
Foundational Models for Malware Embeddings Using
Spatio-Temporal Parallel Convolutional Networks

Dhruv Nandakumar∗a, Devin Quinna, Elijah Sobaa,
Eunyoung Kima, Christopher Redinoa, Chris Chana,

Kevin Choia Abdul Rahmana, Edward Bowena
aDeloitte & Touche LLP

∗Corresponding author: dnandakumar@deloitte.com

Abstract—As the complexity of malicious tactics, techniques,
and procedures (TTPs) continuously grows to evade detection,
so does the need for advanced methods capable of capturing
and characterizing malware behavior. Current methodologies for
task-specific models in cyber threat detection are time-intensive to
build and do not generalize well to other tasks. In this paper, the
authors introduce a novel method that combines convolutional
neural networks, standard graph embedding techniques, and a
metric learning objective to extract meaningful information from
network flow data and create strong embeddings characterizing
malware behavior. These embeddings enable the development of
highly accurate, efficient, and generalizable machine learning
models for tasks such as malware strain classification, zero
day threat detection, and closest attack type attribution as
demonstrated in this paper. A shift from task specific objectives
to strong embeddings will not only allow rapid iteration of cyber-
threat detection models, but also allow different modalities to be
introduced in the development of these models.

I. INTRODUCTION

In today’s interconnected digital landscape, the proliferation
of malware poses a significant threat to the security and
stability of computer networks and systems worldwide. As
the complexity of malicious tactics, techniques, and procedures
(TTPs) continuously grows to evade detection, so does the need
for advanced methods capable of capturing and characterizing
malware behavior. The current state of the art in malware
classification and detection uses task specific objectives;
however, this method fails to generalize to other downstream
tasks involving the same malware class. It is crucial to create
embeddings for malware behavior that enable the development
of highly accurate, efficient, and generalizable machine learning
models for a variety of downstream tasks. A shift from task
specific objectives to generalized embeddings will not only
allow rapid iteration of cyber-threat detection models, but also
allow different modalities to be introduced in the development
of these models.

In this paper, the authors introduce a novel method for
creating embeddings of malware behavior using network flow
telemetry. The embeddings capture behavioral similarities
between similar malware strains while disambiguating distinct
strains in the latent space. Furthermore, the authors demonstrate
how the pre-trained embedding model can be used for transfer
learning to other cyber-threat detection tasks with strong results.
The methodology combines convolutional neural networks,
standard graph embedding techniques, and a metric learning

objective to extract meaningful information from network flows
and separate them in the latent space for use in downstream
tasks. The authors also introduce a novel methodology for
feature engineering in the cybersecurity domain that orders
network flow telemetry Spatio-Temporally, i.e., by how devices
connect on a network both topologically and over time.
Overall, the authors endeavour to introduce a methodology
for representing malware-specific behaviour in the form of
embeddings which can be used for a variety of downstream
tasks including, but not limited to, malware classification.

The first few sections of this paper will focus on a literature
review of related work, an exploration of the proposed
methodology, and an overview of experimental design. The
authors will then present findings and experimental results on
the performance on the methodology’s ability to create strong
clusters as well as performance on downstream tasks. The
paper will conclude with a summary and discussion of next
steps.

II. RELATED WORK

There have been several past works related to classifying
malware using a variety of different methodologies. Sethi et
al. [1] utilized application programming interface (API) based
features extracted from sandboxed malware samples to train
Decision Tree and Random Forest based models to detect
and classify malware strains with good results. Nguyen et
al. [2] also utilize tree based techniques to classify malware
strains using features generated from static analysis of malware
executables. Ma et al. [3] and Or-Meir et al. [4] also propose
novel approaches for malware classification using techniques
such as system call analysis and attention-based models.

