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Abstract—To fully exploit the advantages of spatial multiplex-
ing gains in Multiple-Input Multiple-Output (MIMO) systems
operating in Frequency Division Duplex (FDD) mode, it is
crucial to develop a robust Channel State Information (CSI)
feedback compression and reconstruction strategy. This strategy
should effectively reduce the communication overhead while
maintaining close-to-optimal reconstruction accuracy. However,
conventional codebook-based approaches, as specified in 3rd Gen-
eration Partnership Project (3GPP) standards and typical deep
learning (DL)-based techniques, encounter challenges like high
air-interface overhead and/or poor generalization performance
across scenarios. In this paper, we introduce a novel neural
network architecture named Variable Code Size Autoencoder
(VCSA), a unified two-sided model that not only enables the
user equipment (UE) to generate variable-size encoder output but
also allows the network to take variable-size input to reconstruct
the CSI. Empirical results show that leveraging VCSA together
with quantization can achieve comparable performance as using
multiple encoder output size-specific autoencoders. Addition-
ally, we show that with proper training strategy, the VCSA
model achieves decent generalization performance between urban
macro (UMa) and urban micro (UMi) scenarios, which further
demonstrates the benefits of using DL techniques to provide
practical solutions in fifth-generation (5G) networks and beyond.

Index Terms—CSI Compression, 3rd Generation Partnership
Project (3GPP), Model Generalization, Autoencoder (AE), Deep
Learning (DL), and MIMO

I. INTRODUCTION

MIMO stands as a promising technique aimed at enhanc-
ing spectrum and energy efficiency in the context of next-
generation wireless system [1], [2]. However, this advance-
ment introduces a new challenge, particularly with regard
to base stations (BS). The next-generation BS (gNB) must
acquire real-time CSI for precoding purposes, a requirement
accentuated in FDD systems. Downlink CSI acquisition in-
volves two primary steps. First, the UE estimates the downlink
CSI by utilizing the received pilot signals transmitted by the
BS. Subsequently, the UE relays this estimated downlink CSI
to the BS via the uplink control channel. In the context of
massive MIMO systems, where the BS is equipped with a large
number of antennas, the resulting CSI dimension becomes
extensive, necessitating significant feedback overhead.

Conventional CSI feedback methods in existing 5G system
depend on codebooks, as reviewed in [3], often face chal-
lenges in finding the optimal trade-off between computational
complexity and accuracy. On the other hand, as suggested by

signal processing researchers, compressive sensing techniques,
as discussed in [4] and [5], necessitate ideal assumptions
such as channel sparsity, which may not always hold true in
practical systems. In recent years, Machine Learning (ML), DL
in particular, based approach has been leveraged in wireless
communication to enhance conventional communication func-
tionalities like channel estimation [6], precoding/beamforming
in massive MIMO [7], signal detection [8], to name a few. For
CSI feedback compression and reconstruction, 3GPP Release
18 has set up a study item (abbreviated as NR AIML Air in
[9]) to explore the potential of Artificial Intelligence (AI)/ML-
based solutions for three identified use cases, and CSI feed-
back enhancement is one of the representative use cases. For
DL-based CSI feedback compression, the common architec-
ture adopted the idea of the AE used in image compression
[10]. Even though these approaches achieved promising per-
formance in reconstruction accuracy, they are all based on
a common assumption that the encoder output and decoder
input share the same shapes. In real deployment scenarios, the
encoder may reside on the UE, and the decoder may reside
on the BS. Thus, this constraint poses challenges for UEs and
network vendors who may employ their own strategies in what
encoder output and/or decoder input shapes to be supported.
Additionally, the eventual CSI feedback overhead or payload
depends not only on the size of the encoder output or latent
space, which is also referred to as code size interchangeably
in this article but also on the quantization scheme applied. It is
apparent to understand that developing a versatile model that
can adapt to various CSI feedback payloads is a very important
part of the overall AI/ML-based solution.

