2024 International Conference on Computing, Networking and Communications (ICNC): Social Computing and
Semantic Data Mining

A Measurement Investigation of
ERC-4337 Smart Contracts on Ethereum Blockchain

Zibin Lin
College of Electronics
and InformationEngineering
Shenzhen University
Shenzhen, China

Taotao Wang
College of Electronics
and InformationEngineering
Shenzhen University
Shenzhen, China

Email: linaacc9595@gmail.com Email: ttwang@szu.edu.cn Email:zhaochonghe_szu@ 163.com

Qing Yang
College of Electronics
and InformationEngineering
Shenzhen University
Shenzhen, China
Email:yang.qing@szu.edu.cn

Abstract—Account abstraction is a method that enhances
the flexibility and extensibility of blockchain accounts. For the
Ethereum blockchain, ERC-4337 is a proposal for implementing
account abstraction without modifying the logic of the underlying
consensus protocol. However, due to its complete implementation
through smart contracts, the transaction costs associated with
ERC-4337 remain expensive compared to regular Externally
Owned Account (EOA) transactions. To evaluate the usage costs
of ERC-4337, we introduce two innovative algorithms: the ERC-
4337 Classification Algorithm and the ERC-4337 Gas Measure-
ment Algorithm. The Classification Algorithm categorizes histor-
ical ERC-4337 transactions and logs, providing valuable insights
into their nature and characteristics. The Gas Measurement
Algorithm calculates the actual gas consumption for users and the
incentives paid to bundlers that package the transactions of ERC-
4337 (UserOperation) into an Ethereum standard transaction. We
have implemented these algorithms within the official ERC-4337
deployment on the Ethereum network. Our findings indicate that
creating an ERC-4337 account costs 381,489 gas, allowing only
78 accounts per block. Furthermore, a basic ERC-4337 transfer
consumes 92,901 gas, which is four times the gas cost of an EOA
transfer. These results confirm that high gas fees continue to
pose a significant obstacle to the widespread adoption of ERC-
4337. Moreover, our proposed algorithms can serve as a valuable
toolset for evaluating the usage costs associated with different
account abstraction proposals on Ethereum to contribute to the
assessment and improvement of account abstraction mechanisms.

Index Terms—Ethereum, Account Abstraction, ERC-4337,
Smart Contract, Gas

I. INTRODUCTION
With the rapid development of blockchain technology,

Ethereum has become one of the most active public

The research is supported in part by the National Natural Sci-
ence Foundation of China under grant 62171291, and in part by the
Shenzhen Key Research Project under grants JSGG20220831095603007,
JCYJ20220818100810023, JCYJ20220818101609021.

979-8-3503-7099-7/24/$31.00 ©2024 IEEE

Chonghe Zhao
College of Electronics
and InformationEngineering
Shenzhen University
Shenzhen, China

Shengli Zhang
College of Electronics
and InformationEngineering
Shenzhen University
Shenzhen, China
Email:zsl@szu.edu.cn

Long Shi

College of Electronics and InformationEngineering
Shenzhen University School of Electronic

and Optical Engineering

Nanjing University of Science and Technology Jiangsu, China
Email:slong1007 @gmail.com

blockchains [1]. Its built-in account system, consisting of
Externally Owned Accounts (EOAs) and Contract Accounts
(CAs), provides basic functionality for users to transfer funds
and interact with smart contracts [2]. However, the Ethereum
account system has limitations in private key recovery, com-
patibility with signature schemes, and supporting advanced
account features [3].

To overcome these limitations, the concept of account
abstraction has been proposed [4]. Account abstraction aims to
enhance the flexibility and extensibility of blockchain accounts
by decoupling core components like signatures, permission
control, and gas payment from accounts. This allows accounts
to be customized for particular use cases while still being
interoperable with the underlying blockchain.

Over the years, numerous account abstraction proposals
have emerged [S5]; however, many of them necessitate mod-
ifications to the logic of the Ethereum consensus protocol,
making their implementation challenging. In 2021, a notable
contribution to this field was made by ERC-4337 [4], intro-
ducing a novel architectural framework that achieves account
abstraction solely through smart contracts at the application
layer of the Ethereum platform. This distinctive approach
allows ERC-4337 to seamlessly integrate with pre-existing
Ethereum networks, offering a practical solution for account
abstraction without necessitating alterations to the logic of the
underlying consensus protocol.