There has also been research conducted on malware clas-
sification using techniques that are conceptually related to
the work presented here. Anderson et al. [5] utilized graph
representations of malware instruction sequences to identify
malware executions. They demonstrated strong classification
results but limited their scope to identifying only one malware
strain distinctly. Similarly, Ding et al. [6], Hu et al. [7], and
Kinable et al. [8] all utilized graph-based feature vectors
of system call graphs during malware executions to classify
malware strains. In contrast with the work presented here,
all of the above approaches use malware execution traces or
static analyses to create graphs for classification instead of

2024 Workshop on Computing, Networking and Communications (CNC)

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 168

network flow information. Furthermore, all the methods above
are used to train models in a task specific manner and do not
lend themselves to transfer learning or other objectives easily.
The methodology proposed in this work, however, involves
generating representations of malware behavior that can be used
for multiple downstream tasks and is, therefore, conceptually
distinct.

Similarly, several works [9] [10] [11] utilized convolutional
neural networks to classify malware strains. However, the
input features consisted of malware images which were grey-
scale, bit-map representations of malware files. Hu et al. [12]
used graph convolutional networks to classify malware strains
with graphs constructed on data-flow information. The graphs
were constructed to represent data flow within the device on
which the malware executed, not across various devices. Prior
work [13] [14] also utilized graph features on network flow
data for zero day threat detection using autoencoders and
metric learning. The approach demonstrated strong performance
in identifying anomalies in network flow behavior but only
reasonable performance in identifying specific malware types
or zero day threats. Furthermore, the approaches utilized were
task specific and prone to instability during training.

There has also been work done in the field of producing
embeddings of malware behavior using reconstruction of
malware binaries [15] or using text-based embeddings of open-
source threat intelligence [16] [17]. However, these approaches
either require extraction of the actual malware binary in
production settings, which may be unfeasible, or are more
predictive in nature rather than detective. This stands in contrast
to our work which aims to provide a light-weight methodology
for detecting malware behavior in near real time.

This paper aims to analyze behavioral differences of malware
strains with respect to network connections and information
flow across various devices. Our approach captures nuanced
information regarding patterns of interaction with command and
control servers, etc. which other methods do not. Furthermore,
this paper also utilizes a metric learning objective to create
embeddings that cluster malware and separate different strains.
This allows our model to be more general and extensible to
other tasks such as and Zero Day Threat Detection and Malware
Classification.

III. SHORTCOMINGS AND CONSIDERATIONS IN EXISTING
WORK AND MOTIVATIONS FOR THIS WORK

IV. METHODOLOGY

A. Datasets

The datasets used for our novel architecture were required
to contain flow-level information about each event (connection
duration, port numbers, timestamp, and number of forward
and backward bytes transmitted), the source and destination
IP addresses, and attack class labels. Two datasets were
used during training and evaluation. The first is Gigas, an
organization proprietary dataset consisting of network data
over five years. It represents more than 100 real malware
sample detonations in our internal malware cyber-range. A

subset containing a sample of 20 diverse malware classes and
10,000 examples per class were ordered by timestamp and used
as training data.

The second dataset, Malnet, was collected in the form of
packet capture files available on malware-traffic-analysis.net
[18]. Packet Captures were collected for 16 malware types and
converted to flow-level features using the CICFlowmeter tool
[19]. Both the Malnet and Gigas datasets were labelled with
class labels referring to the malware strain executed. Class
imbalance was more prevalent in Malnet and served as a
benchmark for evaluating model performance in imbalanced
scenarios. The per-class support varied from 42,000 to 110
examples per class and had a median of 2,570 examples per
class.

B. Feature engineering

The first novel approach we take is the construction of our
directed network-connection graph for network flows captured
during malware executions. The nodes on the graph represent
distinct Internet Protocol (IP) addresses, and the directed edges
represent an aggregation of flow level information between
source and destination IP pairs. In this paradigm, duplicate
edges can exist between nodes if multiple connections exist
between two IP addresses. Each edge is weighted using the
connection’s network flow attributes as given by the following
formula:

weight(edge) =
sourceBytes− destinationBytes

αduration

where α is a hyperparameter, duration is the duration of a
connection in seconds, and sourceBytes and destinationBytes
represent the amount of information, in bytes, sent from source
to destination and vice-versa. Next, we compute an embedding
for each node on the graph using FastRP. FastRP begins by
assigning random vectors as embeddings to each node and
iteratively averages over a nodes neighbors. The dimension
of the embeddings are a tunable hyperparameter and can be
modified based on intended downstream use; in this work, we
refer to the embedding dimension as ϵ. A node’s ϵ-dimensional
embedding is a combination of its vector and the average
embedding vector of its neighbors. The final embedding of a
node n is given by:

embeddingn = weight0 · norml2(vectorinitial)

