account the data transmission path. In other words, a server
allocation of DB, APL, and TE on a network appropriate for
delay-sensitive monitoring service is required.

Kawabata et al. in [6], [7] formulated the server allocation
problem as an integer linear programming (ILP) problem to
minimize max(𝑇max

te , 𝑇max
db). They solved the ILP problem using

an ILP solver to find each corresponding server to which DB
and APL are allocated and TE is connected. However, the work
using the ILP approach did not analyze the computational time
complexity required to solve the server allocation problem for
monitoring service. It is desirable to provide more efficient
algorithm to solve the server allocation problem for a service
provider instead of solving the ILP problem, and to clarify the
computational time complexity.

A question arises: is there any efficient algorithm to solve
the server allocation problem for DB, APL, and TE in the
monitoring service, instead of solving an ILP problem?

This paper proposes a polynomial-time algorithm to solve the
server allocation problem for DB, APL, and TE in the delay-
sensitive monitoring service. The proposed algorithm comprises
two components. The initial phase involves the selection of usage
servers for both the database and the application. Subsequently,
the second phase entails matching each usage server and its
corresponding IoT device. The proposed algorithm obtains an
optimal solution for the server allocation problem in polynomial
time. Numerical results show that the proposed algorithm
outperforms the ILP approach in terms of computation time
under various experimental conditions.

II. Problem Description
A. Network model and notations

The network is represented as an undirected graph 𝐺 (𝑉, 𝐸),
where𝑉 and 𝐸 are, respectively, the set of nodes and undirected
edges.𝑉T ⊂ 𝑉 denotes the set of TEs, and𝑉S ⊂ 𝑉 denotes the set
of servers, where𝑉 = 𝑉T ∪𝑉S and𝑉T ∩𝑉S = ∅. 𝐸T ⊂ 𝐸 denotes
the set of edges between each pair of a TE and a server, and
𝐸S ⊂ 𝐸 denotes the set of edges between each pair of servers,
where 𝐸 = 𝐸T∪𝐸S and 𝐸T∩𝐸S = ∅. (𝑡, 𝑖) ∈ 𝐸T denotes an edge
between TE 𝑡 ∈ 𝑉T and server 𝑖 ∈ 𝑉S. 𝑑𝑡𝑖 denotes the delay of
edge (𝑡, 𝑖) ∈ 𝐸T. (𝑖, 𝑗) ∈ 𝐸S expresses an edge between server
𝑖 ∈ 𝑉S and server 𝑗 ∈ 𝑉S \ {𝑖}. 𝑑𝑖 𝑗 expresses the delay of edge
(𝑖, 𝑗) ∈ 𝐸S. The maximum number of TEs that server 𝑖 ∈ 𝑉S can
accommodate is denoted by 𝑀𝑖 . We define decision variables
𝑥𝑘𝑙 , 𝑦𝑖 , and 𝑧𝑖 . 𝑥𝑘𝑙 is a binary variable that is for (𝑘, 𝑙) ∈ 𝐸 , where
𝑥𝑘𝑙 = 1 if edge (𝑘, 𝑙) ∈ 𝐸 is selected, and 𝑥𝑘𝑙 = 0 otherwise.
𝑦𝑖 is a binary variable that is for server 𝑖 ∈ 𝑉S, where 𝑦𝑖 = 1 if
server 𝑖 ∈ 𝑉S is selected and APL is allocated to it, and 𝑦𝑖 = 0
otherwise. 𝑧𝑖 is a binary variable that is for server 𝑖 ∈ 𝑉S, where
𝑧𝑖 = 1 if DB is allocated to server 𝑖 ∈ 𝑉S, and 𝑧𝑖 = 0 otherwise.
The maximum delay of an edge between TE 𝑡 ∈ 𝑉T and server
𝑖 ∈ 𝑉S which accommodates TE is indicated by 𝑇max

te , and the
maximum delay of an edge between server 𝑖 ∈ 𝑉S to which APL
is allocated and server 𝑗 to which DB is allocated is indicated
by 𝑇max

db . The maximum value of 𝑇max
te and 𝑇max

db is denoted as
𝑇delay; 𝑇delay = max(𝑇max

te , 𝑇max
db).