As discussed earlier, previous works have demonstrated
the effectiveness of DL-based methods for CSI compression,
resulting in improved compression ratios and reconstruction
accuracy [11]–[14]. Some related literature [15]–[17] employs
similar terminology, but the problem spaces addressed are
different. A conventional approach to address variable code
sizes would involve developing multiple models, one model
for each code size. However, this approach demands significant
resources to manage and store several well-trained models
and the associated model switching strategy. Recently, authors
in [18] introduce a feedback overhead control unit (FOCU)
for adaptive CSI feedback encoding. It accommodates varying
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feedback bit rates, optimizing storage. However, different
feedback bit rates may require different configurations. In this
case, multiple AEs would have to be offloaded to each UE,
resulting in increased storage requirements at the user side.
Our design involves a similar idea to the FOCU but using
data augmentation to achieve efficient use of the training data
independently of the quantization block. This provides flexible
CSI feedback encoding with a single encoder. Meanwhile, [19]
employs Nested Dropout (ND) to ensure decoder robustness
to feedback size variations, though it complicates training. In
contrast, we preprocess data for variable feedback sizes and
leverage data augmentation for efficient training.

The main contributions of this paper are as follows.
• We present a unified AE Neural Network (NN) ar-

chitecture, named as Variable Code Size Autoencoder
(VCSA), that can adapt to multiple code sizes. The goal
is to mitigate the complexities and effort associated with
developing and managing multiple models to support
multiple code sizes. The NN is then trained using datasets
from multiple deployment scenarios. The trained unified
model for CSI compression and reconstruction has the
ability not only to adapt to different CSI code sizes but
also to generalize across multiple scenarios.

• We employ a renewable quantization approach tailored
for variable CSI payload sizes and evaluate its ability
to generalize across various scenarios. It’s important to
note that generalization across scenarios poses a general
DL challenge when the training and inference data dis-
tributions differ. Our objective is to develop a model that
can achieve performance levels comparable to those of
multiple scenario-specific models, and each specifically
designed for a single code size and/or scenario while
keeping the model complexity at a reasonable level.

The remainder of this paper is organized as follows: In
Section II, we introduce the wireless system model and the
details of our proposed DL model. Section III provides a
comprehensive overview of the proposed experiment settings
and discusses the evaluation procedures and results. Finally,
Section IV concludes the paper.

II. SYSTEM MODEL

A. Wireless System Model

In this paper, we consider a multiple-cell downlink cellular
FDD scheme employed in a MIMO system. The system
consists of Nt antennas at the BS and Nr antennas at the
user equipment UE, where both Nt and Nr are greater than or
equal to 1. The system utilizes Orthogonal Frequency Division
Multiplexing (OFDM) with S subbands, where each subband
consists of C resource blocks (RBs). The downlink channel is
expressed as:

H =
[
H1,H2,H3, . . . ,HS

]
, (1)

where Hs ∈ CNr×Nt , 1 ≤ s ≤ S, is the s-th subband of
the downlink channel. This channel is utilized by employing
single-stream downlink transmission and ideal channel esti-
mation at the UE side. The eigenvector for the s-th subband,

represented as ps ∈ CNt×1 with normalization tr(psp
H
s ) = 1,

is directly employed as the downlink precoding vector. This
vector can be calculated using eigenvector decomposition in
the following equation:

HH
s Hsps = λsps. (2)

The symbol λs represents the largest eigenvalue of the ma-
trix HH

s Hs, which also signifies the precoding power gain
achieved from a MIMO system. It’s essential to mention that
all S eigenvectors must be sent to the BS. This helps create
the downlink precoding beamforming for MU-MIMO UEs,
particularly for methods like the Zero-forcing algorithm that
uses them directly as input. Therefore, a total of S × Nt

complex coefficients should be compressed and recovered for
each channel sample using various compression techniques. In
this work, the Squared Generalized Cosine Similarity (SGCS),
an intermediate Key Performance Indicator (KPI) agreed in
3GPP Rel 18 [20], on the s-th subband, denoted as SGCSs,
is used to assess the accuracy of CSI reconstruction.

SGCSs =

(
|pH

s p′
s|

||ps||||p′
s||

)2

. (3)

In the above equation, p′
s represents the recovered eigenvector

for the s-th subband. The average SGCS across all subbands is
denoted as SGCS = 1

S

∑S
s=1 SGCSs, where SGCS is ≤ 1. A

higher SGCS value signifies more accurate CSI reconstruction.

