
Research on SSL/TLS Security Differences
Based on RFC Documents

1st Ziqiu Zheng
Department of Guangzhou Institute of Technology

Xidian University
Guangzhou, China

zhengzq@nipc.org.cn

2nd Xuejun Li
Xidian University

Xian, China
aluckydd@mail.xidian.edu.cn

3rd He Wang
Xidian University

Xian, China
hewang@xidian.edu.cn

4th Gaofei Wu
Xidian University

Xian, China
gfwu@xidian.edu.cn

5th *Yuqing Zhang
Xidian University

University of Chinese Academy of Sciences
Hainan University

zhangyq@nipc.org.cn

Abstract—The RFC standard document provides a de-
tailed description of how a system is designed and correctly
used to maintain security. The document itself may already
contain information for predicting the existence of certain
security issues. RFCdiff is a tool that uses NLP technol-
ogy to automatically extract rules from RFC documents,
identify differences and assess their compliance with RFC
specifications. Through evaluations of well-known TLS
implementation libraries such as OpenSSL, mbedTLS,
GnuTLS, and WolfSSL, total of 56 security issues due to
differences were identified. This research offers a valuable
reference for potential issues in the implementation of
SSL/TLS.

Index Terms—RFC, SSL/TLS, Difference testing.

I. INTRODUCTION

Transport Layer Security (TLS) and its predeces-
sor, Secure Sockets Layer (SSL), stand as widely
adopted security protocols on the Internet, ensuring
data confidentiality and integrity. The TLS protocol
finds extensive application in various domains such
as web browsing, email, instant messaging, transac-
tion payments and more. This protocol is not only
the security basis of the HTTPS [1] protocol, but also
the basis of Internet security communication.

This work was supported by the National Key Research and
Development Program(2023YFB3106400, 2023QY1202), the Na-
tional Natural Science Foundation of China (U1836210), and the
Key Research and Development Science and Technology of Hainan
Province (GHYF2022010).

TLS is crafted on the foundation of open stan-
dards. The RFC document issued by the Internet
Engineering Task Force (IETF) serves as the defini-
tive source, providing specifications and guidance
for the TLS protocol. This enables various vendors
and organizations to implement and support the
protocol. The IETF consistently releases new RFC
documents to enhance and update the TLS protocol,
encompass aspects like the encryption algorithm and
security extensions.

The RFC standard document meticulously delin-
eates the system’s design and proper usage for main-
taining security. Documentation frequently contains
explicit or implicit indications of potential secu-
rity risks, including warnings about destructive op-
erations conflicting with security requirements or
clues implying implementation errors, such as the
absence of descriptions regarding crucial security
checks.The document itself may already encompass
information for anticipating the presence of certain
security issues, it provides a method for discovering
security issues within protocols.

II. RELATED WORK

In recent years, some work has tried to use text
analysis technology to assist in the discovery of
various vulnerabilities in the security field. Chen
et al. [2] demonstrated that system documents con-
tain a significant number of vulnerability-related

2024 Workshop on Computing, Networking and Communications (CNC)

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 147

indicators. Through automated checks against the
security requirements of payment models and ser-
vices, they discovered 5 vulnerabilities that could
lead to payment evasion. Kakarla et al. [3] detected
RFC compliance errors in DNS name server im-
plementations by employing automated test gen-
eration. Their assessment of 8 open-source DNS
implementations resulted in the identification and
reporting of 30 new, unique errors. Shen et al. [4]

introduced the document analyzer Hdiff to extract
rules from RFC specifications of HTTP and uti-
lized differential testing to uncover semantic gap
attacks. This effort revealed 3 such attacks across 10
popular HTTP implementations, identifying a total
of 14 vulnerabilities and 29 affected server pairs.
Kim et al. [5] conducted a syntactic and semantic
comparison of extracted message structures with
those specified, revealing 9 error cases, including
5 functional errors and 4 memory-related errors
that violated implementation compliance with the
specification; Wang et al. [6] found deviations from
RFC specifications in email services, illustrating
that attackers could leverage these differences to
bypass security mechanisms and present deceptive
results to email clients. It can beseen from the above
related works that documents have been proven to
be used to discover security issues.