While ERC-4337 has been successfully deployed on Ethere-
um networks, it is important to note that its transaction costs
continue to present a significant disparity compared to direct
Externally Owned Account (EOA) transactions. Addressing
and mitigating the usage costs associated with ERC-4337
represent key research directions for future investigations. In
this paper, we propose two innovative algorithms, namely

1164

2024 International Conference on Computing, Networking and Communications (ICNC): Social Computing and
Semantic Data Mining

the ERC-4337 Classification Algorithm and the ERC-4337
Gas Measurement Algorithm, to quantitatively assess these
usage costs and identify potential areas for enhancement.
Specifically, the ERC-4337 Classification Algorithm enables
the classification of historical ERC-4337 transactions, while
the ERC-4337 Gas Measurement Algorithm facilitates the
analysis of gas consumption on Ethereum networks.

To validate the effectiveness of the proposed algorithms,
we conducted a series of experiments on diverse Ethereum
networks spanning the duration from February 5 to June 2,
2023. The experimental findings unequivocally demonstrate
the pronounced nature of the usage costs associated with ERC-
4337. For instance, the creation of an ERC-4337 account
incurs a substantial gas cost of 381,489 units, thereby limiting
the creation of only 78 accounts per block. Furthermore, a
basic ERC-4337 transfer necessitates a gas expenditure of
92,901 units, which is approximately four times the cost of
an EOA transfer. These results underscore the considerable
disparity in usage costs between ERC-4337 and traditional
EOA transactions.

The rest of the paper is organized as follows. Section II
provides background on Ethereum accounts and account ab-
straction. Section III gives an overview of ERC-4337. Section
IV presents our proposed measurement algorithms. Section V
evaluates the algorithms on the Ethereum networks. Section
VI concludes the paper.

II. BACKGROUND

This section presents the background related to ERC-
4337, including the Ethereum account system, blockchain
wallets, and the concept and history of account abstraction
in Ethereum.

A. Ethereum Account System

In Ethereum, an account system is adapted to support
the functionalities of transferring crypto assets (Ethers) and
invoking smart contracts for users [6]. There are two main
types of accounts in Ethereum: Externally Owned Account
(EOA) and Contract Account (CA) [7]. The features and
functions of EOA and CA are described as follows.

EOA: EOAs can initiate transactions. An EOA can send
transactions to 1) transfer Ethers to another EOA/CA; 2)
trigger the logical computations of the smart contract codes
which are stored under a CA. Each EOA consists of a public
and private key pair and an account address. The address of
the account is like a bank number to receive Ethers, the private
key serves as a password to control account ownership to sign
transactions, and the public key is used to verify the signatures
by the private key.

CA: CAs cannot initiate transactions because each CA is
not associated with a private key. But CAs store smart contract
codes and data to support logical computations, and they can
be invoked by EOAs to execute and update the code and data
of the smart contract. Also, CAs support the message storage
and transfer of Ethers or other tokens.

Although both EOAs and CAs enable users to participate
in the Ethereum network, they still have certain limitations.
First, EOA key management poses challenges for users. As
EOAs rely on private keys to initiate transactions, the loss
of the private key irrevocably prevents further usage of the
account’s assets [8]. Second, the Signature Algorithm of
EOA is restricted to ECDSA. However, some decentralized
applications may desire to utilize alternative signature schemes
beyond ECDSA [9].Finally, EOAs lack support for advanced
transaction functionalities such as batching transactions. Sim-
ilarly, the logic of consensus protocol constraints prevents
CAs from autonomously initiating token transfers or smart
contract executions. Collectively, these factors motivate the
development of account abstraction techniques to enhance
the flexibility and extensibility of blockchain accounts on
Ethereum.

B. Account Abstraction

To address the inherent constraints of Ethereum’s account
system, account abstraction has emerged as an effective
technique to enhance the flexibility and extensibility of the
account system. Account abstraction entails consolidating the
two primary account types in Ethereum, Externally Owned
Accounts (EOAs) and Contract Accounts (CAs), into unified
Contract Accounts with the ability to initiate transactions. This
innovation can transform the integrated process of transaction
verification and execution into modular components that each
can be adjusted according to user needs. Account abstraction
is typically characterized by three key properties:

1. Cryptographic Abstraction — The property of support-
ing multiple other signature schemes besides the Elliptic Curve
Digital Signature Algorithm implemented by the current EVM
for EOAs.

2. Functional Abstraction - The property of encourag-
ing users to achieve diverse and complex transaction func-
tionalities according to their customized requirements.