+

n∑
i=1

weighti · norml2(embeddingi)

where embeddingi is the intermediate embedding of the
node given neighbors at the ith degree and vectorinitial is
the initial random vector assigned to the node. It follows that
embeddings of nodes seen during inference would be consistent
with those generated during training only if the IP behavior in
inference data is similar to training data. However, we believe
that this assumption is reasonable given the malware behavior
is broadly consistent with the objectives of the malware rather

2024 Workshop on Computing, Networking and Communications (CNC)

169

than the type of the device on which it executes. The node
embeddings will form the basis of the features used in the
remainder of this work.

A key benefit of using FastRP to produce node embeddings
is the ability to remove the normalization of raw features.
Previously proposed methods rely on the normalization of
network flow behavior between several networks to compare
them to behavior of malware executions. This methodology
can be unreliable, especially when the structure and behavior
of the originating networks are vastly different. Our approach
eliminates this concern by observing network flow behavior
on a per-asset level for a given duration and producing node
embeddings for those flows compared to malware behavior.
Furthermore, using FastRP removes the need for specific
graph feature engineering as seen in the work by [13] and
[14] and allows models to learn from richer behavior-specific
embeddings.

C. Spatio-temporal example creation

Once all nodes from malware executions have emeddings, we
begin the creation of training and evaluation examples. Malware
executions are differentiated not only by the characteristics of
individual connection, but also the order in which they occur
temporally and spatially ([20]). That is, we believe that we
can generate richer embeddings of malware behavior if we
consider sequences of network flows and the various devices
they connect to as opposed to single network flows. Malware
execution examples are represented such that they capture the
interaction of various nodes on a graph exhibit.

For each malware execution, we first order the network flows
in ascending order by timestamp and subset β flows. Of the
β flows, we select the first γ IP addresses (either source or
destination) seen in the connection. We then construct a (γ,
ϵ) dimensional feature matrix, F, that contains the FastRP
embedding for each selected IP address in the order in which
they were seen. F now contains feature vectors for all nodes
participating in the β flows temporally. Next, we construct a
binary adjacency matrix for all nodes present in γ such that
each entry i, j in the matrix will be given by the formula:

adjcency(i, j) =

{
1 ∃connectioni,j ∈ β

0 otherwise

The adjacency matrix, A, represents spatial connections
between interacting nodes on a graph and has dimension (γ, γ).
A and F form the input features for one example. Similarly,
a sliding window of width β can be used to create several
examples per malware execution for all malware executions
with a corresponding label.

D. Model architecture

We propose a spatio-temporal parallel convolutional network
(ST-PCN) architecture (Figure 1) that processes the spatial
and temporal aspects of malware execution graphs in parallel
for the creation of strong embeddings. Our model architecture
begins with two sets of convolutional layers that convolve

Fig. 1: ST-PCN Architecture

A and F independently to produce a 32 dimensional vector
embedding for each matrix. Both vector embeddings are then
concatenated to produce a final spatio-temporal embedding
which is passed into the metric learning objective function. It
should be noted here that, while the concatenation of inputs
from Neural Networks for multi-modal learning [21] has been
seen in literature previously, combining the architecture with the
feature engineering and example creation for security purposes
is a novel contribution.