A. Challenge

RFC specifications are described in natural lan-
guage, which is an unstructured language and usu-
ally contains multiple layers of implicit semantics.
Extracting rules from informal language descrip-
tions such as RFC specifications is difficult. RFCdiff
designed a document analyzer module, which au-
tomatically extracts natural language specification
constraints and ASN.1 structure protocol rules from
RFC documents based on NLP technology.

Sentences in RFCs are often lengthy and com-
plex, and there are likely to be multiple parallel
clauses. RFCdiff analyzes the dependency tree of
complex sentences, and then identifies the parallel
structure in the sentence, so as to divide a complex
sentence into multiple simple clauses, and analyze
the textual implications of each simple clause sep-
arately to obtain the target sentence full semantics
more accurately.

Coreference Resolution. There may be some
phrases in RFC documents that refer to relationships
across sentences, such as pronouns such as ”it”,
definite papers such as ”the”, quantifiers such as
”one”, and sequence values. This paper implements
a forward search algorithm based on keyword fuzzy
matching, trying to search for referred semantic
phrases within three sentence distances , after find-
ing the referred sentence, combine the two sentences
into a complex sentence and then analyze the textual
entailment relationship.

The majority of semantic difference problems
entail logical safety issues, which typically do not
exhibit clear error signs, such as crashes or mem-
ory corruption errors, making accurate detection
challenging.Differences between specifications and
implementations will be marked as potential errors.
RFCdiff can locate the source of the vulnerability
and further determine whether the difference will
lead to security issues.

III. RFCDIFF DESIGN

During the initialization process, the form of the
ASN.1 structure, the keyword dictionary, and the
form of natural language expression are defined.
After the initialization is completed, the traditional
string regular matching method for obtaining rules
is improved, and NLP technology is proposed to
perform sentence segmentation, parsing dependency
trees, text implication, text annotation, and pronoun
resolution on RFC documents, which improves the
accuracy of obtaining rules. Statements correspond-
ing to keywords are extracted from the RFC for
analysis and experimentation, with the addition of
paragraph position markers, it can be further deter-
mined whether the difference conforms to the RFC
specification, and the root cause of the discovered
vulnerability can be quickly located.

A. Document rule extraction module

RFC rule extraction mainly uses the technology
of automatic keyword retrieval and NLP technology.
Through the automatic retrieval process, complex
and irregular natural language is generated into
sentences that can be recognized by computers. The
sentence generation rule set is processed by NLP
technology to obtain a rule data set that can be
recognized by the computer.

2024 Workshop on Computing, Networking and Communications (CNC)

148

In the RFC for TLS, rules are expressed in two
ways. Specifically, most rules are written in Natural
Language (NL), while some rules (in RFC 5280)
are written in Abstract Syntax Notation (ASN.1).

RFC protocol specifications usually contain a se-
ries of sentences to explain the specific requirements
of the specification for protocol implementation.
RFC (Request for Comments) 2119 stipulates that
rules must use the modal keyword to indicate the
level of requirement. Modal keywords include:

(1) absolute requirements or prohibitions of
specifications: MUST,REQUIRED, SHALL, MUST
NOT, and SHALL NOT;

(2) requirements or prohibitions with flexibility:
SHOULD, REC-OMMENDED, SHOULD NOT,
and NOT RECOMMENDED;

(3) truly optional items: MAY and OPTIONAL.
RFC 8174 emphasizes the use of uppercase key-
words to facilitate the extraction of rules from RFC.