3. Gas Abstraction — The property to enable alternative
gas fee payment methods, such as to pay it by other accounts
or to pay it in ERC-20 tokens.

Driven by the demand for these properties, several account
abstraction proposals emerged shortly after the official launch
of Ethereum’s Mainnet in 2015 [10]. These proposals fall into
three primary categories according to their technical features:

1. Transaction initiator abstraction (EIP-101, EIP-2938,
EIP-3074, EIP-5003) - Account abstraction via transaction
initiation protocol design.

2. Transaction structure abstraction (EIP-86, EIP-2718) -
Account abstraction through novel transaction data structuring.

3. Transaction process abstraction (EIP-1271, EIP-4337,
EIP-5189) - Account abstraction through the design of new
processing in transaction packaging and execution.

We summarize these proposals of account abstraction in
Table I. In the account abstraction proposals introduced from
2015 to 2021, EIP-101, EIP-86, EIP-2938, and EIP-3074 all
required relatively substantial modifications to the Ethereum
consensus layer, leading to some incompatibility and security

1165

2024 International Conference on Computing, Networking and Communications (ICNC): Social Computing and
Semantic Data Mining

TABLE I
COLLECTION OF ACCOUNT ABSTRACTION PROPOSAL.

EIP TITLE ABSTRACTION | CLASSIFICATION OVERVIEW AUTHOR STATE | CREATION
EIP-101 Serenity Currency and Crypto Abstraction consensus layer ‘The account system is abstra re unified Vitalik Buterin Stagnant | 2015/11/15
EIP-86 Abstraction of transaction origin and signature consensus layer Propose a new transaction type. allowing CAs to pay gas as a top-level account Vitalik Buterin Stagnant | 2017/02/10

ERC-1271 | Standard Signature Validation Method for Contracts 2 Provides a set of standards to verify whether the signature of the contract 2 enabling CAs to perform signature verification Francisco Giordano, Matt Condon Final | 2018/07/25
EIP-2718 Typed Transaction Envelope action s consensus layer Proposed that when creating new transaction types, specific encodin need o be backward compatible Micah Zoltu Final | 2020/06/13
EIP-2938 Account Abstraction transaction initiator | _consensus layer Upgrade the CAs o a top-level account, allowing the CAs to initiate transactions Vitalik Buterin, Ansgar Dietrichs Stagnant | 2020/09/04
EIP-3074 AUTH and AUTHCALL opeodes transaction initiator | _consensus layer Allow EOAs to delegate control to smart contracts so that EOAs have smart contract functions Sam Wilson, Ansgar Dietrichs Review | 2020/10/15
ERC-4337 Account Abstraction Using Alt Mempool transaction process | _application layer Replicate the f y of the transaction mempool in a higher-level system Vitalik Buterin, Yoay Weiss, Dror Tirosh | Draft | 2021/0929
EIP-5003 Insert Code into EOA with AUTHUSURP. ransaction initiator | consensus layer Based on EIP-3074, the ability to deploy code to EOA, thereby removing the security problem of private key control Dan Finlay, Sam Wilson Stagnant | 202203126
ERC-5189 Account Abstraction via Endorsed Operations transaction process | _application layer In the mechanism of ERC4337, the role of Endorsed is added to assume the query responsibility of Bundler to prevent DOS attacks Agustin Aguilar, Philippe Castonguay | Stagnant | 202210629

issues. Therefore, they are currently stagnant or still under
review. ERC-1271 and EIP-2718 have both been adopted
and implemented. The standard interface of the smart con-
tract signature verification scheme proposed in ERC-1271
was eventually adopted by the community. This signature
verification standard interface also serves as an important
constituting component of ERC-4337. EIP-2718 defines a
standardized transaction envelope format that enables new
transaction types to be added without breaking the backward
compatibility. This mechanism establishes the foundation for
the transaction-type extensions in the future to achieve the
purpose of account abstraction.

In September 2021, ERC-4337 as a breakthrough for ac-
count abstraction was proposed by Yoav Weiss, Dror Tirosh,
and V. Buterin [4]. Uniquely, ERC-4337 achieves full account
abstraction solely through smart contracts, completely avoid-
ing the modifications to the logic of the underlying consensus
protocol. This advantage allows ERC-4337 to successfully
deploy on Ethereum’s Miannet and Testnet, becoming the first
real-implemented abstracted account system for Ethereum.

