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Abstract—Semantic communication is focused on optimizing
the exchange of information by transmitting only the most
relevant data required to convey the intended message to the
receiver and achieve the desired communication goal. For ex-
ample, if we consider images as the information and the goal
of the communication is object detection at the receiver side,
the semantic of information would be the objects in each image.
Therefore, by only transferring the semantics of images we can
achieve the communication goal. In this paper, we propose a
design framework for implementing semantic-aware and goal-
oriented communication of images. To achieve this, we first define
the baseline problem as a set of mathematical problems that
can be optimized to improve the efficiency and effectiveness
of the communication system. We consider two scenarios in
which either the data rate or the error at the receiver is the
limiting constraint. Our proposed system model and solution
is inspired by the concept of auto-encoders, where the encoder
and the decoder are respectively implemented at the transmitter
and receiver to extract semantic information for specific object
detection goals. Our numerical results validate the proposed
design framework to achieve low error or near-optimal in a
goal-oriented communication system while reducing the amount
of data transfers.

Index Terms—Semantic communication, Goal-oriented com-
munication, Wireless image transfer, Object detection.

I. INTRODUCTION

Shannon and Weaver in [1] and [2] proposed three levels
for organizing the broad topic of communication: (i) technical
problem: How precisely can communication symbols be
transmitted? (ii) semantic problem: How accurately do the
symbols being transmitted convey the intended meaning? (iii)
effectiveness problem: How effectively does the intended
meaning influence the behavior of the receiver? Shannon
established the foundation for information theory with his
exact and formal solution to the technical problem. More
recently, there has been an increasing interest to study the
semantic and effectiveness problems. The core of semantic
communication is to extract the “meanings” of sent informa-
tion at a transmitter and successfully “interpret” the semantic
information at a receiver using a matched knowledge base
between a transmitter and a receiver[3]. Therefore, semantic
communication methods are able to identify relevant informa-
tion that is strictly required to recover the meaning intended
by the transmitter or to achieve a goal, thereby enabling goal-
oriented communication and improving the overall data rate
efficiency by using computing resources. For example, if we
aim to communicate images and we know that the purpose at
the receiver side is to detect objects within each image, we

Fig. 1: System model for semantic-aware communication wherein
the communication goal is to detect objects in images at the receiver.
Function f1 extracts semantic features, while function f2 reconstructs
the image from semantic features. Function h measures the perfor-
mance with respect to the communication goal.

can optimize our communication system to fulfill that goal,
which is feasible with sufficient computing resources at both
the transmitter and the receiver sides.

In this context, focusing on semantics and clearly defin-
ing the goal of communication assist us in distilling the
data that are strictly relevant to fulfilling a predefined goal.
Ignoring irrelevant data becomes a key strategy for signifi-
cantly reducing the amount of data that must be transmitted
and recovered, saving bandwidth, delay, and energy. Due to
such promising performance gains compared with traditional
communication systems, there has been an increasing interest
to define semantic-aware and goal-oriented communication
systems (see, for example, [4], [5], [6]), which we review in
more details in Section II.

In this paper, we formulate a semantic-aware framework
that is specifically tailored for object detection goal in image
transfer between the transmitter and receiver. To achieve this,
we introduce two solution approaches to extract semantic
information at the transmitter side. The first approach is based
on expressing the objects (i.e., semantics) within an image
using text, and then transferring text over wireless channel.
At the receiver side, the receiver reconstructs the image and
performs object detection. It should be noted that we assume
that the object detection operation is performed on image
datatype; therefore, if the receiver receives any other types of
data, the received data should be converted to some form of
image. This approach is motivated by the scenarios in which
the wireless channel is the limiting factor, i.e., limited data
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rates. The second approach to extract semantic information
is based on the idea of removing irrelevant information (e.g.,
background) from images, and just transmitting detected ob-
jects (i.e., semantic) within an image.