B. Examples
This section presents examples of server allocation for DB,

APL, and TE that are addressed in this study. Fig. 1 shows
an example of network. Fig. 2(a) and Fig. 2(b) show network
setup configuration based on the network in Fig. 1. In Fig. 2(a),
TEs 1 and 2 are connected to server 1, TE 3 is connected to
server 3, APL is allocated to servers 1 and 3, and DB is allocated
to server 2. In this configuration scenario, individual TE is
connected to the nearest servers from each. In this configuration,
𝑇max

te is 10, 𝑇max
db is 13, so 𝑇delay is 13. On the other hand,

in Fig. 2(b), TE 1 is connected to server 2, TEs 2 and 3 are
connected to server 3, APL is allocated to servers 2 and 3, and
DB is allocated to server 2. In this configuration setting, the
individual TE is not selecting the nearest server from itself, but
is selecting the server to be connected so as to minimize 𝑇delay.
In this configuration, 𝑇max

te is 12, 𝑇max
db is 6, and thus 𝑇delay is 12,

less than Fig. 2(a) case. These network configuration examples
show that each IoT device’s selection of the nearest server from
itself is not necessarily the best strategy for reducing the delay
𝑇delay for data analysis. In this paper, we assume the network
configuration model shown in Fig. 2(b).

Fig. 1. Example of network. A number attached to each edge indicates the edge
delay.

(a) Example 1. (b) Example 2.

Fig. 2. Example of network configurations. A number attached to each edge
indicates the edge delay.

C. Problem formulation
We formulate the optimization problem to minimize 𝑇delay as

an integer linear programming (ILP) problem as follows:

Objective min 𝑇delay (1a)
s.t.

∑︁
𝑖∈𝑉S

𝑥𝑡𝑖 = 1, ∀𝑡 ∈ 𝑉T (1b)∑︁
𝑡∈𝑉T

𝑥𝑡𝑖 ≤ 𝑀𝑖 , ∀𝑖 ∈ 𝑉S (1c)

2024 Workshop on Computing, Networking and Communications (CNC)

22

∑︁
𝑗∈𝑉S

𝑧 𝑗 = 1 (1d)

𝑦𝑖 ≥ 𝑥𝑡𝑖 , ∀𝑖 ∈ 𝑉S, (𝑡, 𝑖) ∈ 𝐸T (1e)
𝑑𝑡𝑖𝑥𝑡𝑖 ≤ 𝑇max

te , ∀(𝑡, 𝑖) ∈ 𝐸T (1f)
𝑑𝑖 𝑗𝑥𝑖 𝑗 ≤ 𝑇max

db , ∀(𝑖, 𝑗) ∈ 𝐸S (1g)
𝑇max

te ≤ 𝑇delay, ∀(𝑡, 𝑖) ∈ 𝐸T (1h)
𝑇max

db ≤ 𝑇delay, ∀(𝑖, 𝑗) ∈ 𝐸S (1i)
𝑥𝑖 𝑗 ≥ 𝑧 𝑗 + 𝑦𝑖 − 1, ∀(𝑖, 𝑗) ∈ 𝐸S (1j)
𝑥𝑖 𝑗 ≤ 𝑦𝑖 , ∀(𝑖, 𝑗) ∈ 𝐸S (1k)
𝑥𝑖 𝑗 ≤ 𝑧 𝑗 , ∀(𝑖, 𝑗) ∈ 𝐸S (1l)
𝑥𝑘𝑙 ∈ {0, 1}, ∀(𝑘, 𝑙) ∈ 𝐸 (1m)
𝑦𝑖 , 𝑧𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝑉S. (1n)

Equation (1a) expresses the objective function to minimize
𝑇delay. Equation (1b) represents that there is one server to which
each TE 𝑡 ∈ 𝑉T is connected. Equation (1c) represents that
the maximum number of TEs that can be connected to server
𝑖 ∈ 𝑉S is at most 𝑀𝑖 . Equation (1d) represents that the number of
servers to which DB is allocated is one. Equation (1e) indicates
that APL is allocated to a server, if at least one TE is connected
to the server. Equation (1f) and (1g) represent that𝑇max

te and𝑇max
db

are the maximum delay between TE-server edges and between
server-server edges, respectively. Equations (1h)-(1i) represent
that 𝑇delay is the greater value of 𝑇max

te and 𝑇max
db . Equations (1j)-

(1l) indicate that 𝑦𝑖 · 𝑧 𝑗 = 𝑥𝑖 𝑗 ,∀(𝑖, 𝑗) ∈ 𝐸S. Equations (1m)-(1n)
express that 𝑥𝑘𝑙 , 𝑦𝑖 , and 𝑧𝑖 are 0-1 binary variables.

