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Abstract—The rise and proliferation of Artificial Intelligence
(AI) technologies are bringing transformative changes to various
sectors, signaling a new era of innovation in fields as diverse as
medicine, manufacturing, and even day-to-day social interac-
tions. Notable advancements are not just confined to textual un-
derstanding, as seen in models like GPT, but also extend to visual
cognition through image recognition and more. Beyond surface
interactions and predictions, AI finds profound applications in
life-saving domains such as medical diagnostics and becomes
an integral part of daily life through chatbot-based customer
interactions. However, as the horizon of AI expands, a crucial
yet often overlooked aspect emerges— the underlying mission-
critical infrastructure required to support and deploy these
models effectively. The intricacies of efficient communication
systems, foundational for real-time AI model operations, take
center stage in ensuring the seamless functioning of AI-driven
applications. This paper explores the quintessential changes
needed in communication paradigms to keep pace with the
evolving AI landscape. Specifically, we highlight the pivotal role
of multipath communication in enhancing the responsiveness and
efficiency of AI applications [1]. As a case in point, we investigate
its impact on mission-critical operations in robotics. Through
experimentation and analysis, the results elucidate the substantial
benefits of this approach, revealing a significant improvement in
delay metrics. This work underscores the imperative of aligning
communication systems with the ever-growing demands of AI,
ensuring that infrastructural capabilities do not lag in the race
for innovation.

Index Terms—Artificial Intelligence (AI), Programmable Net-
working, Parallel Communication, Centralized - Distributed
Systems, Real-time Control, Multipath Communication, AI In-
frastructure

I. INTRODUCTION

Artificial Intelligence (AI) systems epitomize the conver-
gence of vast computational power and intricate algorithms to
simulate human-like cognitive functions. At their core, these
systems perceive their environment, make informed decisions,
and carry out tasks with varying degrees of autonomy, often
surpassing human capabilities in accuracy and speed.

A clear distinction emerges between traditional Machine
Learning (ML) models and contemporary AI systems in the
evolving technological panorama. Whereas traditional ML
models are trained for specific tasks, relying on curated data
and explicit feature engineering, the progression toward gen-
eral knowledge AI paints a different picture. Models like GPT
exemplify this shift towards general knowledge AI. These
models, equipped with the capability to grasp the underlying
†Both Authors Contributed Equally

intent of requests made to them, stand as testaments to AI’s
power in generating solutions with unprecedented efficiency
and precision. However, this advancement is not without its
challenges. Training such a GPT model demands vast datasets,
and the model’s architectural complexity results in a colossal
size. While attempts to miniaturize these models exist, as
showcased in [2], they often come at the cost of the model’s
comprehensive feature set.

With their unparalleled capabilities, AI systems are witness-
ing a surge in their application spectrum. Their utility spans
chatting interfaces, software programming assists, dedicated
customer service platforms, and even unique domains like
protein generation and genetics. A significant stride in this
direction is the exploration of AI as the epicenter for robotic
systems. For instance, initiatives from Microsoft research labs
have unveiled systems where GPT can autogenerate code,
seamlessly translating it to operational commands for robotic
drones, manipulators, and beyond.

As the gamut of these applications broadens, a pressing
concern surfaces regarding the infrastructure backing these
AI systems. While some AI models, tailored for specific
tasks, can be hosted locally, comprehensive models, given
their size and computational demands, often require access
through APIs or dedicated applications. Local hosting of
AI behemoths remains challenging for smaller organizations,
leading to increased dependency on AI hosting platforms. This
dependency raises pressing questions: What implications arise
from potential access disruptions due to power outages or
communication breakdowns? Moreover, with AI integration
in delay-sensitive environments, do existing communication
frameworks and infrastructure offer the necessary availability,
efficiency, and speed [3], [4]?

The ensuing sections of this paper delve deeper into these
concerns. Section II embarks on a literature review. Section III
delineates the proposed optimization and the communication
model tailored for AI systems. Section IV presents the exper-
imental results and analyses. Finally, Section V concludes the
discussion, offering insights into future research directions.