Specifically, the data in the paper is formatted
and preprocessed first. The original RFC generally
includes header, footer, body, title data, etc, the
regular expression finds the line where the rele-
vant header and footer are located, removes the
header and footer, keeps only the sentence, and
breaks the obtained plain text to ” .” or ASN.1
to split it into sentences that can be recognized by
NLP techniques. Search for paragraphs containing
keywords, record the current sentence and related
chapter information, and save them into the nat-
ural language rule set. A large number of invalid
characters are included in the sentence segmentation
process, such as spaces and carriage returns, etc. All
the words in the line are aggregated into a word
set for word segmentation, and the form of the
ASN.1 structure, the keyword dictionary, and the
form of natural language expression are defined ,
to extract information from the statement. RFCdiff
uses dependency tree analysis and text entailment
techniques to identify the semantics of sentences,
and to infer the logical semantic relationship of
protocol specifications. RFCdiff identifies the key
information in the sentence through dependency tree
analysis technology, and fills it into the protocol
specification template to obtain the protocol speci-
fication instance. Finally, RFCdiff infers the textual
implications of sentences, and classifies sentences
described in natural language into protocol specifi-

cation seed assumptions. The design flow chart of
RFCdiff is shown in Figure 3.1.

RFCs Preprocessing

Rule Extraction Module

Divided into NL and
ASN.1 rules

According to
keyword extraction

rules

record rule location

Dependency tree
analysis populates
test case templates

Text entailment
infers synonymous

rules
Add to rule sets

Generate test samp
les for NL rules

Generate test samp
les of ASN.1 rules

Test on TLS
platform Difference Analysis

Differential Test Module

Collect responses
such as body and

action

Fig. 3.1 Design flowchart of RFCdiff

B. Document Difference Analysis Module
Protocol specifications extracted in the document

analysis module are translated into test cases with
assertions. If the protocol implementation violates
the assertion during the testing phase, the target
implementation is considered to violate the pro-
tocol RFC specification. RFCdiff defines a series
of status, such as valid, invalid, too long and role
action phrases such as close connection, report error
etc. The former is used to automatically generate
test cases, and the latter is used for subsequent
differential analysis. RFCdiff generates a series of
rule-compliant test cases, which are then tested with
mutated test data.

For the difference analysis component, RFCdiff
will use the same test case to test multiple SSL/TLS
implementation libraries, and find semantic differ-
ences by comparing the processing behavior of
the SSL/TLS implementation libraries. Specific pro-
cessing behaviors can be described using certificate
verification, warning feedback, debugging logs, etc.
In order to analyze and evaluate the test results
conveniently, this paper defines:

−−−−−−−−−→
DiffMetrics =<

id, degree, cond bd, cond val, assert(res bd, res
val) >.

Among them, id represents the unique ID of
each test, degree is the degree of compliance (such
as MUST, etc.), cond bd is the condition entity,
cond val is the entity variable, assert is the asser-
tion, res bd is the result entity, and res val is the
result variable. Under different test requirements,

2024 Workshop on Computing, Networking and Communications (CNC)

149

TABLE 4.1 Experiment data set

RFC Brief description Rules
5246 [7] The Transport Layer Security (TLS) Protocol Version 1.2 124

5280 [8] Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile 158

7366 [9] Specifies an Encrypt-then-MAC extension in response to CBC padding oracle attacks 5

7685 [10] A Transport Layer Security (TLS) ClientHello Padding Extension 2

8422 [11] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security
(TLS) Versions 1.2 and Earlier 34

8446 [12] The Transport Layer Security (TLS) Protocol Version 1.3 256

different
−−−−−−−−−→
DiffMetrics detection rules can be de-

fined to discover semantic differences. Traditional
difference testing techniques cannot locate the cause
of the difference, nor can it know which imple-
mentation has a problem. In contrast, RFCdiff can
determine whether a difference complies with the
RFC specification due to the extraction of RFC rule
information, and quickly locate the root cause of
the difference. But RFCdiff can test individual im-
plementations by checking whether

−−−−−−−−−→
DiffMetrics

matches assertions from the rules.