III. Proposed server allocation algorithm
A. Algorithm description

We present an algorithm for the server allocation problem.
The proposed algorithm is inspired by a basic idea of the server-
user matching algorithm presented in [8], [9]. The proposed
algorithm aims to minimize the value𝑇delay = max(𝑇max

te , 𝑇max
db).

It consists of two phases: usage server selection and TE-sever
matching, where each TE is connected to one server to which
APL is allocated. We set 𝑇delay = ∞ as an initial setting (line 1).

First, we start the usage-server-selection phase for DB
and APL. We select the server 𝑗 to which DB is allocated
(line 2). We sort server 𝑘 ∈ 𝑉S in non-decreasing order of
𝑑 𝑗𝑘 , (𝑗 , 𝑘) ∈ 𝐸S ∪ {(𝑗 , 𝑗)}, where 𝑑 𝑗 𝑗 = 0; we create set
{𝑢𝑠𝑎𝑔𝑒} as an empty set (line 3). By adding a server to
{𝑢𝑠𝑎𝑔𝑒} one by one based on the sorting result, we repeatedly
update {𝑢𝑠𝑎𝑔𝑒} ⊆ 𝑉S (line 4). 𝑇usage

db denotes the maximum
delay of edges between DB-allocated server 𝑗 and server
𝑖 ∈ {𝑢𝑠𝑎𝑔𝑒}. If 𝑇

usage
db is larger than or equal to 𝑇delay,

we select another server 𝑗 ∈ 𝑉S to which DB is allocated
(lines 5–7). If

∑
𝑖∈{𝑢𝑠𝑎𝑔𝑒} 𝑀𝑖 is less than |𝑉T |, we check another

set of usage servers with larger𝑇usage
db from server 𝑗 (lines 8–10).

Next, we move to the TE-server matching phase. We firstly
define set 𝑉 ′

S with a set of 𝑀𝑖 copies of server 𝑖 ∈ 𝑉S including
the original one, and |𝑉 ′

S | is equal to
∑

𝑖∈𝑉S 𝑀𝑖 . 𝐸 ′
T is the set

of edges between TE 𝑡 ∈ 𝑉T and server 𝑖𝑚 ∈ 𝑉 ′
S, where 𝑖 ∈

𝑉S, 𝑚 ∈ [1, 𝑀𝑖]. Delay 𝑑𝑡𝑖𝑚 , (𝑡, 𝑖𝑚) ∈ 𝐸 ′
T, is the same value

as the original 𝑑𝑡𝑖 , (𝑡, 𝑖) ∈ 𝐸T. We initialize the bipartite graph

𝐺′ (𝑉 ′, 𝐸 ′′
T), where 𝑉 ′ = 𝑉T ∪ 𝑉 ′

S and 𝐸 ′′
T = {∅}, respectively

(line 11). For each set of usage servers, we sort (𝑡, 𝑖) ∈ 𝐸T : 𝑖 ∈
{𝑢𝑠𝑎𝑔𝑒} in non-decreasing order of 𝑑𝑡𝑖 (line 12). We introduce
counter 𝑟 , which is initialized as zero (line 13). In addition,
we introduce a flag, 𝑓 𝑙𝑎𝑔 𝑚𝑎𝑡𝑐ℎ, which is initialized as false
(line 13). This flag indicates whether the first matching for all
TEs has already been found for a set of usage servers. If 𝑑𝑡𝑖𝑚 ≥
𝑇delay, (𝑡, 𝑖𝑚) is the edge to be added, we check another set of
usage servers (lines 15–17). We set 𝐷T to the delay of the first
edge in the list sorted in non-decreasing order of 𝑑𝑡𝑖 (line 18).
We add the top-listed edge, which has the smallest delay in the
list, to 𝐸 ′′