E. Training and evaluation

The ST-PCN architecture is trained using a metric learning
objective to maximize inter-class separation in the embedding
space while simultaneously minimizing intra-class separation.
Particularly, we utilize a softmax-based additive angular margin
loss [22] as our loss function which is backpropagated through
the entire ST-PCN model and is computed on the concatenated
embedding and corresponding malware label.

Furthermore, we will introduce a ’holdout’ malware class
which will be held out from training and validation data entirely
when training the ST-PCN models and evaluating them on
downstream tasks. Downstream task evaluation will also assess
the performance of our models on holdout data to estimate
the performance of the approach on novel malware. This is
particularly helpful when evaluating the efficacy of the ST-PCN
on a zero day threat detection task. All experiments conducted
below require a compute instance with at least 64 gigabytes of
Random Access Memory (RAM) and a 32 core processor.

V. EXPERIMENTAL DESIGN

Training and testing are performed on a random 70/30 train-
test split of input matrices. Given that the objective of the
ST-PCN is to produce strong embeddings of malware behavior
for downstream tasks, the primary evaluation will be focused on
the embedding clusters and associate metrics such as silhouette
scores, Rand indices, and cluster completeness and homogeneity
scores. Furthermore, performance of the embeddings will also
be evaluated based on the performance of complex downstream
tasks. All downstream tasks will use pre-trained embeddings
from the ST-PCN with no fine-tuning.

2024 Workshop on Computing, Networking and Communications (CNC)

170

A. Embedding by attack class

The metric-learning objective involves training an ST-PCN
model on a metric learning objective that aims to separate
malware by their respective strain. Compared to recent work
([14]) which uses metric learning on cyber attack types
such as botnet or ransomware attacks, this work uses more
granular malware strain labels because each malware strain
exhibits distinct behavior that could be used for multiple attack
campaigns. For example, a Bazaloader trojan could be used in
an overall attack campaign to deliver ransomware, keystroke
loggers, or any other malware. We believe this will lead to
better separability in the latent space. As mentioned in the
Datasets section, we use malware labels from two datasets
consisting of a total 36 malware classes.

The produced FastRP embeddings only consider a node’s
neighbors up to the second degree. Consequently, each FastRP
embedding is a weighted sum of three intermediate embeddings:
the node’s initial vector, it’s vector relative to it’s neighbors,
and it’s vector relative to it’s neighbors’ neighbors. The weights
of each vector are 1, 0.5, and 0.5, respectively. Furthermore,
all experiments and results set α as 1.15, β as 128, and γ and
ϵ as 32.

B. Malware classification

This downstream task evaluates the performance of pre-
trained ST-PCN embeddings on classifying malware types.
Evaluation is conducted on embeddings produced for the test-
set of malware classes and the holdout malware class. In the
malware classification experiments that follow, we utilize a
Random Forest Classifier fit on the training set of embeddings.

C. Zero day threat detection

In this task, we evaluate the models’ performance on
differentiating a malware class seen during training to a
holdout class. In order to estimate the performance of ST-PCN
embeddings on a zero day threat detection task, we utilize a
Euclidean distance-weighted K-Neighbor classification model
fit on the training set of embeddings with the number of
neighbors set to 350.

During evaluation, we compute maximum class membership
probability for each test and holdout example on the training
classes. The complement of this probability is then computed
to represent the probability of an example being a Zero Day
Threat, referred to henceforth as the ZDT probability. The ZDT
probabilities are then thresholded to compute metrics. Given
the class imbalance between test examples and holdouts, we
utilize precision, recall, and area under the precision-recall
curve as evaluation metrics.

D. Closest attack type attribution

The objective of this downstream task is to determine, for
any given holdout example, what the most similar malware
seen during training to it is. This allows us to evaluate the
fidelity of the organization of the latent space and examine if
similar malware types are truly located close to each other.

Fig. 2: Malnet dataset embeddings

The same K-Neighbors classification used in the Zero Day
Threat detection task is used to compute the closest attack
type and probability for every holdout example. Then, for each
holdout class, we extract the two most common classifications
and compute the average probability for each classification.