After ERC-4337, EIP-5003 and ERC-5189 were proposed.
EIP-5003 introduced a new opcode AUTHUSURP. Through
this opcode, users can deploy smart contract code at their EOA,
which will enable an EOA to hold a smart contract. ERC-5189
aimed to incorporate endorser smart contracts into ERC-4337
for verifying the validity of transactions and enhancing the
security of ERC-4337.

III. DESCRIPTION OF ERC-4337

Among the various account abstraction proposals, ERC-
4337 stands out as the compelete solution successfully de-
ployed in the real-world Ethereum networks. We provide a
comprehensive technical overview about ERC-4337 in this
section.

ERC-4337 redefines the data structure, the validation and
the packaging for the user-issued transactions on top of the
underlying mechanism of Ethereum. First, users can construct
a data structure called UserOperation and submit it to the
UserOperation mempool. The UserOperation is a transaction
data object defined by ERC-4337, containing transaction infor-
mation including signature and calldata fields. The signature
field can be filled with the validation data based on some
predefined validation rules, and is no longer limited to using
ECDSA . The calldata field can specify the Account Con-
tract function that serves as the execution rule defined by the
user. In this way, the Account Contract function included in
the calldata can be invoked through the UserOperation. The

Y
Aggregators
A J

Y /' N e e Account N
| UserOperation ——» Bundlers —> EntryPoint ——»|

N N) 4 P, ___ Contract)

4 N\

Paymasters ‘

J

Fig. 1. All components of ERC-4337. EntryPoint acts as an intermediary to
receive UserOperations submitted by Bundlers, and interact with Aggregators,
Account Contracts, and Paymaser.

UserOperation mempool replicates the functionality of the
Ethereum transaction mempool (where EOA transactions are
stored and sorted) at a higher abstraction level to store and sort
UserOperations. Once UserOperations arrive in the UserOper-
ation mempool that is maintained by a node called bundler,
the bundler will verify each UserOperation to make sure it
can be successfully executed by EVM. Finally, the bundler
packages a batch of valid UserOperations into a consolidated
”bundle transaction”, which will be signed using the EOA
private key of the bundler and sent to the Ethereum network for
including the bundle transaction onto the blockchain. The Gas
fees of the bundle transaction are paid upfront by the bundler,
who will subsequently receive compensation from the fees
contained in the enclosed UserOperations.

As shown in Fig. 1, the ERC-4337 framework consists of
the following core components: the UserOperation, Bundler,
EntryPoint, Account Contract, Paymaster, and Aggregator.

UserOperation: This component is a structure that encapsu-
lates transaction information such as ”sender”, ”to”, ’calldata”,
”callGasLimit”, “maxFeePerGas”, “maxPriorityFee”, “signa-
ture”, “nonce”, “payMasterAndData” and “initCode”.

Bundler: These are entities that conduct off-chain verifi-
cation of UserOperations from the mempool and package the
valid UserOperations to construct an EOA transaction.

EntryPoint: This is a singleton smart contract serviced as
an entrance on blockchain for ERC-4337. The core function
within this contract is handleOps. This function allows the En-
tryPoint contract to monitor the verification and execution
of UserOperations.

Account Contract: This is a user-owned smart contract that
upholds the cryptocurrency assert, signature validation rule,
contract data and execution rule of the account.

Paymaster: These are optional smart contracts employed to
sponsor transaction gas fees or facilitate token payment of gas
fees for the UserOperations.

1166

2024 International Conference on Computing, Networking and Communications (ICNC): Social Computing and
Semantic Data Mining

Aggregator: These are auxiliary smart contracts that are
trusted by accounts to validate aggregate signatures from
multiple UserOperations.

As shown in Fig. 2, ERC-4337 coordinates the interaction
of its core components through the following workflow:

1. The user generates and submits a UserOperation to the
Bundler’s mempool.

2. The Bundler performs off-chain verification on the
UserOperation. If the UserOperation is valid, it will be pack-
aged into an EOA transaction to invoke EntryPoint contract.

3. After the EOA transaction that contains the UserOpera-
tion is packaged on the blockchain by the miners to invoke
the EntryPoint contract, the EntryPoint Contract will call
the validateUserOp function of the Account Contract to verify
the signature and pay the gas fee.

4. After the signature of the UserOperation has been ver-
ified, the EntryPoint contract calls the Account Contract to
execute the function defined in callData.

5. Finally, the EntryPoint contract transfers gas fees and
incentives to the Bundler’s EOAs as compensation.

5 ®
X <“— EntryPoint Contract
U Bundler’ s EOA —
@ Verify and pay phase Execute op and refund phase

q

UserOperation

Fig. 2. The core workflow of ERC-4337. For clarity we do not show the
interactions with PayMasters and Aggregators.