T and remove it from the list and increment 𝑟 if 𝐸 ′′
T does

not include any edge connecting TE 𝑡 ∈ 𝑉T (line 19). We also add
the edges that have the same delay value as 𝐷T to 𝐸 ′′

T and remove
them from the list (line 20). We stop examining a set of usage
servers if a matching for all TEs has already been found for the
set of usage servers or if the delay of an edge we try to add 𝑑𝑡𝑖𝑚 ≥
𝑇delay. In line 20, each time a new edge (𝑡, 𝑖𝑚) is added to 𝐸 ′′

T ,
increment 𝑟 if 𝐸 ′′

T does not include any edge connecting 𝑡. If 𝑟 is
equal to |𝑉T | (line 21), 𝐸 ′′

T includes any edges connecting every
𝑡 ∈ 𝑉T; we run the Hopcroft-Karp algorithm [10], which obtains
the maximum matching in a given bipartite graph (line 22). We
investigate whether all TEs can be matched to servers using the
Hopcroft-Karp algorithm in the context of 𝐺′ (𝑉 ′, 𝐸 ′′

T) (line 22–
23). If the number of matching pairs between TEs and servers
is equal to |𝑉T | (line 23), we set 𝑓 𝑙𝑎𝑔 𝑚𝑎𝑡𝑐ℎ = true, calculate
𝑇

usage
te for {𝑢𝑠𝑎𝑔𝑒}, and get 𝑥𝑡𝑖 , 𝑦𝑖 , 𝑧 𝑗 (lines 24–25). 𝑇usage

te
denotes the maximum delay of edges between TE 𝑡 ∈ 𝑉T and
server 𝑖 ∈ {𝑢𝑠𝑎𝑔𝑒} established by TE-server matching. We
then calculate 𝑇

usage
delay = max(𝑇usage

te , 𝑇
usage
db) (line 26). If 𝑇usage

delay
is smaller than the previous 𝑇delay, we update 𝑇delay with that
𝑇

usage
delay and allocation 𝑥𝑡𝑖 , 𝑦𝑖 , 𝑧 𝑗 (lines 27–29). If 𝑓 𝑙𝑎𝑔 𝑚𝑎𝑡𝑐ℎ =

true, the first matching for all TEs has already been found for a
set of usage servers, we do not investigate the case any further
and investigate the next set of usage servers (lines 32–34). If we
have checked all {𝑢𝑠𝑎𝑔𝑒} for all DB-allocated server 𝑗 ∈ 𝑉S,
we finish the proposed algorithm.

B. Computational time complexity
We analyze the computational time complexity of the pro-

posed algorithm considering the usage server selection phase
and the TE-server matching phase.

First, we consider the usage servers selection phase. We select
and investigate each set of usage servers for each server to which
DB is allocated. It takes |𝑉S | times to select each DB-allocated
server. For each case that DB is allocated to server 𝑗 , the
number of servers to be sorted (line 3) is |𝑉S |. The computational
time complexity of sorting servers in non-decreasing order of
𝑑 𝑗𝑘 , (𝑗 , 𝑘) ∈ 𝐸S∪{(𝑗 , 𝑗)} for case of server 𝑗 is𝑂 (|𝑉S | log |𝑉S |);
for sorting servers (lines 2 and 3), the total computational time
complexity is 𝑂 (|𝑉S |2 log |𝑉S |). It takes at most |𝑉S | times to
select and investigate all the sets of usage servers for each DB-
allocated server. The number of sets of usage servers is at most
(|𝑉S |) (|𝑉S |). Thus, it takes 𝑂 (|𝑉S |2) to select and investigate all
the sets of usage servers.

Second, we consider the TE-server matching phase. We
make 𝑀𝑖 copies of servers 𝑖 ∈ 𝑉S to initialize 𝐺 (𝑉 ′, 𝐸 ′).

