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Advanced Cyber Deception Framework (ACDF): A
Comprehensive Study

Mark Maldonadof Caleb Johnson

Abstract—Deception frameworks provide an effective
environment for data collection on cyber criminals. Us-
ing deception techniques these frameworks help security
professionals identify and deceive attackers. Information
security is an increasingly complex problem as cyber
attacks evolve and attackers become more competent in
exploitation. Honeypots or honey networks provide an
opportunity for counter-intelligence collection. The cur-
rent State-of-the-Art (SotA) honeypot deployments are
easily identified and cataloged by adversaries. Using ma-
chine learning, specifically a Tabular Masked Transformer
(TabMT) model, we generate honeypots with a realistic
host and network traffic to prolong engagement and
improve intelligence gathering efforts.

Index Terms—Deception, Honeypot, Tabular Masked
Transformer, Generative AI, Threat Monitoring

I. INTRODUCTION

Recent advancements in Machine Learning (ML) pro-
vide new and innovative ways to penetrate and defend
network spaces. Although firewalls, intrusion detection
systems (IDS), or intrusion prevention systems (IPS)
provide a layer of security, these are merely a tiny portion
of the total network defense surface. These active and
passive security solutions only provide a high level of
information to security analysts looking for attacks on
the network.

Deception frameworks engage with cyber actors by
providing additional intelligence gathering. Currently,
most frameworks deploy honeypots, a virtual machine
used to lure attackers, at different levels of interaction,
with functionality to alter the network activity. These
honeypots use automated scripts executed by events
or time-based intervals pushing generic network traffic.
Utilizing SotA techniques with Machine Learning (ML),
we provide a more realistic flow of network traffic, filling
the necessary gap in automated traffic generation. In
recent years, deception frameworks have gained attention
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Fig. 1. Decoy network architecture that is comprised of ML-
enabled honeypots, automated TabMT generated NetFlow, and both
an attacker and agent active at the same time.
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as a promising approach to enhance security. While
honeypots are a valuable tool for security enhancement,
network operations centers (NOCs) or security opera-
tions centers (SOCs) must address problems to improve
their effectiveness and reliability. Honeypot networks,
a collection of virtual machines as services or hosts,
lack the authentic and natural flow of network traffic
between deployed nodes. Sophisticated attackers advance
rapidly and can detect and avoid honeypots. Publicly
available tools, such as Shodan.IO’s “HoneyScore” [1],
can effortlessly score a network by providing only the
public IP address. Metasploit has built-in modules to
utilize Shodan’s APIs for rapid and relevant feedback
[2]. Importantly, using [1] & [2] it is easy to finger-
print a honeypot. Improving honeypot authenticity can
be achieved by creating a more realistic and dynamic
environment that simulates real-world systems and ap-
plications.

ML improves network realism by dynamically gener-
ating network flow (NetFlow) data. Prior research in this
domain uses Generative Adversarial Networks [3], [4],
[5] for reproducing tabular-like NetFlow [6], [7], but do
not generate a realistic statistical diversity.

In this paper, we explore using TabMT! [8] to generate
NetFlow data with a statistical distribution equivelant to
a real network, and enables us to tune our generated data
to networks of various sizes. We provide a mechanism
to replay this generated NetFlow using high-interaction
honeypots. Our customized Agent Server handles Com-
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mand and Control (C2) to the deployed agents embedded
in the ML honeypots; see Fig. 1. We then salt each agent
with synthetically generated files, e.g., photos, music,
documents; all files created with Generative AI Models.

Our key contributions are as follows:

1) We propose a SotA method to generate NetFlow
data for a network of any size statistically identical
to real NetFlow.

2) We created a toolset using the generated NetFlow
to replay data between nodes using an Agent Server
and the agents in a deception network.

The rest of the paper has the following structure:
Section II presents the approach and technologies we use
to describe the solution; Section III provides examples of
the solution in an experimental environment, Section IV
describes examples of Generative Al incorporated with
honeypots and Section V concludes the research with
potential future efforts.

II. ENABLING TECHNOLOGIES

We developed both: Data Generation & Network Traf-
fic Replay. Each component can work independently but
require interaction in a comprehensive data collection
environment.

A. Data Generation

Current deception frameworks lack the fundamental
technology to bring a network to life without human
interaction. Enforcing an ecosystem with live network
data and endpoint activity is necessary to successfully
deceive hackers.

Many frameworks use automated scripts in the net-
work environment, however, they only produce HTTP/S-
based traffic to access web servers. This approach is inef-
fective against sophisticated hackers because the network
looks fabricated. Thus, generated NetFlow must include
a variety of data reflecting the network composition.
Using ML provides an improved solution to deceive
attackers.