IV. MEASUREMENT INVESTIGATION

Quantifying the usage costs in its real-world deployments
is pivotal for evaluating the viability of ERC-4337. Despite
there being some ERC-4337 smart contacts deployed on
Ethereum, the real-world costs associated with ERC-4337
remains unclear. To quantify these costs, we propose two novel
measurement algorithms - the ERC-4337 Classification Algo-
rithm and the ERC-4337 Gas Measurement Algorithm. The
Classification Algorithm provides a detailed categorization
of historical ERC-4337 transactions. The Gas Measurement
Algorithm computes the actual gas expenditures for users and
incentives paid to bundlers for packaging UserOperations into
bundle transactions.

A. ERC-4337 Classification Algorithm

The Classification Algorithm extracts historical bundled
transactions that invoked the handleOps function of the En-
tryPoint contract from Ethereum transactions. Furthermore, it
categorizes these transactions based on their log topic.

In Ethereum, transactions will generate transaction logs
after invoking a special type of functions called event [11]
in smart contracts. Using the parsing function in web3.js [12],
we can extract three fields from a transaction log: log.txhash,

log.topic0, and log.data [11]: 1) log.txhash represents the hash
of the transaction; 2) log.topicO records the identifier of the
event; 3) log.data is the part of the output of the event,
containing information of the parameters of the event.

Within the EntryPoint contract, various events are trig-
gered upon the completion of tasks. When the handleOps
function processes a UserOperation, it emits an event called
UserOperationEvent after the UserOperation has been han-
dled. For UserOperations that include instructions to create
a new Account Contract, the EntryPoint contract emits an
event named AccountDeployed. Additionally, when EntryPoint
receives a transfer from an Account Contract, it emits an
event named Deposited. The funds received are then utilized
to cover the gas required for executing the UserOperation
and incentivizing the bundler. The names of these events are
recorded in the log.fopicO field. The Classification Algorithm
utilizes the information in log.topicO to categorize transactions
that include UserOperations into multiple types.

The inputs of the algorithm consist of the address of the
EntryPoint contract and historical transaction data from the
Ethereum network. The algorithm produces two arrays that
classify transactions and logs based on log.fopicO identifier
codes. These identifiers adhere to ERC-4337 definitions and
categorize transactions and logs into various types such as
UserOperationEvent, AccountDeployed, Deposited, and so on.

The Classification Algorithm calculates the selector of the
handleOps function and assign it to variable handleOps, which
is derived from the first four bytes of the hash of its func-
tion name and parameters. When executing smart contracts
on the Ethereum network, designated function and its input
parameters must be declared in the transaction’s data field
[13]. The function selector is stored in the first four bytes of
the transaction’s data field. By comparing the first four bytes
of the data field in historical transactions with the computed
selector of handleOps, the algorithm can filter out transactions
that invoke the handleOps function of the EntryPoint contract
within the collection of historical transactions.

In the subsequent processing stage, the transaction #x in T
the inputed set of historical Ethereum transactions, needs to
satisfy two conditions in order to be retained. Firstly, tx.to
must be equal to the address of the EntryPoint contract. For
Ethereum transactions that invoke smart contracts, tx.fo field
stores the address of the called smart contract. Secondly, the
first four bytes of the transaction’s data field, tx.data, must
equal the variable handleOps. By applying these two filtering
conditions, the algorithm ensures that #x invokes the handleOps
function of the EntryPoint contract.

Based on the aforementioned conditions, the algorithm
filters out the logs generated during the execution of
the zx from the Ethereum transaction history logs. Ulti-
mately, the algorithm organizes the extracted transactions
and their corresponding logs into multiple arrays denoted
as Tx[ldentifier]{tl, 12,...} and Log[Identifier]{l1, I2,...}. The
Identifier corresponds to the log.topicO value, enabling the
categorical storage of transactions and logs into categories
such as UserOperationEvent, AccountDeployed, Deposited,

1167

2024 International Conference on Computing, Networking and Communications (ICNC): Social Computing and
Semantic Data Mining

and others. Algorithm 1 summarizes the ERC Classification
Algorithm.