B. Variable Code Size Autoencoder (VCSA)

A generalized model introduced in this paper is an AE
model which has a common encoder model from the UE side
that can generate different sizes of encoder outputs, referred
as variable code sizes. At the same time, a common decoder
at the BS is used to reconstruct the CSI from variable sizes
of the encoder output received. Fig. 1 depicts the high-level
architecture design. The CSI generation part represents the CSI
compression at the UE side. After the UE receives the CSI
reference signal and performs the estimation, the estimated
CSI matrix is pre-processed as channel eigenvectors to reduce
the amount of feedback overhead. In this paper, we assume
max rank is 1. As shown in the CSI generation part, the CSI
eigenvector is first compressed by an encoder followed by
applying different masks to adjust the encoder output sizes
based on the configuration. In this work, we use two types of
masks, where mask 1 represents removing the second half of
the codes in the encoder output while mask 2 keeps all the
codes in the encoder output.

The encoded output is then quantized using an add-on
scalar quantizer, which is learned from the encoder out-
puts from training samples with mask 2 using K-Means,
an unsupervised clustering algorithm. As a result, the over-
the-air payload size depends on the code size (type of
masks being applied) and quantization bits per code which
is log2(number of clusters). The payload is calculated as
payload (bits) = code size × quantization bits. In this paper,
we adopt code sizes of 16 and 32 with [4, 5, 8] bits per
code, which result into [80 bits, 128 bits, 256 bits] according
to CSI payload size categories agreed in 3GPP Rel 18:
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Fig. 1: Generalized Model Architecture with Multiple Code Sizes.

small (payload ≤ 80 bits), medium (100 bits ≤ payload ≤
140 bits), and large (payload ≥ 230 bits). Note that we
assume BS and UE have common knowledge of the code
size(s) and quantization bits per code prior to CSI compression
and reconstruction procedure. Additionally, we assume perfect
channel estimation at the UE side, along with perfect CSI
feedback from the UE to the BS. At the CSI reconstruction
part, the BS first uses the same quantization dictionary to
convert the binary payloads to the corresponding floating-point
codes (cluster centroids). Depending on the configuration, if
mask 1 was applied, the BS pads zeros to the end of the
converted codes where the size of zeros equals the size of
the codes. Otherwise, the codes will not be modified. The
adjusted codes are then sent to the CSI decoder to reconstruct
the eigenvectors.

III. PERFORMANCE EVALUATION

A. Experimental Setup

In this section, we discuss the performance evaluation
procedures and results of the VCSA and its generalization
capabilities across deployment scenarios within the context of
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Fig. 2: VCSA Neural Network Structure.

TABLE I: Data Details.

Parameter Value
Duplex, Waveform FDD, OFDM
Scenario Dense Urban (UMa/UMi)
Channel Model 3GPP 38.901 (3D Channel Model)
Frequency Range FR1 only, 4GHz.
Number of Tx Antenna 32
Tx Antenna Setup
and Layouts

(8, 8, 2, 1, 1, 2, 8)
(dH,dV) = (0.5, 0.8)λ

Number of Rx Antenna 4
UE Antenna Setup
and Layouts

(1, 2, 2, 1, 1, 1, 2)
(dH,dV) = (0.5, 0.5)λ (rank 1 only)

BS Tx power 44dBm for 20MHz
Numerology: SCS 30kHz for 4GHz
UE Distribution 100% outdoor (3km/h)
Average UEs per Sector 10
Number of Sectors 21
Number of Subbands (S) 12
RBs per Subband (C) 8

the 5G OFDM system. The performance assessment is carried
out using two distinct datasets corresponding to dense urban
scenarios, denoted as UMa and UMi based on the specifica-
tions delineated in the 3GPP 38.901 channel model [21], as
detailed in Table I. The setup involves 32 transmit antennas
at the gNB (base station), and 4 receiving antennas at the
UE. The transmitter power is configured at 44 dBm for a 20
MHz bandwidth and the arrangement of transmitter antennas
follows a pattern of (8, 8, 2, 1, 1, 2, 8), with corresponding hor-
izontal and vertical spacing set at 0.5λ and 0.8λ respectively.
The configuration of receiver antennas adopts a pattern of
(1, 2, 2, 1, 1, 1, 2), with both horizontal and vertical spacing
maintained at 0.5λ. The operating frequency is centered
around 4 GHz within the Frequency Range 1 (FR1) spectrum,
with a sub-carrier spacing of 30 kHz. In our system-level
simulation (SLS), we split the bandwidth into 12 sub-bands,
each comprising 8 resource blocks.