In our current research, TabMT learns NetFlow tabular
datasets and recreates them with 20x median improve-
ment for precision and diversity when compared against
the leading SotA data generator NetFlowGAN [6]. We
use TabMT to create NetFlow dataset similar to CIDDS-
01 [9]. Importantly, TabMT can handle missing values,
outliers, and other common data issues, generating ac-
curate and reliable results. TabMT consistently demon-
strated remarkable accuracy in recreating the original
dataset, achieving near-perfect precision in replicating

values. Fig. 2 displays generated NetFlow data parsed
into storable database objects.

(venv) [caleb@calebj-x1 traffic_gen]$ ./puppet_demo.sh
{"server": "10.11.100.173", "port": 10911, "| WES A {d
INFO:traffic_gen:Client ente
{"serve .100.173",
.100.173"
.11.100.173
100297387
S100S1730%
.100.173",
100:173";

"nbytes": 31760384, "duration": 7}
, "nbytes": 798720,
H "1 22634496, "

": 3144704, "
"1 17563648, "
15703157

": 28161024, " 3
": 30769152, "duration":

6263, "proto": "

Fig. 2. JSON formatted requests for new NetFlow data from the
traffic generation service.

B. Network Traffic Replay

Honeypots need to genuinely interact on the network
in a deceptive environment. We create embedded agents
on each deployed honeypot that constantly interact with
our Agent Server. Each agent, whether client- or server-
based, can establish connections and exchange traffic
responses based on input parameters.

The traffic replay capability is implemented as a server
service in a segmented infrastructure. When orchestrated
en masse, the agents replay TabMT NetFlow data back
onto the network with WebSockets as a background
task ready to send and receive data and instructions.
The server is primarily responsible for reading generated
NetFlow data and inferring information flow for each
deployed agent. The server communicates over encrypted
TLS WebSockets to each deployed agent sending raw
byte data.

Each agent is designed to listen for incoming peer
connections from other honeypots. This design is neces-
sary to establish full communication capabilities between
agents. As honeypots are deployed and agents initialize,
they are required to have a constant status check with the
Agent Server to obtain necessary NetFlow information
that is to be replayed. The same logic is built into each
agent and roles are defined by the generated NetFlow
after agents receive instructions.

III. DEPLOYMENT AND TESTING

Implementing the deception network as a cyber-range
environment, requires a deployment framework with
several server- and client-based hosts. Our network stack
is built into Amazon Web Services (AWS) using virtual
machines for each deployment. The framework uses
Infrastructure-as-Code (IaC) Terraform to automatically
deploy each client and server onto cloud-based services.
In conjunction with IaC, we use Ansible to set up each
host, building a decoy with expected services or clients,
and specific run-time software. The fully deployed cyber
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deception range consists of two core networks, one for
deployable decoys while the other handles information
flow and decoy management. Fig. 3 shows how the
networks are segmented into their respective subnets
along with the designated communication channels. The
deployed infrastructure has a mixture of Ubuntu and
Debian Linux distributions.

Deception Networks
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Fig. 3. Cloud based test range architecture.
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A. Deception Networks

The deception network is split into several manageable
subnets similar to the CIDDS-01 dataset. The networks
are identified as Server, Office, Management, and De-
veloper. Labeled internal exploits are identified in the
dataset which originate from the developer network.
Each deployed system in the deception network is en-
abled with an agent watching internal network traffic.
Agents have two jobs: collect information, and listen for
incoming instructions from the Agent Server.

1) NetFlow Logging: Each agent collects raw net-
work traffic as Packet Capture (PCAP) and transform it
into NetFlow using the version 5 standard. As sessions
are completed, the agents bulk update information to the
agent server for storage.

2) Traffic Replay: Agents are designed to listen for
instructions from a server regarding the metadata of the
generated NetFlow. The metadata includes all of the
information necessary to establish a new connection and
start exchanging data over the network. Fig. 1 shows how
the agents are deployed and the communication flows on
a vulnerable ML honeypot while a cyber actor is active.

B. Infrastructure

The Infrastructure network consists of the critical
systems of the framework to monitor hosts, collect and
evaluate information, and deploy more honeypots as
criteria is met. Two critical servers reside in this en-
vironment: the Machine Learning Engine (MLE) server,
and the Honeypot Agent Server. The key feature of our
framework is the MLE-generated traffic.

1) Machine Learning Engine: Using a server as an
MLE provides data ingestion and retention, enabling
continuous improvement and adaptation of the ML mod-
els using newly available attacker data. The MLE server
acts as a centralized hub, responsible for managing the
ML workflow. After ingestion of new data, the MLE
performs data preprocessing and feature engineering,
trains the ML models, and deploys the updated models
for inference. Our AIOps pipeline include the following
steps:

1) Data Ingestion: Ensures the seamless integration of
incoming data into the existing ML pipeline.