2024 Workshop on Computing, Networking and Communications (CNC)

23

Algorithm 1: Proposed algorithm
Input: 𝐺 (𝑉, 𝐸) , 𝑑𝑡𝑖 , (𝑡 , 𝑖) ∈ 𝐸T, 𝑑𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸S, 𝑀𝑖 , 𝑖 ∈ 𝑉S
Output: 𝑇delay, 𝑥𝑡𝑖 , 𝑦𝑖 , 𝑧 𝑗 , 𝑡 ∈ 𝑉T, 𝑖, 𝑗 ∈ 𝑉S
1: 𝑇delay = ∞

Usage server selection (lines 2–10)
2: for 𝑗 ∈ 𝑉S to which DB is allocated
3: Sort server 𝑘 ∈ 𝑉S in non-decreasing order of

𝑑 𝑗𝑘 , (𝑗 , 𝑘) ∈ 𝐸S ∪ { (𝑗 , 𝑗) }, where 𝑑 𝑗 𝑗 = 0; create set
{𝑢𝑠𝑎𝑔𝑒} as an empty set

4: for each set of usage servers selected, {𝑢𝑠𝑎𝑔𝑒}, updated
based on the sorting result

5: If 𝑇usage
db ≥ 𝑇delay

6: break
7: end if
8: If

∑
𝑖∈{𝑢𝑠𝑎𝑔𝑒} 𝑀𝑖 < |𝑉T |

9: continue
10: end if

TE-server matching (lines 11–35)
11: Initialize the bipartite graph 𝐺′ (𝑉 ′, 𝐸′′

T) .
12: Sort (𝑡 , 𝑖) ∈ 𝐸T : 𝑖 ∈ {𝑢𝑠𝑎𝑔𝑒} in non-decreasing order

of 𝑑𝑡𝑖
13: 𝑟 = 0 and 𝑓 𝑙𝑎𝑔 𝑚𝑎𝑡𝑐ℎ = false
14: for each edge on the top of list
15: If 𝑑𝑡𝑖𝑚 ≥ 𝑇delay
16: break
17: end if
18: Set 𝐷T to the delay of top-listed edge
19: Add the edge (𝑡 , 𝑖1) to 𝐸′′

T and remove it from the
list. Increment 𝑟 if 𝐸′′

T does not include any edge
connecting 𝑡 .

20: Add the edges that have the same delay as 𝐷T to
𝐸′′

T and remove them from the list. Each time a
new edge is added to 𝐸′′

T , increment 𝑟 if 𝐸′′
T

does not include any edge connecting 𝑡 .
21: If 𝑟 is equal to |𝑉T |
22: Run the Hopcroft-Karp algorithm
23: If the number of matching pairs is equal to |𝑉T |
24: 𝑓 𝑙𝑎𝑔 𝑚𝑎𝑡𝑐ℎ = true
25: Calculate 𝑇usage

te and get allocation 𝑥𝑡𝑖 , 𝑦𝑖 , 𝑧 𝑗
26: Calculate 𝑇usage

delay = max(𝑇usage
te , 𝑇

usage
db)

27: If 𝑇usage
delay is smaller than the previous value

28: Update 𝑇delay and allocation 𝑥𝑡𝑖 , 𝑦𝑖 , 𝑧 𝑗
29: end if
30: end if
31: end if
32: If 𝑓 𝑙𝑎𝑔 𝑚𝑎𝑡𝑐ℎ = true
33: break
34: end if
35: end for
36: end for
37:end for

The computational time complexity of making server copies is
𝑂 (|𝑉 ′

S |); for making server copies (lines 2, 4, and 11), the total
computational time complexity is 𝑂 (|𝑉S |2 |𝑉 ′

S |). The number of
edges (𝑡, 𝑖), 𝑖 ∈ {𝑢𝑠𝑎𝑔𝑒} is at most |𝑉T | |𝑉S |. The computational
time complexity of sorting (𝑡, 𝑖) ∈ 𝐸T : 𝑖 ∈ {𝑢𝑠𝑎𝑔𝑒} in
non-decreasing order of 𝑑𝑡𝑖 is 𝑂 (|𝑉T | |𝑉S | log |𝑉T | |𝑉S |); for
sorting edges (lines 2, 4, and 12), the total computational
time complexity is 𝑂 (|𝑉S |2 |𝑉T | |𝑉S | log |𝑉T | |𝑉S |). After that, we
add the edges to 𝐺′ (𝑉 ′, 𝐸 ′′