Both of our system designs are inspired by auto-encoder
networks, in which we have an encoder network/function that
converts input to a feature vector. In this case, we convert
images to intermediate data type (image or text), and the
decoder function converts the intermediate data to the intended
data, which in our case, is the objects within the original
images. We implement both of these methods and test the
efficacy of the proposed algorithms using open-source image
datasets. Our numerical results demonstrate that the proposed
system model and solutions provide performance gains in
terms of the amount of data transmitted, without compromising
the accuracy of the object detection goal. In summary, the main
contributions of this paper are as follows:

• We propose a framework for semantic-aware and goal-
oriented communication for object detection in wireless
end-to-end image transmission systems with limiting con-
straints. Such a model can be utilized in vehicular or
satellite communication networks where ample comput-
ing resources are available at transmitter and receiver
nodes, but due to the inherent unreliability and dynamic
nature of the communication link, the data rate is low.

• We develop two end-to-end solutions to achieve object
detection in image transfer systems. The first approach is
based on representing the image semantics using text, and
the second approach is based on extracting the semantics
in terms of detected objects themselves, and removing
irrelevant information such as image background.

• We implement the proposed approaches, and test the
efficacy of the solutions on open image datasets. Our
implementation includes defining semantic extraction and
reconstruction functions (i.e., encoder and decoder). For
example, our numerical results show that by expressing
semantic information using text, we can achieve 99%
reduction in data traffic, at the cost of slight increase in
object detection error.

The rest of this paper is organized as follows. In Section
II, we review related works. In Section III, we present our
proposed system model and problem formulation. Section IV
includes our developed solution, followed by numerical results
in Section V. Finally, Section VI concludes the paper.

II. RELATED WORKS

Semantic Communication Architectures. The paper [6]
proposes a model-free approach that uses a reinforcement
learning algorithm to train an end-to-end communication sys-
tem to optimize a specific objective, such as maximizing
the information transfer rate or minimizing the error rate.
Yet, they did not consider the data and semantic information
within data points. That is, their implementation objective
is to achieve the best system considering the channel, not
the semantic information. The authors in [5] demonstrate a
formal graph-based semantic language and a goal-filtering

method that enables goal-oriented signal processing. The
proposed semantic signal processing framework can easily
be tailored for specific applications and goals in a diverse
range of signal processing applications. The authors in [7]
propose a Transformer-based semantic communication system
architecture to learn the underlying semantics of the data being
transmitted, communication systems can adapt to changing
network conditions and optimize their performance. They
evaluated the effectiveness of their approach in a natural
language processing theme that supports their Transformer-
based model.

Semantic-Aware Image Processing. The authors in [4]
propose a Reinforcement Learning-based Adaptive Semantic
Coding (RL-ASC) approach to image semantic coding using
deep learning techniques, with the goal of improving the
efficiency and effectiveness of image communication. The
approach includes a convolutional semantic encoder to extract
semantic concepts, an RL-based semantic bit allocation model,
and a Generative Adversarial Nets-based semantic decoder,
which results in noise-robust and visually pleasant image
reconstruction with reduced bit cost.

The authors in [8] presented an enhanced CNN model with
the goal of image compression. Their model creates a map
emphasizing important areas, making them better encoded
compared to the background. They incorporated a compre-
hensive set of features for each class and applied a threshold
to the total feature activations. This process results in a map
highlighting semantically significant regions and improves
their encoding quality compared to the background. Similarly,
[9] introduced a content-weighted image compression method
using an importance map achieved by an importance map
network, which utilizes the feature maps from the last residual
block of the encoder as input. The importance map acts as
a continuous alternative to discrete entropy estimation for
compression rate control. In both [8] and [9], the error is
measured in terms of Mean Square Error, and their objective is
to find the best compression ratio for the exact reconstruction
at the other end. In the work [10], they have established a
transmission system for the images with limited bandwidth
constraints. They used segmentation maps available with the
COCO dataset for the semantic extraction block, and a pre-
trained GAN network to reconstruct the images. Using this
setup they could achieve a compression ratio of 20 percent.