II. LITERATURE REVIEW

As we delve deeper into the convergence of artificial
intelligence and robotics, it becomes imperative to contex-
tualize the broader landscape of foundational research and
seminal developments, from the initial breakthroughs in AI
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models to the complexities of their real-world deployment.
This section provides an overview of the trajectory of notable
AI models, primarily the GPT series, their computational
intricacies, and the communication frameworks that underpin
them. Additionally, the nuances of integrating these models
into the realm of robotics highlight the path toward the next
era of interconnected, AI-driven systems.

Machine learning’s conception traces back to the mid-20th
century, with its foundational roots seen in earlier ideas. In
the 1930s and 1940s, Alan Turing postulated the potential for
machines to mimic human intelligence, laying a theoretical
groundwork for future developments. It was in the 1950s,
however, when tangible advancements occurred. The percep-
tron, introduced by Frank Rosenblatt in 1958, was one of the
first algorithms for supervised learning of binary classifiers.
The term ”machine learning” was coined by Arthur Samuel,
who, around the same time, was working on adaptive learning,
where the machine would improve based on training data. This
era marked a paradigm shift, where algorithms began to be de-
signed not just for computation but for adaptive learning based
on data. Over time, as computational capabilities improved
and data became more abundant, the frameworks and models
evolved, eventually leading to the advanced neural networks
and deep learning methodologies prevalent today.

A. Development of GPT Models
The development of large-scale language models, particu-

larly those of the GPT (Generative Pre-trained Transformer)
lineage, has its roots in the broader evolution of deep learning
and the Transformer architecture. Vaswani et al. [5] initially
proposed the Transformer architecture, which introduced the
concept of self-attention, enabling the model to weigh the
importance of different words in a sequence. This architecture
laid the foundation for models like BERT [6] and, subse-
quently, GPT [7].

OpenAI’s GPT, or Generative Pre-trained Transformer, in-
troduced a novel two-step approach to training. The initial
step involved unsupervised pre-training on a vast corpus, and
the second step refined the model using supervised fine-tuning
on a narrower dataset [7]. This approach effectively leveraged
the vast information in extensive textual data while honing the
model’s capabilities for specific tasks. The GPT series saw an
exponential growth in size. GPT-2, with 1.5 billion parameters,
was deemed substantial at its inception [8]. However, GPT-3
dwarfed its predecessor with 175 billion parameters [9] and
Microsoft Megatron-Turing NLG with 530 billion parameters
[10]. While not explicitly disclosed, the training time for these
models is known to span weeks, employing multiple GPUs
and TPUs.

Efficient model training necessitates exploiting data paral-
lelism or model parallelism. In data parallelism, data subsets
are distributed across multiple processors, each computing
gradients for its subset. These gradients then amalgamate
across processors. Conversely, separate parts of the neural
network reside on different processors in model parallelism.
Such distributed training mandates a robust communication

medium for gradient, weight, or data exchanges. Tools like
NVIDIA’s NCCL, the Open Message Passing Interface (Open-
MPI), and Microsoft’s DeepSpeed [10]–[16] facilitate such
exchanges. Microsoft has extensively utilized DeepSpeed in
conjunction with OpenMPI to enhance inter-GPU or inter-
node communications, offering optimized throughput and
scalability. Training such large-scale models is also limited
on the backend by the communication efficiency [17]–[19].
Similarly, communication improvements are also necessary at
the application level, which this paper presents.

Training large-scale models like GPT-3 incurs significant
costs. While exact figures remain proprietary, ballpark esti-
mates place the training cost of GPT-3 in the range of several
million dollars, factoring in the computational resources and
the electricity required for such intensive training. In addition
to the high costs, models like GPT-3 require gargantuan
datasets. These datasets are often sourced from myriad online
platforms and stored in distributed systems by leveraging
protocols like HDFS or GFS, ensuring fault-tolerant storage
while accommodating parallel data accesses. Given these steep
expenses, the ability to train and maintain such a large-scale
model locally becomes infeasible for many small to mid-sized
companies. This economic barrier underscores the significance
of accessible platforms and third-party services for utilizing
advanced machine learning models.

Therefore, many entities, recognizing these challenges, opt
for cloud-based access. However, this alternative has its own
set of issues.

• Model Inference and Latency: GPT models, given their
size, necessitate substantial memory and computational
resources even during inference. Real-time applications,
such as chatbots or on-the-fly code generation, demand
rapid response times, which is challenging given the
model’s complexity.