E. Additional considerations for experimental design

Several open source datasets included to evaluated per-
formance in previous work do not lend themselves will to
the ST-PCN methodology, particularly due to lack of source
and destination IP address fields in the data. Examples of
popular datasets include CICIDS2017, NSL-KDD, and KDD-
99 which have been used extensively in prior work [23]
[24] [25] [26]. Consequently, this work does not benchmark
model performance on those datasets. Future work will include
benchmarking other proposed methods in the literature using
the Malnet dataset.

Furthermore, it is also important to note that the scope of this
work is not to propose a model for the sole purpose of malware
classification or ZDT detection. Instead, this work aims to
provide a generalized methodology for creating representations
of malware behavior for downstream use. Some examples of
this use could be, but are not limited to, malware severity
estimation, malware family classification, or other multi-modal
threat detection tasks.

VI. RESULTS AND DISCUSSION

A. Cluster and embedding analysis

In order to visualize and evaluate the embeddings produced
by the ST-PCN model, we produce embeddings for all example
matrices in the test-set. Once embeddings are computed,
we utilize Uniform Manifold Approximation and Projection
(UMAP) ([27]) to produce 3-dimensional representations of the

2024 Workshop on Computing, Networking and Communications (CNC)

171

TABLE I: Zero Day Threat detection and CATA metrics

Dataset Holdout AUC Precision Recall CATA Probability

Gigas Nanocore 0.90 0.90 0.85 Meterpreter 91%
Gigas Azorult 0.96 0.99 0.91 Ursnif 88%
Gigas Ursnif 0.89 0.98 0.72 Nymeria 91%
Gigas Trickbot 0.96 0.98 0.92 Xtremerat 93%
Gigas Lokibot 0.95 0.99 0.92 Netwire 88%

Malnet Bazaloader 0.97 0.96 0.94 SquirrelWaffle 81%
Malnet Astaroth 0.82 0.95 0.70 Hancitor 96%
Malnet Mantabuchus 0.68 0.76 0.65 Monsterlibra 76%
Malnet Valak 0.92 0.94 0.91 Hancitor 90%
Malnet Qakbot 0.88 0.93 0.84 Gozi 89%

Average 0.89 0.94 0.83

TABLE II: ST-PCN embedding metrics

Dataset Silhouette Completeness Homogeneity Rand

Gigas 0.69 0.86 0.94 0.97
Malnet 0.66 0.71 0.97 0.96

TABLE III: Malware classification metrics on Gigas test data

Value AUC Precision Recall

Macro Avg. 0.99 0.99 0.99
Minimum 0.98 0.97 0.97

embeddings for visualization. A visualization Malnet datasets
is shown in Fig 2, where the x, y, and z axes each correspond
to a dimension of the 3-dimensional UMAP embedding. In the
figure, the points are colored by malware class. We also see
similar results in the Gigas dataset.

From the figures, we see that the ST-PCN produces well
separated clusters for malware classes in both datasets. We
also see that a few malware strains tend to have multiple
tight clusters as opposed to a single larger cluster. We believe
that this is due to sub-variations in malware behavior based
on external factors such as the operating system on which
they execute. In general, however, malware classes are well
separated into either tight clusters or slightly diffuse cluster
clouds. This analysis is also supported by strong evaluation
metrics presented in Table II.

TABLE IV: Malware classification metrics on Malnet test data

Value AUC Precision Recall

Macro Avg. 0.99 0.99 0.99
Minimum 0.98 0.94 0.97

TABLE V: Malware classification metrics on Gigas test data
with holdout

Value AUC Precision Recall

Macro Avg. 0.95 0.97 0.91
Minimum 0.40 0.32 0.15

TABLE VI: Malware classification metrics on Malnet test data
with holdout

Value AUC Precision Recall

Macro Avg. 0.93 0.93 0.90
Minimum 0.31 0.19 0.25

B. Malware classification

Performance of the ST-PCN model on the classification task
showed consistently strong performance on complete test sets
of both Gigas and Malnet datasets with 19 and 13 classes
respectively. Macro and Lowest class-specific precision, recall,
and AUC scores are provided in Tables III and IV.