To assess the model’s generalization performance, we com-
pare the performance between the proposed VCSA and the
“dedicated baseline” (DB). The DB involves training and
testing for a single code size for each given scenario, e.g., UMa
or UMi, exclusively. To ensure a comparable comparison, we
maintain most parts in the NN architecture of the AE and adopt
the same simulation configurations. It’s worth noting that in
the case of DB, the encoder input comprises CSI eigenvectors
only, without the inclusion of the additional flag input. We
adopt two code sizes in the study, namely 16 and 32, in the
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TABLE II: Simulation Details.

Parameter Value
AI/ML Model Type CNN
Data Normalization MinMax
Input/Output Eigenvectors
Code Size 16, 32
Training Data Size 40093
Validation Data Size 7075
Testing Data Size 9112
Batch Size 256
Number of Epochs 300
Optimizer Adamax
Loss Function MSE
Quantization Type Scalar Quantization (K-Means)
Quantization Bits 4, 5, 8
Payload size (bits) 80 (16 × 5bits), 128 (32 × 4bits), 256

(32× 8bits)

two distinct AEs. The only difference is by modifying the size
of the dense layer in the encoder part while the remaining NN
architecture stays the same between the two AEs.

To evaluate the generalization performance across UMa
and UMi scenarios, we conduct experiments by training two
VCSAs, one with dataset from the target scenario only and
another VCSA with combined dataset containing samples
from both scenarios. For the VCSA with the target scenario
(VCSAT), we train it with samples from a single scenario
(UMa or UMi exclusively) and evaluate it on the test samples
from the same scenario. In the case of the VCSA with
combined scenarios (VCSAC), we train it using a mixed
training dataset of UMa and UMi scenario, then evaluate
its performance on each scenario’s test samples separately.
Additionally, we perform a naive transfer experiment by using
the DB trained for one scenario to perform inference on test
samples from the other scenario. For instance, we evaluate the
inference performance using DB trained with samples from
UMa scenario to performance inference on samples from UMi
scenario.

B. Training Details
The UMa and UMi datasets undergo preprocessing (Eq.

2) to derive CSI eigenvectors. We augmented the dataset by
duplicating the samples and used a “flag” to indicate the code
size, i.e., 16 or 32 for each sample. To enable the encoder to
generate an output with either code size, a mask that contains
a set of 0’s and 1’s based on the value of the flag is applied
to control the final size of the encoder output.

85% of the data (UMa and UMi) is used for training and
the remaining 15% is designated for testing. 15% of the total
training data is reserved for validation purposes as described
in Table II. The overall training dataset contains the UMa and
UMi samples, along with the corresponding flags.

The encoder input is represented as [CSI, flag]. The shape
of the CSI part is [32, 12, 2], where 32 denotes the number of
transmitting antennas, 12 signifies the number of subbands,
and 2 represents the real and imaginary components. The
mask, which is based on the value of the flag influences
the final encoder output. Mask 1, which corresponds to flag
0 contains sixteen 1’s and sixteen 0’s and mask 2, which
corresponds to flag 1 contains thirty-two 1’s. Thus, when mask

TABLE III: Mapping of the CSI Payload Size

CSI Payload Size Code Size Quantization
Bits per Code

80 bits 16 5
128 bits 32 4
256 bits 32 8

No Quantization 8 bits 4 bits
0.5

0.6

0.7

0.8

0.9

1

0.915 0.915 0.9060.898 0.898 0.8870.888 0.887
0.874

0.762 0.761 0.755

Quantization Level

SG
C

S

DB (32 CS) VCSAT VCSAC DB (32 CS UMi Naı̈ve Transfer to UMa)

Fig. 3: Model Generalization Performance Comparison among
VCSAT, VCSAC and Naı̈ve transfer with code size = 32
(Target scenario = UMa).

1 is applied, the final encoder output contains the first 16 codes
in the original encoder output while the rest are zeros, and
when mask 2 is applied, the final encoder output contains all
32 codes in the original encoder output.

The detailed VCSA architecture, including the encoder part
and the decoder part, is illustrated in Fig. 2. It is important to
note that during the training phase, the decoder always receives
32 codes as its inputs, which may comprise of either 16 codes
in the original encoder output and 16 zeros or 32 codes.

Adamax optimizer is used in training the VCSA to dynam-
ically adjust the learning rate, and Mean Square Error (MSE)
is used as the loss function. Other training parameters are
specified in Table II. Once the VCSA is trained, the encoder
outputs for training samples from mask 2 are used to train the
quantizer. This approach allows the quantizer to consider the
codes generated using both mask 1 and mask 2.