• Communication Requirements: Accessing GPT models
remotely, typically through cloud-based APIs, demands
robust and low-latency communication channels. The
data exchange involves the user’s query and the model’s
context, spanning thousands of tokens for models like
GPT-3. Services like OpenAI’s API for GPT-3, or anal-
ogous platforms, must handle concurrent requests from
numerous users, necessitating vast bandwidth and effi-
cient load-balancing mechanisms.

Researchers are looking for solutions through unique ways
of combining models, utilizing model compression strategies,
or implementing other novel solutions. Techniques such as
knowledge distillation and alternative methods, like the one
used in Stanford’s Alpaca model [2], are also gaining traction.
The latter employs fine-tuning on demonstrations generated by
powerful models to produce compact yet effective instruction-
following models. These adjustments and strategies are es-
sential for creating models that fit the constraints of various
deployment scenarios and meet the needs of multiple appli-
cations.

However, real-time applications, especially in areas like
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robotics, demand more than just speed; they necessitate high-
quality responses. The smaller, fine-tuned models derived
from techniques like knowledge distillation can diminish the
response quality because of their limited in-depth parameter-
ization, which is crucial for optimized responses. Therefore,
current systems are at a crossroad in catering to these appli-
cations. Services like OpenAI’s API for GPT-3/4 or similar
platforms face the challenge of handling concurrent requests
from numerous users requiring vast bandwidth and efficient
load-balancing mechanisms. Given the fluctuating bandwidth
needs based on the application specifics and frequency of
access, ensuring uninterrupted and high-speed communication
is challenging for real-time delay-intolerant applications.

B. GPT in Diverse Domains
The versatility of GPT models has paved the way for

their application across many environments. One of the pi-
oneering applications lies in robotics, spanning domains such
as autonomous driving [20], manufacturing, and assistive
technologies. Robots equipped with GPT models can decipher
complex instructions, adapt to dynamic environments, and
collaborate with humans in shared workspaces.

For instance, Microsoft Research Labs has ventured into
translating GPT-generated code directly into operational com-
mands for robotic entities. Such endeavors accentuate the
adaptability of GPT models, extending beyond natural lan-
guage tasks to real-world implementations.

Furthermore, GPT models have made significant financial
strides, especially in high-frequency trading, where decision
latency is minimal. These models analyze vast swaths of
data, from market trends to news articles, and make near-
instantaneous trading decisions. The delay-intolerant nature
of such applications, where microseconds can translate to
significant financial implications, underscores the need for
optimized communication infrastructures.

C. Communication Requirements for AI-driven Systems
With the proliferation of AI-centric applications, especially

those exhibiting delay-intolerant behaviors, the underlying
communication infrastructure becomes a keystone. These ap-
plications require diverse setups and configurations depending
on their nature and operational constraints.

For instance, robotic systems may differ in their connectiv-
ity configurations based on their application. Manufacturing
robots often lean towards wired setups, owing to their de-
mands for high-speed, deterministic communication, ensuring
minimal latency. Any hint of communication uncertainty can
be detrimental, potentially disrupting intricate manufacturing
processes. In contrast, robots deployed in exploration, surveil-
lance, or those operating as drones prioritize wireless setups,
valuing flexibility and unhindered mobility.

Furthermore, robotic systems may exhibit either centralized
or distributed architectures. Centralized systems rely on a
singular controller orchestrating the actions of all robotic
entities. While this ensures synchronous operations, it poses
potential bottlenecks, especially in communication-intensive
scenarios. Distributed systems, however, empower each robot

or a cluster of robots with decision-making capabilities based
on local data. Such setups favor scalability and resilience
but introduce complexities ensuring coordinated actions and
communication demands.

For robotic systems, communication becomes paramount.
The primary controller juggles its responsibilities of query-
ing AI models like GPT for insights while simultaneously
dispatching directives to robotic agents [21]. Delays in AI
query responses can inadvertently introduce lags in com-
mand dispatches, leading to operational inefficiencies. Ongo-
ing communication advancements like parallel communication
mechanisms can alleviate such concerns where dedicated
communication channels cater to AI model queries while
others maintain seamless communication with robotic agents.
Multi-path Parallel communication ensures that delays in one
link don’t impede operations in another, which is especially
vital in time-sensitive mission-critical deployments [22], [23].