Compared with the existing works, we propose a novel
approach to extract and express semantics of images for object
detection goal. For instance, by expressing semantic features
(i.e., detected objects) of an image using text, we can achieve
a considerable gain (e.g., more than 90%) compared with
traditional communication systems.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Semantic-Aware Transmitter Model. The proposed sys-
tem model is shown in Figure 1. In this model, let us define
domain ΩO as the original domain of data and domain ΩS as
the semantic version of the first domain. We define the data
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in the original domain as X and function f1() that transforms
X to the semantic domain, i.e.:

f1 : ΩO → ΩS . (1)

Then, we transmit the data f1(X) over the wireless channel
and receive f1(X). For object detection within images, the
original domain is 3D matrix representation of images. In our
solutions, the semantic domain could be either text or image.

Semantic-Aware Receiver Model. At the receiver side, the
opposite operation is performed. In particular, the receiver
applies a function f2() to the received data to transform it
to the desired domain:

f2 : ΩS → ΩD. (2)

The desired domain, ΩD, can be the same as ΩO or any other
domain based on the communication goal. Finally, we define
Y as the reconstructed data, which is equal to f2(f1(X)).

Semantic-Aware Performance Metrics. The next step is to
define a semantic evaluation function, h(.) to analyze X and
Y in terms of semantic similarity. For instance, this function
can be a general Mean Square Error function if ΩO and ΩD

are the same and the goal is the exact reconstruction. In our
system, the goal of the communication is an object detection
task, then h(.) can be an object detector neural network that
detects the objects in both X and Y , and then we can simply
calculate the distance between h(X) and h(Y ). For example,
if the image X that is being sent has three objects, O1, O2,
and O3, where O1, O2, and O3 are the name of the classes
in the object detection model, and we have n1 instances of
object (class) O1, and n2 and n3 for the objects O2 and O3,
then h(X) would be the vector [n1, n2, n3]

T .

B. Semantic-Aware Object Detection Optimization

With the aforementioned components, next we define our
problem in terms of defining the f1() and f2() functions such
that we achieve two objectives: (i) semantic error between
X and Y is small, meaning that the goal of communication
is accomplished with high accuracy, and (ii) semantic trans-
missions provide communication gains by removing as much
irrelevant data as possible. We define these metrics as follows:

• Semantic Error. This metric measures the occurred error
in the reconstructed data with respect to the original data:

E(X,Y ) =
∥h(X)− h(Y )∥

∥h(X)∥
. (3)

In the previous example, if the receiver detects the objects
O1, O2, and O3 but the number of detected instances is
different and equal to ń1, ń2, and ń3, h(Y ) would be
the vector [ń1, ń2, ń3]

T and error is equal to the norm of
distance between h(X) and h(Y ).

• Communication Gain. We define communication gain
as the amount of data transfer savings achieved by
transmitting f1(X) instead of original data X , i.e.,:

G(X, f1(X)) = 1− S(f1(X))

S(X)
, (4)

where S() is the size function which measures the binary
size of data. For instance, the size of M ×M 3D images
would be M ×M × 3× 64 in a 64-bit system.

By combing Eq. (3) and Eq. (4), we introduce a new metric as
weighted error that captures the balance between errors and
gains. This metric multiplies the gain factor as a weight to the
error, i.e.,:

Ew =
[
1−G

(
X, f1(X)

)]
E(X,Y ). (5)

The weighted error metric implies that the higher gain simply
is not sufficient. Instead, it should guarantee some level of
accuracy. For example, if no data is transmitted, then the gain
would be about 100%, but the accuracy of the object detection
system will be zero. Also, in traditional communication, the
gain is zero, and achieving low error might not be suitable
with system constraints.

Given these performance metrics, we aim to choose the
mapping functions f1 and f2 such that the Weighted Error
metric is minimized. However, in practice, there are several
constraints on the semantic communication system, including
data rate and error limit. In particular, suppose the wireless
channel is a bottleneck for our problem, such that the data
rate should be less than R0. As a result, the below constraints
will be added to the optimization problem:

S(f1(X)) < R0, (6)

which can be translated to the below constrain based on the
semantic gain: g(X, f1(X)) > g0, where g0 = 1− R0

S(X) . On
the other hand, there may be a condition on the acceptable
minimum accuracy or maximum error; meaning that the error
should be less than ϵ0 (Erf1,f2

< ϵ0). Therefore, we have:

min
f1,f2

[
1−G

(
X, f1(X)

)]
E(X,Y )

s.t. E
[
G(X, f1(X))

]
> g0,

E
[
E(X,Y )

]
< ϵ0,

(7)

where E[.] denotes the expected value. Next, we introduce two
methods for defining f1 and f2.