IV. EXPERIMENTS AND FINDINGS

A. Configuration

The experiment was tested on 4 popular
SSL/TLS implementations, and the following in-
dependent versions of the implementation library
were tested differently: OpenSSL 1.1.1, mbedSSL
2.25.0, GnuTLS 3.7.0 and Wolfssl 5.5.0 .Experi-
ments are performed on a virtual machine: Ubuntu
x64 v18.04-LTS configured with i7-4790 CPU
(3.60GHz) CPU core and 8 GB memory.

The data sets are RFC 5246, RFC 5280, RFC
7366, RFC 8422, RFC 8446, including 125,201
words and 2,116 valid sentences, a total of 492 NL
rules and 87 ASN.1 grammar rules were extracted,
and 358 test cases with assertions, and 2,627 test
data are generated based on the test case generator.
As shown in Table 4.1.

In the direction of SSL/TLS difference test-
ing, this paper will compare with previous work.
Frankencert [13] collected 243,246 certificates on-
line, and reassembled the certificate components to
generate 8,127,600 new certificates, and conducted
difference tests on 15 implementations of SSL/TLS,
and found 9 different differences. Blindness leads

to low efficiency in finding differences; guided by
code coverage, Mucert [14] used MCMC to mutate
1005 seed certificates, and found 27 different dif-
ferences in 9 implementations; Symcerts [15] con-
structed symbols and The certificate chain with
mixed specific values combined with optimization
in specific fields, for SSL/TLS, 48 inconsisten-
cies were found in 9 versions of 4 implementa-
tions.RFCdiff found a total of 56 inconsistencies
on 4 implementations, and 21 inconsistencies were
found on Openssl; 8 inconsistencies were found
on mbedSSL; 21 inconsistencies were found on
GnuTLS; and 3 inconsistencies were found on
Wolfssl. The comparison is shown in Figure 4.1.
Experiment result shown that the average number
of differences found by the RFCdiff proposed in
this paper is 14 in each SSL/TLS implementation,
which is higher than 1 of the Frankencert , 3 of the
Mucert , and 6 of the Symcerts.

9

27

48

56

9/15≈1
27/9=3

48/9≈6

56/4=14

0

10

20

30

40

50

60

Frankencert Mucert Symcerts RFCdiff

The number of differences found

Average number of discrepancies found per implementations

Fig. 4.1 The number of differences found by
SSL/TLS implementations

2024 Workshop on Computing, Networking and Communications (CNC)

150

B. Examples of Differential Security Questions
In openssl 1.1.1, RFC 5280 4.2.1.4 states that

”If this extension is critical, the path validation
software MUST be able to interpret this extension
(including the optional qualifier), or MUST reject
the certificate.” The experiment found that: the test
construct certificate ”certificate When the extension
of ”policies” is ”critical” (critical indicates whether
it is a critical extension), openssl mistakenly accepts
the certificate and successfully passes the certificate
chain verification, instead of ”MUST reject the
certificate” specified by RFC. Malicious CAs can
exploit this issue to deliberately assert invalid cer-
tificate policies in order to completely circumvent
policy checks on certificates.

In addition, in gnutls3.7.0, RFC5246 states that
”The end-entity certificate provided by the client
MUST contain a key that is compatible with cer-
tificate types; This message is only sent if the
server requests a certificate. If no suitable certificate
is available, the client MUST send a certificate
message containing no certificates.” The experiment
found that: DSS SIGN requires a DSA key, and the
client certificate contains an RSA key, expecting that
the client should respond with an empty certificate,
but the client generated a non-empty Certificate
message whose public key is not compatible with
the certificate types in the Certificate Request. The
server may abort the handshake when receiving the
wrong type of certificate from the client, and avoid
the handshake if the client sends an empty certificate
message. This problem can cause both parties to fail
to complete the handshake.