III. PROPOSED SOLUTION: PARALLEL PROGRAMMABLE

NETWORKING FOR AI-DRIVEN ROBOTIC SYSTEMS

The paper introduces multiple strategies for enhancing AI-
controlled robotic systems. One proposed strategy involves
using multi-path parallel communication, designating a spe-
cific link for AI queries while maintaining separate links
for consistent robotic communication. Furthermore, this work
presents a novel methodology employing diverse models to ex-
pedite response times. This technique integrates a turbo model
for swift responses and a sophisticated model for response
optimization rather than solely relying on the more intricate
model for outcomes. Such an approach facilitates innovative
methods, for instance, transmitting unrefined code to the robot
for immediate directives while concurrently strategizing an
optimized solution for the ensuing action.

Additionally, the work introduces a buffering mechanism
that operates between the robot’s immediate directive and its
subsequent optimized step. This setup enables the control sys-
tem to refine the succeeding actions while the robot executes
its present task in a distinct processing environment. This
design ensures that robots can access optimized commands
in real-time, leveraging AI’s control capabilities. Furthermore,
given their parallel processing capability, this distinct process-
ing framework allows robots to adapt during operations should
unforeseen events arise.

The essence of the proposed solution revolves around
leveraging the programmable networking paradigm to manage
communication channels efficiently, optimizing the synergy
between AI-driven components and robotic units.

A. Programmable Parallel Communication
In the evolving landscape of communication, horizontal

architectures such as CoopNet have emerged to address the
dynamic needs of the current communication era [1], [3], [4],
[24], [25]. These architectures permit the exploitation of avail-
able communication links, offering dynamic flexibility suited
to highly mobile and dynamic environments, especially when
unguided mediums come into play [26]. Such adaptability
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Fig. 1: Example Communication Topology, Profiles, & Programmable Networking Paths
ensures the swift establishment of transient communication
channels, fostering enhanced collaboration.

Delving into the horizontal communication landscape,
CoopNet emerges as an innovative solution. Crafted as an
API-style communication architecture, it addresses the short-
comings of traditional frameworks [3]. By minimizing depen-
dency on complex processes and socket connections, CoopNet
streamlines the developer interface, all while maintaining
compatibility with existing frameworks. Its strength resides in
adeptly orchestrating connection dynamics from initiation to
termination. CoopNet’s distinguishing feature is its capability
to efficiently direct traffic over multiple parallel interfaces and
links, enhancing communication efficiency and adaptability.
As showcased by CoopNet, programmable networking helps
to meet unique application demands. This adaptability facili-
tates parallel communication threads crafted to cater to real-
time needs, spanning domains from AI to robotics. This dy-
namism is enabled by strategic methodologies, optimizing the
allocation of network resources for contemporary challenges.

To grasp the essence of dynamic programmable communi-
cation, it’s vital to understand its significance in typical robotic
applications. Figure 1A presents a conventional topology with
various communication links. A centralized system can con-
nect through guided (wired) medium or unguided (wireless)
via cellular, WiFi, Bluetooth, and more. Independent units,
especially in robotics or IoT, can access other communication
mediums, including IoT-specific z-wave, ZigBee, LoraWAN,

and more. In a typical setup, a centralized system sends
directives to individual robot units based on some existing
model or algorithm.

On the other hand, independent units can operate in a
distributed mode, leveraging ad-hoc or IoT-driven communica-
tion for reactive actions such as obstacle avoidance. However,
real-time robotic control through AI systems is an upcoming
trend with limited exploration and varying needs, including
delay-intolerant processing and communication.

Considering the demands of delay-intolerant systems, pro-
grammable parallel networking offers innovative solutions
(The red line represents the initial transaction, while the green
line shows the subsequent AI directive transaction):

• Figure 1B illustrates a centralized control unit using its
quickest and most stable channel for immediate directives
while employing a secondary channel for subsequent
instructions.

• Figure 1C illustrates a two-tiered method where a turbo-
based AI model initially offers a rapid response (R1),
followed by a refined output from a comprehensive model
(R2). This strategy proves more efficient and optimal than
using either model alone.