2) Preprocessing & Feature Extraction: Applies data
preprocessing techniques to clean, normalize, and
transform the incoming data.

3) Model Training: Utilizes the ingested and prepro-
cessed data to train our ML models.

4) Model Evaluation & Monitoring: Evaluates the per-
formance of the models using appropriate metrics
and validation techniques ensuring we meet the
desired performance criteria.

5) Model Deployment & Inference: Once the trained
model(s) are accepted and pass the evaluation
phase, the server deploys them to generate new data
in the deception environment.

6) Retraining & Updating: As new data is available,
the server ingests raw information and triggers the
ML model(s) retraining.

By building the MLE as a server instance we achieve
several benefits, 1) centralize and streamline the ML
workflow, making it easier to manage and maintain,
2) enable near real time data generation for deception
platforms, allowing the framework to respond and act
as an organic network, 3) continuously ingesting and
retraining model(s) with new data makes the deception
networks more accurate over time.

2) Agent Server: The Agent Server is critical in
coordinating and communicating with deployed network
agents to conduct C2 operations. Our Agent Server
operates as a central point that manages and orchestrates
the actions of multiple network agents, enabling efficient
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coordination and control over distributed systems. For
the Agent Server to work properly, we created objectives
for which the server must adhere to:

o Agent registration is a critical component in identi-
fying confirmed versus rogue agents with malicious
intentions.

o Command distribution is the component where in-
structions are received from an outside source, such
as a management system. These commands specify
the actions or tasks that need to be executed by the
deployed network agents.

o Command interpretation reacts to delivered com-
mands and interprets the instructions according to
their specific functions and capabilities.

o Command execution acts on the received commands
based on their roles, responsibilities, and criteria.
The Agent Server tracks the progress of each exe-
cution and monitors the overall state of the network
data transmitted on the deception network.

e Status reporting occurs as tasks are performed by
the deployed agents, periodically reporting back to
the Agent Server with status updates and results.

The Agent Server enables efficient management, au-
tomation, and monitoring of network resources. As the
server is deployed, it configures known agents’ settings,
consisting of an agent ID and a Pre-Shared Key for
authentication purposes. Each agent has a direct connec-
tion to this server over a secure encrypted socket using
TLSv1.2.

The server has two distinct jobs: periodically check
for more generated NetFlow data, and convert each gen-
erated NetFlow stream into an actual connection. This
data is used and split into multiple binary data objects
sent to respective agents with matching IP addresses.
These data objects are the command arguments for the
agents to execute, replaying random data back onto the
network and making the ML honeypots look active. The
command to launch a new flow contains the following
fields: Destination address and port, Protocol, Number
of bytes and packets (optional), and Duration (optional).

To fully simulate bidirectional traffic between existing
hosts in a way that appears realistic to a network monitor,
the connections must be valid to each host’s operating
system. If packets are simply injected into the network,
the TCP/IP stack of any existing host will reply to
unexpected packets with a RST for TCP, or an “ICMP
port unreachable” packet for UDP. These rejections
are seen by an adversary monitoring the network, thus
defeating the purpose of generating traffic that conforms

to a specific model. Fig. 8 shows the agent server running
and formatting the TabMT NetFlow data structures for
each agent client. Fig. 9 displays Wireshark captured
agent-client and -server sessions of TabMT generated
NetFlow.

Additionally, to avoid listening on all ports at once,
firewall rules are used on each host to redirect a wide
range of ports, to the agent listening port. Finally, to
ensure that adversaries cannot solicit requests for traffic
and reveal the agents as decoys, all agent C2 is authenti-
cated. This ensures that only the agent server can launch
new flows.

IV. EMERGING DECEPTION CAPABILITIES

Deception platforms often deploy honeypots at differ-
ent levels of interaction [10]. Each level of interaction
provides a specific degree of functionality ranging from
a simple host with no true running process to a fully
operational host that runs as a legitimate server. To en-
sure hackers cannot fingerprint honeypots without deep
investigation, honeypots should be deployed at high-
interaction mode.

Sophisticated hackers who gain access to vulnerable
hosts initially conduct basic reconnaissance using pro-
prietary tools and techniques to understand the network
environment. The tools and tactics provide critical details
about the exploited host that further amplifies informa-
tion about the connected neighboring network layout,
design and schema. Through the investigation portion of
reconnaissance, hackers often request large data dumps
of files. Hackers are interested in security flaws, network
layout, windows domain schema and architecture, all
users in the network, (specifically administrators), and
where normal data flows happen. Salting the honeypots
with fictitious amplifying-related documents provides
hackers extra content to review thereby increasing en-
gagement.