In order to test performance of the ST-PCN when a novel
class is present in training data, we re-ran the above experiment
with introducing a distinct holdout class in the embedding data
and training data for the classification model 5 times. Aggregate
results show good performance on both datasets but with a
noticeable drop in performance in tables V and VI. However,
overall metrics still indicate that the ST-PCN can generalize
with reasonably strong performance.

C. Zero day threat detection

The Zero Day Threat Detection task was carried out and
evaluated for 5 different holdouts per dataset independently.
This borrows directly from the methodology described in
literature previously, which showed robust experimental results
[13] [14]. Overall, the ST-PCN exhibited consistently strong
performance on the Gigas dataset. Performance of the model
on the Malnet dataset was also generally strong, but some
classes had lower performance. This is ostensibly due to the
significantly lower number of training examples per class in
the Malnet dataset compared to Gigas. All results are shown in
Table I in the AUC, Precision, and Recall columns. Furthermore,
we already see strong performance improvements compared
to recent work by [13] and [14] with no fine tuning and a
relatively simple classification model.

D. Closest attack type attribution (CATA)

The CATA for every holdout evaluated in the Zero Day
Threat Detection section is provided in Table I in the CATA
and Probability columns. For each holdout, the closest attack

2024 Workshop on Computing, Networking and Communications (CNC)

172

type in the training set is provided alongside a probability
score.

Analyzing some results above reveals that the embedding
space produced by the ST-PCN is, in fact, well-ordered by
behavior. For example, we see that the downstream model
indicated that the Nanocore holdout is closest to the Meterpreter
malware. External analysis indicates that both malware types
are Remote Access Trojans (RATs) and therefore exhibit similar
behavior. We see similar results for

• Bazaloader and SquirrelWaffle which are both ’malware
downloaders’ which perform the function of downloading
malware execution suites from remote sources.

• Astaroth and Hancitor which are also software packages
used to facilitate dropping or downloading of malware.

• Qakbot and Gozi which are malware strains used for
information stealing and keylogging as part of larger attack
campaigns.

We believe that enriching model results with CATA attri-
butions allow for enhanced model interpretability as well as
increased utility of model alerts to end users such as Threat
Hunters who could use model outputs for further investigation
in an network.

VII. CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this work, we have presented a novel, foundational
method for producing embeddings of network-agnostic malware
behavior for downstream use. In the proposed methodology, we
utilize graph-based embeddings of asset behavior as a feature
engineering step to a ST-PCN. We also demonstrate the strong
performance of the embedding model both independently and
using historically non-trivial tasks such as Zero Day Threat
Detection and CATA. We believe our results show the potential
to prevent cyber-operator fatigue and allow rapid iteration of
malware-specific machine learning techniques.

While the metrics on downstream tasks indicate strong
results, we hypothesize that more complex, task specific
architectures can achieve even better performance. The out
of the box methods used in our experiments primarily leverage
the well organized latent space to perform their respective tasks.
However, task specific architectures can further manipulate the
latent space and extract meaningful features in a way that
could not be done with our reported methodologies. In tasks
such as Zero Day Threat Detection, even a small increase in
performance can have a big impact.

Furthermore, we also hypothesize that incorporating multi-
dimensional or multi-modal raw feature data will further
strengthen the ST-PCN model. Data such as malware severity
scores or endpoint based logs can provide context about mal-
ware executions beyond network flow patterns. Incorporation of
this type of data could not only alleviate the strict dependence
on network flow data, but also introduce new downstream tasks
our model can generalize to.