• Lastly, Figure 1D showcases a scenario where an on-
site AI system issues directives. While the local AI
can quickly respond, it may not always offer the most
optimal solution. Thus, the AI might request input from
a more sophisticated model to optimize its decision.
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Furthermore, in mission-critical settings, this figure also
demonstrates the distributed operation where an AI can
reside within an independent unit.

This multi-faceted approach underscores the potential and
versatility of programmable communication in dynamic en-
vironments.

B. Efficient Access to AI Resources in Centralized Systems
To achieve the desired efficiency in robotic control driven

by AI, local centralized and distributed systems must be adept
at tapping into local and cloud AI resources based on urgency
and complexity. Moreover, all systems would benefit from
adeptly harnessing programmable networking features and
multipath parallel communication. Thus, these systems can
ensure prompt decision-making and adaptive responsiveness
across various robotic applications, as contributed in this
article, portrayed in Algorithm 1.

C. Algorithm: Dynamic Resource Allocation with Pro-
grammable Networking

Algorithm 1 Adaptive AI Resource Access and Dynamic
Interface Allocation
Require: System initialization and configuration
Ensure: Adaptively prioritize and access AI resources

1: while system is running do
2: monitor_interface_usage()
3: find_fastest_idle_link()
4: if API_request_pending() then
5: set_fastest_link_for_mission_crit()
6: else if followup_directive_pending() then
7: allocate_secondary_idle_link()
8: end if
9: if local_controller_needs_AI() then

10: if is_time_sensitive() then
11: generate_response_from_local_AI()
12: send_to_cloud_AI_system()
13: else
14: send_to_cloud_AI_system()
15: end if
16: end if
17: if local_AI_available_and_optimized() then
18: request_from_local_AI()
19: else if not_optimized_or_unavailable() then
20: request_from_turbo_model()
21: if needs_optimization() then
22: request_best_model_for_optimization()
23: end if
24: end if
25: if directive_from_centralized() then
26: provide_overview_directive()
27: else
28: delegate_to_distributed_units()
29: end if
30: balance_load_among_interfaces()
31: end while

D. Modeling The System
To further elucidate the performance and efficiency of the

proposed system, consider the following model for efficiency
calculation:

Fig. 2: Experimental Setup Topology

E =

∑n
i=1 Ti

Tmax
× Rapi +Rlocal

Rtotal
×K (1)

Where:
• E: System efficiency.
• Ti: Time for processing ith task.
• Tmax: Maximum time allowed for task processing to avoid

delays.
• Rapi, Rlocal: Rates of API request and local communication

successes.
• Rtotal: Total communication requests.
• K: Scaling factor for load adaptability, based on historical or

real-time data.

E. Experiment Topology and Setup
The experimental setup contributes to Microsoft Research’s

Prompt-Robotics framework [27], focusing on addressing real-
time constraints in robotic controls. Figure 2 visually rep-
resents the equipment integral to the experimental design.
This visual aid further underscores the nuanced communica-
tion strategies and the amalgamation of AI-driven directives
with robotic execution. Utilizing a programmable educational
drone, the system facilitates command execution via wireless
communication (WiFi).

The study involves assessing communication and process-
ing delays through several approaches: single interface com-
munication (Cellular or Wired Ethernet) with GPT4 requests,
multi-interface (WiFi, Cellular, and Wired Ethernet) GPT4
processing, and an innovative multi-interface parallel GPT3.5
turbo processing enhanced by GPT4 optimization, as demon-
strated in Figures 1A, 1B, and 1C. Exploration of local GPT
integration, depicted in Figure 1D, remains a topic for future
research.

Results indicate the need for multipath parallel communi-
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(a) Latency Utilizing Turbo-Opt & Best Models (b) Computed Efficiency (c) Safety Score

(d) Total Request Time (GPT4) (e) Total Request Time (GPT3.5 Optimized w/
Safety)

(f) Parallel Communication Improvement

Fig. 3: Optimized Model Access and Processing Improvements to AI Systems Controlling Delay-Intolerant Units
cation for timely responses and robotic control. Nevertheless,
they also reveal the necessity for additional advancements,
such as model selection and optimization, effective instruction
queue processing for immediate yet unoptimized requests, and
other strategies to mitigate the currently unsatisfactory delays
in real-time applications.