For quantization, KMeans, an unsupervised learning tech-
nique, is employed to group the codes into K clusters based on
Euclidean distance. The resulting K cluster centroids form a
quantization dictionary. This quantization dictionary converts
each code in the encoder output into an integer (from 0 to
K-1) and each integer corresponds to its associated cluster
number. This is referred as quantized encoder output. The
quantized encoder output is then binarized to form a bit stream
to be transmitted to the decoder side. The binarized bit stream
received at the decoder side is first converted back to the
corresponding integer values, then the same quantization dic-
tionary is applied to convert the quantized results to floating-
point values before feeding them into the decoder for the CSI
reconstruction in the inference phase.

We adopt 4, 5, and 8 bits per code in combination with code
sizes 16, and 32 to generate the final CSI payload sizes of 80
bits, 128 bits, 256 bits as shown in Table III.

C. Results

Fig. 3 depicts the SGCS comparison between DB for code
size 32 and the introduced VCSA models (VCSAT and VC-

2024 Workshop on Computing, Networking and Communications (CNC)

212



No Quantization 5 bits
0.5

0.6

0.7

0.8

0.9

1

0.886 0.8830.891 0.8840.878 0.87

0.695 0.694

Quantization Level

SG
C

S

DB (16 CS) VCSAT VCSAC DB (16 CS UMi Naı̈ve Transfer to UMa)

Fig. 4: Model Generalization Performance Comparison among
VCSAT, VCSAC and Naı̈ve transfer with code size = 16
(Target scenario = UMa).

SAC) that support both code sizes. In the figure, the blue bars
depict the baseline SGCS performance from DB for 32 code
size, indicated as DB (32 CS) in the legend. It can be noted
that DB (32 CS) achieved the best performance attributed to
the code size-specific training strategy. As discussed earlier,
code size-specific model(s) will introduce additional overhead
in storing multiple models. Thus, we also evaluated the per-
formance between using the previously trained model for UMi
scenario to performance inference on UMa scenario (denoted
as Naı̈ve transfer in Fig. 3). As samples from UMa scenarios
were unseen during the training phase of the UMi model, the
grey bars in Fig. 3 showed significant performance degradation
compared to the baseline, DB (32 CS). We conducted similar
performance comparison between DB for code size 16 and the
proposed VCSA models (VCSAT and VCSAC) as depicted in
Fig. 4. We noticed that VCSAT shows slightly higher SGCS
compared to the baseline, DB (16 CS). This may due to
the reason that training a unified NN supporting both code
sizes allow some of the latent features for code size 32 being
implicitly leveraged by code size 16 as well.

Overall, both VCSA models (VCSAT and VCSAC) achieve
comparable performance as the DB models for code size 32
and 16 as depicted in Fig. 3 and Fig. 4. The details are
outlined in Table IV. Compared to naı̈ve transfer using DB
for UMi (grey bars in Fig. 3 and Fig. 4), the VCSAC model
(brown bars in Fig. 3 and Fig. 4), achieved an average of
22.7% SGCS gain. This gain emanates from the synergistic
effects of training data stemming from both scenarios. It is
also worth noting that the average absolute SGCS performance
difference between the VCSAT and the VCSAC models is
insignificant, ∼ 0.012 across all payload sizes evaluated. It can
also be noted from Fig. 3 and Fig. 4, in no quantization case,
DB for code size 16 showed some performance degradation
(∼ 3%) compared to DB for code size 32. This is attributed to
that using code size 16 introduces higher compression ratio,
i.e., lower resolution of the original input compared to code
size 32 which may impact the reconstruction accuracy. In
contrast, the VCSA models (VCSAT and VCSAC) showed
very insignificant performance difference between code size
16 and code size 32 (∼ 1%).

Another observation is that both the DB and VCSAT mod-
els when employing quantization procedure, require separate

TABLE IV: Model Generalization Evaluation Results (UMa).