IV. SEMANTIC-AWARE OBJECT DETECTION

With the goal of object detection in mind, we present two
solutions for extracting semantic information at the transmitter
side. The first approach is based on using text to express
image semantics (i.e., objects) and then transferring text over
a wireless channel. The receiver reconstructs the image and
detects objects on the receiving end. This solution approach is
motivated by scenarios in which a wireless channel with low
data rate is the limiting factor. We refer to this scenario as
“Limited Data Rate System”. The second method of extracting
semantic information is based on the concept of removing
irrelevant information (e.g., background) from images and only
transmitting detected objects (i.e., semantic) within an image.
This is referred to as “Low Error Tolerance System”. Both
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Algorithm 1: Low Data Rate System
Input : A set of images images
Output: Error and gain values for each image
foreach image Xi in images do

Step 1: Convert image Xi to a list of 5 descriptive
texts T using a neural network f1(Xi);

Step 2: Send T over the communication channel;
Step 3: Initialize Error(Xi) to 0;
foreach caption Tn in T do

Generate an image RXi
based on Tn using

neural network f2(Tn);
Calculate the semantic representation for RXi

as h(RXi);
Add h(RXi

) to h(Yi);
end
h(Yi) =

1
length(T )h(Yi);

Calculate Error(Xi, Yi) = ||h(Xi)− h(Yi)||;
Calculate Gain(Xi) = 1−

∑5
n=1

S(f2(Tn))
S(Xi)

;
Output: Error(Xi, Yi) and Gain(Xi) for image Xi;

end

of these approaches are built upon the idea of auto-encoder
systems, as shown in Fig. 1.
Low Data Rate System. First, assume that we have a low
channel data rate, and the receiver has a higher tolerance for
error; meaning that the receiver can accept some level of error
but needs the data immediately, and under the low channel
data rate, sending data with traditional communication meth-
ods does not satisfy the receiver’s requirement of freshness.
Therefore, one approach is to extract semantic information and
express it with as little data as possible, so that with a given
low channel rate, the transmission time is as short as possible.
To this end, we choose function f1() to be an image-captioning
function, meaning that at the transmitter side, f1() converts an
image to some text describing the image, and the data that is
being sent to the receiver is the text describing the image.
At the receiver side, we have the function f2() that converts
the text to an image. In this scenario, the original and desired
domains are 3D matrix domains that are fixed and defined by
the goal of the communication, but with this specific choice
of the function f1(), the semantic domain is text-domain.

Algorithm 1 describes the steps to implement this method,
which takes a collection of images as input and aims to
evaluate the quality of both textual descriptions and images
generated from these input captions. This algorithm quantifies
the error between the generated image and the original im-
age by measuring their semantic representations through the
function h(), utilizing the Euclidean distance for the object
detection goal.
Low Error Tolerance System. The second model is when
the receiver has a lower tolerance for error but the channel
rate is higher but still not enough for performing a traditional
method of communication. In this case, we chose the function
f1() as the object extractor function which basically, detects

Algorithm 2: Low Error Tolerance System
Input : A set of images images
Output: Error and gain values for each image
foreach image Xi in images do

Step 1: Convert image Xi to a list of its objects
OXi

using a neural network f1(Xi);
Step 2: Send OXi over the communication
channel;

Step 3: Initialize Error(Xi) to 0;
Initialize an empty list dOXi

;
foreach object o in OXi

do
Compute do = h(o) where h() is an object
detection function;

Add do to dOXi
;

end
h(Yi) = dOXi

;
Calculate Error(Xi, Yi) = ||h(Xi)− h(Yi)||;
Calculate Gain(Xi) = 1−

S(dOXi
)