Algorithm 1 ERC-4337 Classification Algorithm
tn}, Logs L =

Require: Transactions T = {t1,ta,...,
{li,l2,..., I}, EP_address
1: handleOps < hash(handleOps(userOperation]], address))
2: for i <+~ 1 to m do
3 if t;.to == EP_address then
4 txType < ti.data[l : 4]
5 if txType == handleOps|[1 : 4] then
6: Select I; from LI where [;.tx_hash == t;.hash
. {
8 eventTopic < I;.topicO
9 Tz [eventTopicl{...} < t;

Log[eventTopicl{...} «+ I;
11 }
12: end if
13: end if
14: end for

15: return Tz[Identifier]{...}, Log[Identifier|{...}

B. ERC-4337 Gas Measurement algorithm

Building upon the Classification Algorithm’s output, the
Gas Measurement Algorithm assesses usage costs for specific
UserOperation types essential for task completion.

We can select the transactions Tx[Identifier]{tl, 12,...} and
logs Log[UserOperationEvent J{i1, 12,..} from the arrays
outputted by the Classification Algorithm, based on the target
Identifier. These two arrays, along with a set of senders
S_addresses, serve as inputs to the algorithm. By filtering
the target set of senders, we can obtain the transactions that
include UserOperation initiated by a certain type of Account
Contract. This allows for a precise calculation of the costs
associated with UserOperation for a certain type of Account
Contract.

First, the Gas Measurement Algorithm calculates the min-
imum length of the data field [13]of all transactions in
Tx[Identifier]{tl, 12,...}, and assigns the value of the length
to variable /en. This minimum length helps us identify trans-
actions that only contain a single UserOperation and where the
UserOperation triggers a single functionality, such as account
creation or ETH transfers. We refer to these transactions as
“transactions with a single and simple UserOperation.” The
reason behind this approach is that for transactions, the larger
the data field is, the more UserOperations and tasks the
transaction is expected to perform. Tx[Identifier]{tl, 12,...}
records all the transactions that have accomplished the target
tasks, and by filtering out the transaction with the minimum
length of field, we can obtain a set of transactions with single
and simple UserOperation.

For the transaction fx that belongs to the inputed set of
transactions Tx/[Identifier]{tl, 12,...}, the algorithm will extract
bytes 166 to 185 from the and assign them to the parameter
”Sender”. Due to the nature of the handleOps function, the

UserOperation serves as a parameter and has a fixed position
within the . Therefore, the parameter “sender” within the
UserOperation structure also has a fixed position within The
position of ”sender” is located in the byte segment 166 to 185
of the . Subsequently, the algorithm will check whether the
parameter “sender” exists in the target set S_addresses. If the
answer is not, the algorithm will choose the next transaction
in Tx[Identifier]{tl, 12,...} and repeat the previous steps.

When the processed transaction meets the requirement for
the sender of UserOperation, it must also satisfy another
requirement, the length of should be equal to the minimum
length, ensuring that #x is a transaction with single and simple
UserOperation. Once these conditions are met, the algorithm
will search for a log in Log[UserOperationEventj{l1, 12,...}
whose log.txhash is the same as tx.hash. This makes sure
that the log is generated by fx. Because the log belonging
to Log[UserOperationEvent]{l1, 12,...}, they are emitted by
the event UserOperationEvent and have a fixed output data
format. The segment of log.data from 251 to 257 bytes records
the actual gas consumed by the UserOperation, including the
incentive paid to the bundler, referred to as actualGas. Addi-
tionally, transaction’s gas_used field records the gas consumed
by the transaction excution in EVM. By subtracting actualGas
from tx.gas_used, we can obtain the incentive paid to the
bundler. Finally, to obtain a more accurate value, we sum up
and average every actualGas and tx.gas_used, and then output
the final result. Algorithm 2 summarizes the ERC-4337 Gas
Measure Algorithm.

Algorithm 2 ERC-4337 Gas Measure Algorithm

Require: T'z[Identifier|{txy,txa,... tTpn},
1: Log[UseTOpemtzonEvent]{l091, loga, ...

. S_address = {ay,az,...,a}
:len min{length(tz.data)}
. actualGasSum + 0
TrGasSum < 0
for i < 1 ton do

Sender < tx;.data[166 : 185]

if Sender € S_address then

if length(tx;.data) == len then
Select log From Log

{

? lOgm}’

R A A A S o

— = =
N2

actualGas < log.data[251 : 257]
actualGasSum+- = actualGas
TxGasSum|+ = tx.gas_used

— =
=

15: }

16: end if

17: end if

18: end for
gasUsed <

19: incentive < actualGasSum —TxGasSum

n
20: return gasUsed, incentive

actualGasSum

1168

2024 International Conference on Computing, Networking and Communications (ICNC): Social Computing and
Semantic Data Mining

V. EXPERIMENTAL RESULTS

With the key purposes of demonstrating the validity of the
algorithms, and furnishing developers with empirical insights
into real-world ERC-4337 costs, we conducted an experiment
which exploited the Classification Algorithm and the Gas
Measurement Algorithm to process the historical transactions
of the Ethereum network. This experiment the with ERC-
4337 network activity and gas consumption across the targeted
Account Contract types.