T). We consider 𝐺′ (𝑉 ′, 𝐸 ′′
T), which

has TE and server sides. For adding edges to 𝐸 ′′
T (lines 2,

4, and 19–20), the total computational time complexity is

𝑂 (|𝑉S |2 |𝑉T | |𝑉 ′
S |). When we get to a situation where there is

at least one edge out of every TE on 𝐺′ (𝑉 ′, 𝐸 ′′
T), we run the

Hopcroft-Karp algorithm. In each case using the Hopcroft-Karp
algorithm, the maximum number of vertices in 𝐺′ (𝑉 ′, 𝐸 ′′

T) is
|𝑉 ′ | = |𝑉T | + |𝑉 ′

S | ≤ 2|𝑉 ′
S |; it takes 𝑂 (|𝐸 ′′

T |
√︁
|𝑉 ′

S |). |𝐸
′′
T | is at

most |𝑉 ′
S | |𝑉T |; it takes 𝑂 (|𝑉 ′

S | |𝑉T |
√︁
|𝑉 ′

S |) in the Hopcroft-Karp
algorithm. We use the Hopcroft-Karp algorithm only when
𝑟 = |𝑉T | for each set of usage servers; for the Hopcroft-Karp
algorithm (lines 2, 4, and 22), the total computational time
complexity is 𝑂 (|𝑉S |2 |𝑉 ′

S | |𝑉T |
√︁
|𝑉 ′

S |). The comparison between
new and previous values takes 𝑂 (1). With |𝑉 ′

S | = |∑𝑖∈𝑉S 𝑀𝑖 |,
the total computational time complexity for the Hopcroft-Karp
algorithm is represented as 𝑂 (|𝑉S |2 |𝑉T | (

∑
𝑖∈𝑉S 𝑀𝑖)1.5).

We compare 𝑂 (|𝑉S |2 |𝑉T | (
∑

𝑖∈𝑉S 𝑀𝑖)1.5) and
𝑂 (|𝑉S |2 |𝑉T | |𝑉S | log |𝑉T | |𝑉S |). We investigate a ratio of
(∑𝑖∈𝑉S 𝑀𝑖)1.5/(|𝑉S | log |𝑉T | |𝑉S |). Given that

∑
𝑖∈𝑉S 𝑀𝑖 is

equal to |𝑉S |𝑀𝑖 and 𝑀𝑖 is expressed as 𝛾 |𝑉T |, where
𝛾 is a positive parameter, the ratio is represented as
(
√︁
|𝑉S | |𝑉T | |𝑉T |𝛾1.5)/(log |𝑉T | |𝑉S |); 𝑂 (|𝑉S |2 |𝑉T | (

∑
𝑖∈𝑉S 𝑀𝑖)1.5)

is larger in terms of computational time complexity.
Therefore, the overall computational time complexity of the

proposed algorithm is 𝑂 (|𝑉S |2 |𝑉T | (
∑

𝑖∈𝑉S 𝑀𝑖)1.5). Thus, the
proposed algorithm is a polynomial-time algorithm.

Property 1. The proposed algorithm obtains an optimal server
allocation for DB, APL, and TE which minimizes 𝑇delay =

max(𝑇max
te , 𝑇max

db) with the computational time complexity of
𝑂 (|𝑉S |2 |𝑉T | (

∑
𝑖∈𝑉S 𝑀𝑖)1.5).

IV. Numerical Results
We evaluate the proposed algorithm and ILP approach with

two networks: COST 239 [11], JPN Kanto region [12] networks.
We assume that the distributed servers are located according to
each network model, as shown in Fig. 3(a), Fig. 3(b). There are
11 servers in COST239, eight servers in JPN Kanto region. In
each network, each pair of servers can logically communicate
with each other by using one or more edges on the shortest path
route. For example, London is connected to Berlin via Paris in
COST 239. TEs are uniformly distributed with respect to latitude
and longitude on the area corresponding to a given network. For
server-server and TE-server distances, spherical trigonometry
is used to calculate the distance between two points on earth
based on latitude and longitude. The distance of 𝑑𝐴𝐵 between
point A (longitude 𝑥𝐴, latitude 𝑦𝐴) and point B (longitude 𝑥𝐵,
latitude 𝑦𝐵) is expressed by: 𝑑𝐴𝐵 = 𝑅 cos−1 (sin 𝑦𝐴 sin 𝑦𝐵 +
cos 𝑦𝐴 cos 𝑦𝐵 cos(𝑥𝐵 − 𝑥𝐴)), where 𝑅 denotes the equatorial
radius. The transmission delay is mainly proportional to the
corresponding edge distance.