Payload Category Payload
Size

DB
SGCS

VCSAC
SGCS

Performance
Difference
(Gain %)

Small
(Payload ≤ 80bits)

80bits 0.883 0.870 −0.013
(−1.472%)

Medium (100bits ≤
Payload ≤ 140bits)

128bits 0.906 0.874 −0.032
(−3.532%)

Large
(Payload ≥ 230bits)

256bits 0.915 0.887 −0.028
(−3.060%)

No Quantization 8 bits 4 bits
0.5

0.6

0.7

0.8

0.9

1

0.855 0.855
0.8420.83 0.83

0.8140.821 0.821
0.801

0.658 0.658 0.654

Quantization Level

SG
C

S

DB (32 CS) VCSAT VCSAC DB (32 CS UMa Naı̈ve Transfer to UMi)

Fig. 5: Model Generalization Performance Comparison among
VCSAT, VCSAC and Naı̈ve transfer with code size = 32
(Target scenario = UMi).

quantization dictionaries for different code sizes while the VC-
SAC model efficiently utilizes a single quantization dictionary,
which reduces the communication overhead associated with
sharing the additional dictionary between the UE and gNB
and storage requirements.

Likewise, we conduct the same experiment to evaluate the
VCSAC performance for the UMi scenario, as depicted in
Fig. 5 and Fig. 6. The observations align consistently with
those from the UMa scenario, albeit with relatively lower
SGCS values than the similar analyses for UMa scenario in
general. An interesting observation arises from the examina-
tion of small payload sizes, as detailed in Table V that the
VCSAC model outperforms the DB model by a marginal
0.377%. While this performance gain might appear slight,
this can be attributed to several factors. The VCSAC model
necessitates a doubled amount of training data from the same
scenario to accommodate variable code sizes. This augmented
training dataset enable the AE to characterize the input data
better. A similar effect is applicable to the quantizer, which
benefits from an increased number of samples. Consequently,
the quantization loss can be further minimized, leading to
these subtle performance gains. Our next research task is
to compare the system level performance between the pro-
posed approaches (i.e., VCSA and VCSAC) with traditional
codebook-based approach.

Finally, we compare the neural network complexity in terms
of the number of NN parameters, model storage estimation,
and computational complexity using floating-point operations
per second (FLOPs) between the proposed generalized model
and the DBs, as depicted in Table VI. As the code size
increases from 16 to 32, the encoder NN parameters, FLOPs,
and storage requirements increase by 16.2%, 0.22%, and
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No Quantization 5 bits
0.5

0.6

0.7

0.8

0.9

1

0.8 0.796
0.812 0.8120.807 0.799

0.595 0.594

Quantization Level

SG
C

S
DB (16 CS) VCSAT VCSAC DB (16 CS UMa Naı̈ve Transfer to UMi)

Fig. 6: Model Generalization Performance Comparison among
VCSAT, VCSAC and Naı̈ve transfer with code size = 16
(Target scenario = UMi).

TABLE V: Model Generalization Evaluation Results (UMi).

Payload Category Payload
Size

DB
SGCS

VCSAC
SGCS

Performance
Difference
(Gain %)

Small
(Payload ≤ 80bits)

80bits 0.796 0.799 0.003
(0.377%)

Medium (100bits ≤
Payload ≤ 140bits)

128bits 0.842 0.801 −0.041
(−4.869%)

Large
(Payload ≥ 230bits)

256bits 0.855 0.821 −0.034
(−3.977%)

16.1%, respectively. These increments are mainly due to the
doubling the encoder output layer size. The NN complexity of
the generalized encoder is the same as the 32-code size DB
encoder, as the added flag input involves only a simple multi-
plication prior to the final encoder output. The computational
complexity, measured in FLOPs, increases by 16, which is
negligible. The generalized decoder maintains the same model
complexity and computational complexity as the 32-code size
DB decoder because the NN model itself remains unchanged.

IV. CONCLUSION

In this paper, we present a novel CNN-based autoencoder
architecture for CSI compression and reconstruction, VCSA,
which is a versatile encoder-decoder NN designed to adapt to
different CSI encoder output sizes. In addition, to overcome
the challenges of generalization across different deployment
scenarios, we extend the original VCSA to VCSAC, which
is trained using samples from multiple scenarios to enable an
efficient CSI compression and reconstruction solution that can
be applied in a range of deployment environments. Empirical
results show that the VCSAC model can achieve performance
levels comparable to code size and scenario-specific model
baselines (DBs), which require training and storing multiple
models. The results demonstrate potential benefits in utilizing
advanced AI/ML-based approach, e.g., the VCSA, to reduce
CSI feedback overhead and improve CSI reconstruction accu-
racy at the same time in 5G and beyond.
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