A limitation to this work is the limited availability of malware
strains present in our training and validation data. Although we
made a concerted effort to capture a wide diversity of malware,
the set of known and unknown malware is larger than the data

available to us. Adding more strains has the potential to make
our embeddings more general but could impact performance
of the model. Consequently, further training and validation
on wider sets of malware data is an important next step in
the development of this framework. Some methods that future
work will explore to alleviate this concern include, but are not
limited to, training with data augmentation techniques such as
synthetic or simulated attack generation or using other few-shot
learning techniques such as Model Agnostic Meta-Learning
[28]. Furthermore, the authors also believe that online training
of the ST-PCN model run during deployment using Federated
Learning [29] could greatly combat the dearth of labelled
training data by learning attack patterns across deployments
while alleviating data privacy concerns.

Future work will aim to improve the ST-PCN architecture and
performance by incorporating multi-modal data and introducing
more complex downstream task models. In addition, we
will attempt to use more malware strains and investigate
how it affects our performance across downstream tasks. If
performance maintains or exceeds what is reported, it will
indicate that our model is a good candidate for generalizing
malware in cyber specific machine learning applications.

REFERENCES

[1] K. Sethi, R. Kumar, L. Sethi, P. Bera, and P. K. Patra, “A novel machine
learning based malware detection and classification framework,” in 2019
International Conference on Cyber Security and Protection of Digital
Services (Cyber Security), 2019, pp. 1–4.

[2] C.-D. Nguyen, N. H. Khoa, K. N.-D. Doan, and N. T. Cam, “Android
malware category and family classification using static analysis,” in 2023
International Conference on Information Networking (ICOIN), 2023, pp.
162–167.

[3] X. Ma, Q. Biao, W. Yang, and J. Jiang, “Using multi-features to reduce
false positive in malware classification,” in 2016 IEEE Information
Technology, Networking, Electronic and Automation Control Conference,
2016, pp. 361–365.

[4] O. Or-Meir, A. Cohen, Y. Elovici, L. Rokach, and N. Nissim, “Pay atten-
tion: Improving classification of pe malware using attention mechanisms
based on system call analysis,” in 2021 International Joint Conference
on Neural Networks (IJCNN), 2021, pp. 1–8.

[5] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane, “Graph-based
malware detection using dynamic analysis,” Journal in Computer Virology,
vol. 7, pp. 247–258, 11 2011.

[6] Y. Ding, X. Xia, S. Chen, and Y. Li, “A malware detection method
based on family behavior graph,” Computers and Security, vol. 73, pp.
73–86, 2018. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0167404817302146

[7] X. Hu, T.-c. Chieuh, and K. G. Shin, “Large-scale malware
indexing using function-call graphs,” 2009. [Online]. Available:
http://www-personal.umich.edu/~huxin/papers/xin_SMIT.pdf

[8] J. Kinable, “Malware classification based on call graph clustering,” 2010.
[Online]. Available: https://arxiv.org/pdf/1008.4365.pdf

[9] S. A. Roseline, A. D. Sasisri, S. Geetha, and C. Balasubramanian,
“Towards efficient malware detection and classification using multilayered
random forest ensemble technique,” in 2019 International Carnahan
Conference on Security Technology (ICCST), 2019, pp. 1–6.

[10] M. Alam, A. Akram, T. Saeed, and S. Arshad, “Deepmalware: A deep
learning based malware images classification,” in 2021 International
Conference on Cyber Warfare and Security (ICCWS), 2021, pp. 93–99.

[11] W. W. Lo, X. Yang, and Y. Wang, “An xception convolutional neural
network for malware classification with transfer learning,” in 2019
10th IFIP International Conference on New Technologies, Mobility and
Security (NTMS), 2019, pp. 1–5.

[12] X. Hu, T.-c. Chieuh, and K. G. Shin, “Large-scale malware
indexing using function-call graphs,” 2020. [Online]. Available:
http://www-personal.umich.edu/~huxin/papers/xin_SMIT.pdf

2024 Workshop on Computing, Networking and Communications (CNC)

173

[13] C. Redino, D. Nandakumar, R. Schiller, K. Choi, A. Rahman, E. Bowen,
A. Shaha, J. Nehila, and M. Weeks, “Zero day threat detection using graph
and flow based security telemetry,” in 2022 International Conference on
Computing, Communication, and Intelligent Systems (ICCCIS), 2022, pp.
655–662.