We compare the proposed algorithm with the ILP approach
of (1a)–(1n); the ILP problem is solved by Solving Constraint
Integer Programs (SCIP) [13], which is a non-commercial
solver. The proposed algorithm is coded by using the C++
language. The computer is configured with Intel(R) Core(TM)
i7-1360P 2.20GHz 16GB memory. We note that both optimal
values of the objective function obtained by the proposed
algorithm and the ILP are identical, as proved by Property 1.

Tables I and II show the computation times by the proposed
algorithm and ILP approach using the combined patterns of

2024 Workshop on Computing, Networking and Communications (CNC)

24

(a) Location of servers in
COST 239.

(b) Location of servers in JPN Kanto.

Fig. 3. Locations of servers in COST 239 and JPN Kanto.

number of TEs and a ratio, 𝛼 = |𝑉T |/(
∑

𝑖∈𝑉S 𝑀𝑖), on COST 239,
JPN Kanto region, respectively. 𝑀𝑖 is a given parameter, and 𝛼

is initially set up in the network design phase. We assume that
𝑀𝑖 ,∀𝑖 ∈ 𝑉S, is the same value. For every TE to be connected to
any of the servers in a given network, 𝛼 ≤ 1 must be satisfied.

TABLE I
Average computation times [s] by ILP approach and proposed

algorithm in COST 239 network.

Ratio
Number of TEs

100 300 500 1000
(𝛼) ILP Prop. ILP Prop. ILP Prop. ILP Prop.
0.91 3.98 0.010 58.9 0.045 75.3 0.11 1526.7 0.41
0.70 2.70 0.010 7.96 0.054 63.1 0.14 360.3 0.50
0.45 1.96 0.028 4.31 0.24 4.78 0.64 30.9 2.79
0.30 2.22 0.53 2.72 0.42 11.0 1.13 42.7 4.93

TABLE II
Average computation times [s] by ILP approach and proposed

algorithm in JPN Kanto region network.

Ratio
Number of TEs

100 300 500 1000
(𝛼) ILP Prop. ILP Prop. ILP Prop. ILP Prop.
0.83 0.95 0.008 2.46 0.032 5.72 0.083 17.07 0.34
0.70 0.53 0.012 1.61 0.047 4.47 0.14 18.07 0.52
0.45 0.34 0.016 1.34 0.12 3.77 0.33 9.54 1.45
0.30 0.31 0.029 1.20 0.21 2.58 0.60 5.33 2.65

Tables I and II show that the proposed algorithm solves the
server allocation problem faster than the ILP approach under
all experimental conditions. Specifically, for COST 239 when
|𝑉T | = 1000 with 𝛼 = 0.91, the proposed algorithm solves the
server allocation problem around 3724 times faster than the ILP
approach, and with 𝛼 = 0.70, 721 times faster. For JPN Kanto
region when |𝑉T | = 1000 and 𝛼 = 0.83, the proposed algorithm
solves the problem 50 times faster than the ILP approach, and
with 𝛼 = 0.70, 35 times faster. For both networks, when |𝑉T |
and 𝛼 are the same, it takes more computation time in most
cases to solve the server allocation problem in COST 239 than
in JPN Kanto region. This is related to the fact that there are
more servers in COST 239 than in JPN Kanto region.