A. Content Creation

To create fictitious files we use a Generative Pre-
trained Trasformer (GPT) [11] model to create industry
specific content. Specifically, we are using the Distilled
GPT-2 [12] model as a baseline to generate the required
text. We selected GPT-2 because of legal constraints uti-
lizing commercial use of GPT-3 or GPT-4. Our variant of
the GPT model has been fine-tuned on 1.7 million Arxiv
submitted technical papers, not limited to but include
topics covering machine learning, cyber security, com-
puter science and electrical engineering. These particular
topics provide ample categorical diversity in creating
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the generated text for documents to be believable for
hackers. After the text creation we add generated images
using a Text-to-Image (T2I) Stable Diffusion (SD) model
[13]. To have documents generated dynamically an Al
pipeline is required. Wherein a build pipeline creates
a pre-configured host with a directory structure related
to the requested topic salted with generated files. Our
pipeline requires human interaction to provide confir-
mation of generated content and initialize the creation
process. The pipeline steps are:

1) Human input regarding the category of documents
to generate.

2) Text generation

3) Image generation with interaction to select the best
images for the documents.

Abstract

In this paper, we contribute a novel method of simulating protein syn-
thesis using graphics processing units (GPUs). Igenicity models have re-
ported in other works but do appear at open/licencing laboratories. GIF-
PC image with a TIR cellv8 cell/cell cycle state and/or (MVLC v7vH-MV
LC, respectively)(3-f + /c y (0 for 1100 in IOHN-V-E-HC or v 0 ) without
transposing all components between all units separately with sufficient
transgressive efficiency to eliminate over-hormogeneous changes with all
component size without transposes any larger component.

Fig. 4. Sample GPT generated abstract from a user-defined input

MeCbl R = CH

CNCbl R= CN

NH,
AdoCbl R = N
I
N N

HO- o

HO CH,

OHCbl R= OH

(b) S? internet searched image
[15]

(a) S! internet searched image
[14]

Fig. 5. Downloaded S' and S? searched images from the internet
using Google & Bing.

1) Text Generation: Using the initially generated text
from the GPT model, see Fig. 4, we use a summarization
technique [16] to capture and generate text captions. The
captions are used in direct relation for illustrations as
inputs to the image generation portion.

We used the summarized output from our variant of
the GPT model, used it as input to the BART model,
and stored them as variables:

o S' = “A novel method of simulating protein syn-
thesis using graphics processing units (GPUs).”

o S? = “Simulations on a number n = 2857 cells
using (M)|vbH M s had indicated low cell binding

(b) S? generated SD image

(a) S* generated SD image

Fig. 6. Generated images from summarized text output from GPT.

rate but high expression with transitive performance
for (m) — ivb cells.”

2) Image Generation: Using our approach, we can
generate many standard files that include generated im-
ages, e.g., PDF, PPTX, DOCX, etc. For example, the
model that produced Fig. 4 also produced sentences S*
and S%. Using S' and S2, sample images from Bing
and Google search engines produced Fig. 5a and Fig.
5b, respectively, compared with our generated images
in Fig. 6a and 6b. Similarly, using a sentence fragment,
“circuit board”, we can again compare a Google image
search to our synthetically generated image; see Fig. 7.

(a) Google image

(b) Generated image

Fig. 7. Google image compared to generated SD image

V. CONCLUSION

In this paper, we demonstrated SotA technology for
deception frameworks to deceive cyber actors using
TabMT, GPT and SD. Integrating dynamically built
honeypots with enough depth of information about false
admins or fictitious documents provides cybersecurity
analysts information to identify hackers and tools. Net-
Flow, document, and image generation techniques are
critical to the overall process of building honeypots to
look like a real host.
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APPENDIX
Product Capabilities
SolarWinds Custom traffic generation & analysis
Packet Sender TCP, UDP, SSL on chosen ports
Nping Ping, RAW Packets, DOS, tracert, ARP
Ostinato Used for unit and functional testing.
NetScan Tools Simple generator & flooder tools
TRex ARP, IPv6, MLD, IGMP, ICMP, NDS
Various open-source projects | TCP, UDP, DNS, ARP, ICMP
TABLE I

POPULAR DATA GENERATION SCRIPTS & CAPABILITIES USED BY
CURRENT HONEYPOT FRAMEWORKS

ed 31760384 bytes in * packet:

connection fror :
n 10.11.100.10 0. 798720 bytes in

sted 22634496 bytes i

->18

>18858 3144704 byte:
100.104

d 17563648 bytes in * packets over 1 second

Fig. 8. Agent Server receiving requests for continuous replayable
NetFlow data from client agents.

Fig. 9. Listing of TabMT generated NetFlows captured in Wireshark.
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