A. Activity of ERC-4337 in different Ethereum networks

Firstly, this experiment utilized the ERC-4337 Classification
Algorithm to extract and categorize the historical transactions
and logs from the official ERC-4337 project that deployed by
the Ethereum Foundation [4]. Notably, the historical transac-
tions data entered is as of June 2, 2023, at 13:12. Activity
metrics are showed in TABLE II across the Mainnet and
Goerli Testnet which helps developers to test and validate
the functionality and performance of Ethereum applications:

TABLE I
ACTIVE DATA OF ERC-4337 ON ETHEREUM NETWORKS.

Network | Total Account Deployed | Total UserOperation Handled
Main Net 10 86

Goerli 1,255 6,519

Gas Used Per Day | Account Active Per Day
434,902 1
21,125,791 21

As shown in TABLE II, during the specified timeframe,
the official ERC-4337 project deployed a total of 10 Account
Contracts on Mainnet and handled 86 UserOperations. On
average, only one Account Contract remained active per day as
well as consuming 434,902 gas. In contrast, on Goerli Testnet,
1,255 Account Contracts were deployed and 6,519 UserOper-
ations were handled. On average, 21 Account Contracts were
active per day, with a daily gas consumption of 21,125,791.
This comparison demonstrates that the ERC-4337 project, offi-
cially deployed on Goerli Testnet, exhibits greater activity and
generates a larger volume of data compared to the Mainnet.
The accuracy of the ERC-4337 Gas Measurement algorithm’s
measurement results is directly proportional to the data size.
Consequently, to ensure the reliability of the measurement
results presented in this paper, only the measurement results
for the project deployed on the Goerli Testnet are presented
in the subsequent sections.

B. ERC-4337 in Goerli

The activity of the official ERC-4337 on Goerli Testnet
is characterized through the following figures, which exhibit
insights into inherent correlations between user behaviors and
gas usage. Furthermore, we figure out the gas cost for kinds
of UserOperation by the Gas Measurement Algorithm, which
were showed in the TABLE III .

Remarkable synchrony emerges across key activity indi-
cators. Fig. 3 illustrates the daily count of UserOperations
included in the blocks on the Goerli network; Fig. 4 presents
the daily count of newly deployed account contracts in the
network; Fig. 5 displays the daily count of active account
contracts in the network, which initiated UserOperations to the

B UserOperation

> Date o~ R

N N N3 o

~ o o Y @ o
o o o o P

B BN 5 BN >

Fig. 3. The number of UserOperations handled on Goerli.

60 4
B AccountDeployed

Fig. 4. The number of ERC-4337 Accounts deployed on Goerli.

network; Fig. 6 depicts the daily gas consumption for process-
ing UserOperations on the network. As depicted in Fig. 3, the
amount of daily UserOperations handled reveals pronounced
fluctuating patterns, with periodic peaks and troughs. The
amount of daily Account deployment shown in Fig. 4, daily
active accounts shown in Fig. 5, and daily gas spent shown in
Fig. 6 similarly display synchronized periodic variations, with
collective high activity from mid-March to mid-April.

By scrutinizing synchronized fluctuations across activity in-
dicators, we can observe evident user disengagement following
the completion of the Account Contract deployment. This
is deduced from 1) As shown in Fig. 3 and Fig. 4, in the
early stages, the number of Account Contracts deployment and
the number of handled UserOperations showed synchronous
fluctuations. However, in the later stage, as a substantial
number of Account Contracts were already present on the
network, the daily number of processed UserOperations did
not exhibit a significant increase compared to the previous
period; 2) As shown in Fig. 5, the number of active accounts
per day is actually at a lower level after the peak period of
account deployment; and 3) As shown in Fig. 6, gas spent
perday remains at a relatively low level in the later stages.

Fundamentally, as shown at the TABLE III, the high
UserOperation costs are likely the main reason for Account
Contracts inactivity after deployment, as it hinders frequent
usage.

The experiment further calculated the costs of kinds of
UserOperation. There are various types of Account Contracts.