S(Xi)
;

Output: Error(Xi, Yi) and Gain(Xi) for image Xi;
end

the objects within the given images and returns the objects
in those images. The semantic domain will be the 3D×N
matrix domain where N is the number of detected objects.
The function f1() removes the unnecessary information such
as background from images, and returns the semantics of data
which are the objects. The function f2() for this example does
not need to be implemented since the receiver can understand
the output of function f1(). Algorithm 2 describes the steps for
implementing object detection for the limited error tolerance
scenario. It takes a set of images as input and aims to evaluate
the quality of object detection and image understanding. The
algorithm processes each image, converting it into a list of
its constituent objects using a neural network. These object
representations are transmitted over a communication chan-
nel. For each object, a semantic representation is computed
using the function h() and accumulated into a list. The error
is then calculated by assessing the mismatch between the
semantic representation of the entire image and the list of
object semantic representations. The algorithm calculates the
communication gain and semantic error values for each image.

V. SIMULATION RESULTS

In this section, we examine the efficacy of the proposed
solutions using open source image datasets. As described,
the goal of our semantic-aware system is object detection in
images. Hence, in all simulation cases, the original domain
is the image domain, and based on the communication goal
and constraints we decide on functions f1() and f2(), h()
and semantic domain ΩS . For each setup, we plot the error
performance as well as the weighted error performance for se-
mantic vs. traditional communication. All the reported results
are cumulative average performance, as more images are being
included in the averaging process.
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(a) Semantic-aware transmitter for object detection

(b) Semantic-aware receiver for object detection

Fig. 2: (a) Semantic transmitter operation. The input image is
described using 5 different captions, which are generated by image-
captioning neural network. (b) Semantic receiver operation. Received
captions/texts are translated into an image. The goal of communica-
tion is to accurately detect the objects in the original image.

A. Simulation Setup

Dataset Description. The dataset we primarily use is the
COCO Validation Image 2014 dataset [11]. This subset is
designed to test the performance of computer vision algo-
rithms, encompassing object detection, image segmentation,
and captioning. It comprises thousands of hand-annotated
images, with varying content, scene complexity, and object
categories. Each image in this subset is accompanied by
detailed annotations, specifying object categories, object loca-
tions, and textual descriptions. The dataset spans a wide range
of object categories, from people and animals to vehicles and
household items.

Object Detection Module. We utilize the RetinaNet
Resnet50 FPN as the object detector in the system. The
object detector model is a customized version of the RetinaNet
object detection framework. It uses a ResNet-50 backbone and
incorporates a Feature Pyramid Network (FPN). This specific
model has been trained on the widely recognized COCO
(Common Objects in Context) dataset. The RetinaNet model,
initially introduced in the paper [12], is renowned for its ability
to efficiently and accurately identify objects in images.

Image Captioning and Text-to-Image Modules. In the
first scenario, we express semantic information of images
using text. Therefore, we needed to automate the process
of image captioning as well as image generation from text.
For the image-generator function, we utilized the DALL-
E2 API to generate images for the given descriptive text.
DALL-E2 is an extension or a new version of OpenAI’s
DALL-E, which is known for generating images from textual
descriptions. DALL-E is based on a GPT-3-style architecture,
which combines a transformer network with a VQ-VAE-2
(Vector Quantized Variational Autoencoder 2) architecture.
The transformer network is responsible for understanding
textual input, and the VQ-VAE-2 generates the corresponding
image. The original DALL-E model has hundreds of millions
of parameters, which are distributed across multiple layers.
Furthermore, we utilized COCO API for caption generation.
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(b) Weighted Error Performance

Fig. 3: Simulation results for the scenario in which text is used to
describe the semantics images.

For each image, we generated five captions describing the
image and sent a list containing all the captions over the
communication channel. On the receiver side, we used DALL-
E2 API to generate one image for each received caption. It
should be noted that any numbers of captions can be generated,
and we have arbitrarily chosen 5 to balance the trade-off
between running time and performance.