IV. EXPERIMENTAL DATA AND ANALYSIS

This research evaluates the efficacy of a programmable
networking approach, focusing on its ability to manage multi-
ple communication channels simultaneously for AI-enhanced
robotic control. The central objective revolves around discern-
ing the effects of this approach on communication and pro-
cessing delay while preserving the continuous communication
that is indispensable for precise robotic operations.

V. RESULTS

Figure 3a showcases the strategic decision-making in AI
model deployment. This research emphasizes that the magni-
tude and intricacy of an AI model don’t inherently translate
to swifter outcomes. There’s a compelling case for employing
a more nimble albeit less precise model, like the turbo
or local variant. The result demonstrates improved efficacy
when a less resource-demanding model’s outputs undergo
further refinement using a more sophisticated model. The data
substantiates this, revealing a reduction in latency by a factor
of four, even while maintaining the same optimal response
quality as shown in Figure 3ac, including the safety score for
correct responses.

Figure 3b sheds light on the transformative efficiency en-
hancements in robotic control that emerge from applying the
algorithm detailed in this research. This structured approach
supports rapidly handling mission-critical tasks and meticu-
lous refinement of follow-up directives, utilizing parallel pre-
processing techniques and preemptive model access. Adding
another dimension to the insights, Figure 3c offers a compar-

ative analysis. It compares the foundational system blueprint
with this research’s communication and processing advance-
ments. Including a safety check score further amplifies the
reliability and precision of the directives. While it’s notewor-
thy that certain instances yield less-than-ideal responses, the
structured follow-up directive parallel processing mechanism
ensures these minor discrepancies get addressed.

Delving into more specific metrics, Figure 3d presents
latency benchmarks across different communication chan-
nels. The data underscores a transformative advantage when
deploying 5G and Ethernet for handling requests, comple-
mented by an auxiliary channel dedicated to unit control.
It’s evident that GPT4’s request times, despite its prowess,
remain substantially elongated compared to the streamlined
approach delineated in this research. Figure 3e shows total
request timings for a more granular perspective evaluated
with enhanced safety protocols; without safety, there is a
delay reduction by approximately .63 seconds. Here, the
synergistic use of GPT3.5 Turbo, further bolstered by GPT4
optimizations, emerges as a decidedly more efficient strategy
than an exclusive reliance on GPT4.

Figure 3f provides the results of parallel communication
vs single interface use. The results show that multi-interface
parallel communication offers a significant improvement for
various reasons, including the sequential transmission demand
pausing intermediate and future planning directives and lack of
accessibility. However, it is essential to note that the commu-
nication delay is minimal in milliseconds to the GPT response
times in the order of seconds. Still, multi-interface parallel vs
single-interface communication for the experimental testbed
provided an improvement of over 81% (saving an average
of 47mS). In the broader context of communication strategy,
the distinct separation of links dedicated to requests and unit
control, amalgamated with a multi-link modality for handling
requests, constitutes a game-changer. Moreover, combining
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communication with optimal techniques, including processing
and GPT access, makes it more feasible to have real-time
applications through AI control.

VI. CONCLUSION
This research highlights current communication infrastruc-

ture limitations and requirements that impact the utilization
of large AI models. The strategies and solutions presented in
this work aim to facilitate this transition, ensuring that AI and
robotics integration occurs seamlessly, efficiently, and effec-
tively. In a world where the interaction between AI models
and robotic systems is becoming increasingly dynamic, the
initiatives proposed in this research help set benchmarks for
performance, accessibility, and operational efficiency. Every
element, from communication pathways to AI model selection
and optimization, needs addressing to ensure that the emergent
AI-driven robotic ecosystems are responsive, adaptive, and
reliable for use in various applications like military and
healthcare [28]. As the sophistication of AI systems advances,
the necessity for streamlined access to these models becomes
a paramount consideration, particularly in applications de-
manding instantaneous responses such as robotic control. The
insights offered in this paper underscore the significant role
of parallel communication in enhancing the effectiveness and
responsiveness of AI-enabled systems, aligning to achieve
near real-time control. Future investigations will incorporate
advanced interface capabilities and local AI access within
robotic frameworks. By doing so, the authors anticipate an
environment that supports more instantaneous and real-time
operations. The integration of cutting-edge interfaces promises
to enhance the operational efficiency of robotic systems and
mitigate latency issues, ushering in an era where AI-driven
robotics operate with unprecedented speed and precision.
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