[14] D. Nandakumar, R. Schiller, C. Redino, K. Choi, A. Rahman, E. Bowen,
M. Vucovich, J. Nehila, M. Weeks, and A. Shaha, “Zero day threat
detection using metric learning autoencoders,” in 2022 21st IEEE Inter-
national Conference on Machine Learning and Applications (ICMLA),
2022, pp. 1318–1325.

[15] E. Downing, Y. Mirsky, K. Park, and W. Lee, “Deepreflect: Discovering
malicious functionality through binary reconstruction,” in Proceedings
of the 30th USENIX Security Symposium, ser. Proceedings of the 30th
USENIX Security Symposium. USENIX Association, Jan. 2021, pp.
3469–3486.

[16] Y. Shen and G. Stringhini, “Attack2vec: Leveraging temporal word
embeddings to understand the evolution of cyberattacks,” ser. SEC’19.
USA: USENIX Association, 2019, p. 905–921.

[17] N. Tavabi, P. Goyal, M. Almukaynizi, P. Shakarian, and K. Lerman,
“Darkembed: Exploit prediction with neural language models,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32,
no. 1, Apr. 2018. [Online]. Available: https://ojs.aaai.org/index.php/
AAAI/article/view/11428

[18] B. Malware Traffic Analysis, “Malware traffic analysis,” 2023. [Online].
Available: https://www.malware-traffic-analysis.net/

[19] H. L. Arash, D. G. Gerard, S. I. M. Mohammad, and A. G. Ali,
“Characterization of tor traffic using time based features,” in Proceedings
of the 3rd International Conference on Information Systems Security and
Privacy - ICISSP, INSTICC. SciTePress, 2017, pp. 253–262.

[20] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, “Learning
and classification of malware behavior,” 1970. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-540-70542-0_6#citeas

[21] R. Caruana, “Multitask learning,” Machine Learning, vol. 28, pp. 41–75,
1997. [Online]. Available: https://api.semanticscholar.org/CorpusID:
45998148

[22] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular
margin loss for deep face recognition,” in 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 4685–4694.

[23] A. G. P. Lobato, M. A. Lopez, I. J. Sanz, A. A. Cardenas, O. C.
M. B. Duarte, and G. Pujolle, “An adaptive real-time architecture for
zero-day threat detection,” in 2018 IEEE International Conference on
Communications (ICC), 2018, pp. 1–6.

[24] H. Hindy, R. Atkinson, C. Tachtatzis, J.-N. Colin, E. Bayne, and
X. Bellekens, “Utilising deep learning techniques for effective zero-day
attack detection,” Electronics, vol. 9, p. 1684, 10 2020.

[25] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula,
“Autoencoder-based feature learning for cyber security applications,” in
2017 International Joint Conference on Neural Networks (IJCNN), 2017,
pp. 3854–3861.

[26] Z. Zhang, Q. Liu, S. Qiu, S. Zhou, and C. Zhang, “Unknown attack
detection based on zero-shot learning,” IEEE Access, vol. 8, pp. 193 981–
193 991, 2020.

[27] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold
approximation and projection for dimension reduction,” Sep 2020.
[Online]. Available: https://arxiv.org/abs/1802.03426

[28] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International Conference on
Machine Learning, 2017. [Online]. Available: https://api.semanticscholar.
org/CorpusID:6719686

[29] M. Vucovich, A. K. Tarcar, P. Rebelo, N. R. Gade, R. Porwal,
A. Rahman, C. Redino, K. Choi, D. Nandakumar, R. Schiller, E. Bowen,
A. West, S. Bhattacharya, and B. Veeramani, “Anomaly detection
via federated learning,” ArXiv, vol. abs/2210.06614, 2022. [Online].
Available: https://api.semanticscholar.org/CorpusID:252872967

2024 Workshop on Computing, Networking and Communications (CNC)

174