B. Results for Low Data Rate System

In this case, there is a limit over the data rate that the
channel can handle; therefore, we want to reduce the size of
transmitting data as much as possible. Transforming images to
a segment of text that describes the objects in the images and
their environment is one of the options that would result in
a high gain. Therefore, our algorithm processes each image
and uses the COCO caption generator neural network to
convert it into a list of 5 descriptive texts (see, for example,
Fig. 2a). These texts are then transmitted over a communica-
tion channel. For each descriptive text, another neural network,
Dall-E2, generates an image (see Fig. 2b), and the algorithm
quantifies the semantic error between this generated image and
the original image. The error is computed as the Euclidean
distance between semantic representations which is measured
by the function h() of the two images. The algorithm also
calculates the gain value, reflecting data rate efficiency, and an
average error to assess the quality of the generation process.

Given this configuration, we set ϵ0 = 0.65 and g0 = 0.9,
obtain the error and weighted error performance as shown in
Figure 3. As shown in Figure 3b, since we converted images
to text, we could achieve a considerable amount of gain over
all the data points. The average gain for this setup is 99%, and
while the average error is 65% satisfying the error constraint,
the objective value of the weighted error is 1%. Here, the
key factor is the receiver’s ability to comprehend the received
text (Natural Language) and convert it to an image. We can
improve the accuracy by generating more descriptive texts at
the transmitter side and training a more powerful machine
learning model at the receiver side for image generation.

C. Results for Low Error Tolerance System

For this configuration, the transmitter sends the detected
objects in the images. In order to implement this system,
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Fig. 4: Simulation results for the scenario in which the transmitter
extracts objects (semantics) and removes irrelevant information (such
as background) from images.

we used the COCO object detection pre-trained model. We
extracted the objects in the images and sent objects (without
the background) over the channel. The receiver, therefore, just
utilizes the extracted objects. Since the goal is to reconstruct
objects, we define the semantic error E(X,Y ) as the mismatch
between outputs of h() function when applying on X and each
Y . The f2() function in this case is an identity function.

To assess the system performance, we implemented Algo-
rithm 2, which takes a set of images as input and focuses on
evaluating the quality of object detection and image under-
standing. The algorithm iterates over each image, utilizing a
neural network, denoted as f1(Xi), to convert the image into a
list of its constituent objects, represented as OXi

. These object
representations are then transmitted over a communication
channel. For each object in OXi

, the algorithm computes a se-
mantic representation using an object detection function h(Yj

and accumulates these representations into a list dOXi
. The

error for the image Xi is calculated by assessing the mismatch
between the semantic representation of the entire image h(Xi)
and the semantic representation list dOXi

. The algorithm also
calculates the gain to evaluate data rate efficiency, which is
expressed as the difference between 1 and the ratio of the
size of the semantic representation list dOXi

to the size of the
original image Xi. The results, including error and gain values,
are then output for each image in the dataset. In this system,
we set ϵ0 = 0.55 and g0 = 0.5, resulting in an average gain of
50%, an average error of 55%, and an average weighted error
of 30%. From the results reported in Fig. (4), we observe that
although the error is in an acceptable range, the combination of
error and gain has a lower range. In other words, having a very
high gain while the error is very high as well, is meaningless
and contradicts the point of communication.

VI. CONCLUSION

In this paper, we presented a semantic-aware framework
tailored for object detection in the transfer of image datasets
between a sender and a receiver. To accomplish this, we
proposed two methods for extracting semantic information at
the sender’s end. The first method involves describing objects
in an image using text and transmitting this text over a wireless
channel. At the receiver’s end, the image is reconstructed,

and object detection is performed. The second method for
extracting semantic information focused on eliminating irrele-
vant data (e.g., background) from images and transmitting only
the detected objects (i.e., semantic content) within the image.
We proposed and implemented the algorithms to achieve
these solution approaches. Our numerical results using open
source image datasets show that these approaches are effective,
implying that semantic-aware methods have the potential to be
a useful tool for optimizing communication systems that are
tailored to achieve specific goals.
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