We observe from Table I and II that the computation
time of the proposed algorithm increases as 𝛼 decreases.
This is because the smaller 𝛼 is (the larger server capacity

𝑀𝑖 = |𝑉T |/𝛼 |𝑉S |,∀𝑖 ∈ 𝑉S, is), the greater the number of cases
where

∑
𝑖∈{𝑢𝑠𝑎𝑔𝑒} 𝑀𝑖 < |𝑉T | (line 8) is false; we investigate

the more sets of usage servers in the proposed algorithm. As
for the specific relationship between values of 𝛼 and 𝑀𝑖 , in
COST 239, when 𝛼 = 0.91, 𝑀𝑖 = |𝑉T |/10; when 𝛼 = 0.45,
𝑀𝑖 = |𝑉T |/5. Given |{𝑢𝑠𝑎𝑔𝑒}| denotes the number of usage
servers to be examined, 𝛼 |𝑉S | ≤ |{𝑢𝑠𝑎𝑔𝑒}| ≤ |𝑉S | holds so
that servers in {𝑢𝑠𝑎𝑔𝑒} can accommodate all TEs. This means
when 𝛼 becomes small (𝑀𝑖 becomes relatively large), we might
investigate more sets of usage servers. In addition, the increase
in 𝑀𝑖 leads to the overall increase in the number of edges added
to the bipartite graph 𝐺′ (𝑉 ′, 𝐸 ′′

T), which results in increase in
computation time.

V. Conclusion
This paper proposes an algorithm to solve the server allocation

problem for the database, application, and IoT devices in delay-
sensitive monitoring services. The proposed algorithm com-
prises two components. The initial phase involves the selection
of usage servers for both the database and the application.
Subsequently, the second phase entails matching each usage
server and its corresponding IoT device. The proposed algorithm
obtains an optimal server allocation for the database, application,
and IoT devices in polynomial time. Numerical results show that
the proposed algorithm solves the server allocation problem for
the database, application, and IoT devices faster than ILP.

References
[1] P. D. Baruah, S. Dhir, and M. Hooda, “Impact of IoT in current era,” in

2019 International Conference on Machine Learning, Big Data, Cloud
and Parallel Computing (COMITCon), 2019, pp. 334–339.

[2] H. Rajab and T. Cinkelr, “IoT based smart cities,” in 2018 Int. Symp.
Netw., Comput. Commun. (ISNCC), 2018, pp. 1–4.

[3] M. Soori, B. Arezoo, and R. Dastres, “Internet of things for smart factories
in industry 4.0, a review,” Internet of Things and Cyber-Physical Systems,
vol. 3, pp. 192–204, 2023.

[4] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A
survey on the edge computing for the internet of things,” IEEE Access,
vol. 6, pp. 6900–6919, 2018.

[5] S. Singh, “Optimize cloud computations using edge computing,” in 2017
International Conference on Big Data, IoT and Data Science (BID).
IEEE, 2017, pp. 49–53.

[6] A. Kawabata, T. Tojo, B. Chatterjee, and E. Oki, “A network design
scheme in delay sensitive monitoring services,” IEICE Trans. Commun.,
vol. E106-B, no. 10, pp. 903–914, Oct. 2023.

[7] A. Kawabata, T. Tojo, B. C. Chatterjee, and E. Oki, “An optimal allocation
scheme of database and applications for delay sensitive IoT services,” in
2021 IEEE Global Commun. Conf. (GLOBECOM), 2021, pp. 1–6.

[8] T. Sawa, F. He, A. Kawabata, and E. Oki, “Polynomial-time algorithm for
distributed server allocation problem,” in 2019 IEEE 8th International
Conference on Cloud Networking (CloudNet), 2019, pp. 1–3.

[9] ——, “Algorithms for distributed server allocation problem,” IEICE
Trans. Commun., vol. E103-B, no. 11, pp. 1341–1352, Nov. 2020.

[10] J. Katrenic and G. Semanišin, “A generalization of Hopcroft-Karp
algorithm for semi-matchings and covers in bipartite graphs,” Computing
Research Repository - CORR, 03 2011.

[11] M. O’Mahony, “Results from the COST 239 project. ultra-high capacity
optical transmission networks,” in Proc. European Conf. Opt. Commun.,
vol. 2, 1996, pp. 11–18 vol.2.

[12] “Japan Photonic Network Model,” https://www.ieice.org/cs/pn/jpn/jpnm.
html, accessed on 2023-08-20.

[13] “Solving Constraint Integer Programs (SCIP),” https://www.scipopt.org/,
accessed on 2023-08-20.

2024 Workshop on Computing, Networking and Communications (CNC)

25