V. CONCLUSION

The work of this paper has certain transferability
and limitations. In terms of portability, the document
has been proven to be able to detect security issues
and has been used in payment services [2], DNS
[3] and HTTP [4]. In the future, it can be used in
other directions, such as the IoT protocol MQTT.
In terms of limitations, if the RFC document does
not provide a standardized description of the correct
use of operations that may cause security problems,
it will result in the inability to discover all secu-
rity vulnerabilities. In addition, in order to extend
RFCdiff to conduct new tests, need to manually
create Test templates for further manual analysis.

Although test template generation requires a lot of
work, this work only needs to be performed once,
and many test cases can be automatically generated
using parameterizable test templates. The resulting
test templates can be used to test different libraries
in different versions, so this work is still meaningful.

REFERENCES

[1] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee, “Hypertext transfer protocol–
http/1.1,” Tech. Rep., 1999.

[2] Y. Chen, L. Xing, Y. Qin, X. Liao, X. Wang, K. Chen, and
W. Zou, “Devils in the guidance: predicting logic vulnerabilities
in payment syndication services through automated documen-
tation analysis,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 747–764.

[3] S. K. R. Kakarla, R. Beckett, T. Millstein, and G. Varghese,
“{SCALE}: Automatically finding {RFC} compliance bugs in
{DNS} nameservers,” in 19th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 22), 2022,
pp. 307–323.

[4] K. Shen, J. Lu, Y. Yang, J. Chen, M. Zhang, H. Duan,
J. Zhang, and X. Zheng, “Hdiff: A semi-automatic framework
for discovering semantic gap attack in http implementations,”
in 2022 52nd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2022, pp.
1–13.

[5] E. Kim, D. Kim, C. Park, I. Yun, and Y. Kim, “Basespec:
Comparative analysis of baseband software and cellular speci-
fications for l3 protocols.” in NDSS, 2021.

[6] K. Shen, C. Wang, M. Guo, X. Zheng, C. Lu, B. Liu, Y. Zhao,
S. Hao, H. Duan, Q. Pan et al., “Weak links in authentication
chains: A large-scale analysis of email sender spoofing attacks,”
in 30th USENIX Security Symposium (USENIX Security 21),
2021, pp. 3201–3217.

[7] T. Dierks and E. Rescorla, “The transport layer security (tls)
protocol version 1.2,” Tech. Rep., 2008.

[8] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk, “Internet x. 509 public key infrastructure certificate
and certificate revocation list (crl) profile,” Tech. Rep., 2008.

[9] P. Gutmann, “Encrypt-then-mac for transport layer security (tls)
and datagram transport layer security (dtls),” Tech. Rep., 2014.

[10] A. Langley, “A transport layer security (tls) clienthello padding
extension,” Tech. Rep., 2015.

[11] J. Mattsson and D. Migault, “Ecdhe psk with aes-gcm and aes-
ccm cipher suites for tls 1.2 and dtls 1.2,” Tech. Rep., 2018.

[12] E. Rescorla, “The transport layer security (tls) protocol version
1.3,” Tech. Rep., 2018.

[13] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov,
“Using frankencerts for automated adversarial testing of cer-
tificate validation in ssl/tls implementations,” in 2014 IEEE
Symposium on Security and Privacy. IEEE, 2014, pp. 114–129.

[14] Y. Chen and Z. Su, “Guided differential testing of certificate val-
idation in ssl/tls implementations,” in Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering,
2015, pp. 793–804.

[15] S. Y. Chau, O. Chowdhury, E. Hoque, H. Ge, A. Kate, C. Nita-
Rotaru, and N. Li, “Symcerts: Practical symbolic execution
for exposing noncompliance in x. 509 certificate validation
implementations,” in 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, 2017, pp. 503–520.

2024 Workshop on Computing, Networking and Communications (CNC)

151