1169

2024 International Conference on Computing, Networking and Communications (ICNC): Social Computing and
Semantic Data Mining

s B ActiveAccount

Fig. 5. The number of ERC-4337 Accounts active on Goerli.

2. 50E+08
I GasSpent

2. 00E+08

1. 50E+08

Amount

1. 00E+08

5. 00E+07

0. 00E+00

Fig. 6. The quantity of Gas spent for ERC-4337 on Goerli.

For the experiment, the chosen subject was the Account
Contract type known as SimpleAccount. SimpleAccount ex-
emplifies a minimal Account Contract implemented in ERC-
4337 using ECDSA for signature verification. We collected
a set of addresses for SimpleAccount Contracts and used
this set as the input parameter S_addresses for the ERC-
4337 Gas Measurement Algorithm. Consequently, TABLE III
summarizes measured data from the ERC-4337 Gas Measure-
ment Algorithm, providing gas costs data for most kinds of
UserOperations.

TABLE III
GAS CONSUMPTION OF USEROPERATION.
Type Actual Gas Used | Transaction Gas Use | Incentive (Gas) | Amount In One Block
Account Creation 381489 378204 3285 78.66
Transfer With Deposit 92901 89967 2934 322.92
Transfer Without Deposit 83984 81315 2669 357.24
EOA Account Creation 0 0 00

EOA Simple Transfer 21000 21000 1428.60

The derived measurements demonstrate that the gas costs
of the ERC-4337 UserOperations are quite high compared
to the transactions of native EOAs. Creating an EOA is
cost-free, only necessitating off-chain generation of a public-
private key pair and deriving the account address from the
public key. In contrast, creating an ERC-4337 SimpleAccount
through UserOperation consumes a tremendous 381,489 gas
units. Consequently, within the current per-block gas limitt
[14], at most only 78 abstract accounts can be created in one
block. Similarly, a simple transfer (only perform Ether transfer

without calling any contract) UserOperation of SimpleAccount
expends 92,901gas, approximately quadruple the cost of a
simple transfer transaction of EOA. Evidently, the high gas
fees present a significant barrier to widespread adoption of
ERC-4337.

VI. CONCLUSION

ERC-4337 is the one of account abstraction proposals for
Ethereum, which overcomes limitations of the native account
system without modifications to the underlying consensus pro-
tocol logic. However, UserOperations costs remain a pivotal
factor influencing the broader adoption of ERC-4337.

In this paper, we have introduced two novel algorithms
providing a comprehensive toolset to compute the on-chain gas
costs incurred by UserOperations. Our empirical results reveal
that creating an ERC-4337 SimpleAccount by UserOperation
consumes 381,489 gas units, permitting only 78 accounts
per block given current limits. Moreover, a simple transfer
UserOperation of SimpleAccount costs 92,901 gas, approxi-
mately four times the expense of a simple transfer of EOA.

These quantitative findings confirm that steep gas fees
pose a significant impediment to widespread ERC-4337 adop-
tion. Accordingly, future research should focus on designing
strategies to optimize costs without compromising Ethereum’s
security and integrity.

REFERENCES

[1] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, vol. 3, no. 37, pp. 2-1, 2014.

[2] P. Kasireddy, “How does ethereum work, anyway,” Medium, 2017.

[3] P. Praitheeshan, Y. W. Xin, L. Pan, and R. Doss, “Attainable hacks on
keystore files in ethereum wallets—a systematic analysis,” in Future
Network Systems and Security: 5th International Conference, FNSS
2019, Melbourne, VIC, Australia, November 27-29, 2019, Proceedings
5. Springer, 2019, pp. 99-117.

[4] V. Buterin, Y. Weiss, K. Gazso et al., “Erc-4337 account abstraction
using alt mempool,” https://eips.ethereum.org/EIPS/eip-4337, accessed
September, 2023.

[5] “Account abstraction,” https://ethereum.org/en/roadmap/account-abstrac
tion/, accessed September, 2023.

[6] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1-32, 2014.

[7]1 @jmcook1186, “Ethereum accounts,” https://ethereum.org/en/develope
rs/docs/accounts/, accessed August, 2023.

[8] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital sig-
nature algorithm (ecdsa),” International journal of information security,
vol. 1, pp. 36-63, 2001.

[9] J. Na, H.-Y. Kim, N. Park, and B. Seo, “Comparative analysis of

schnorr digital signature and ecdsa for efficiency using private ethereum

network,” IEIE Transactions on Smart Processing & Computing, vol. 11,

no. 3, pp. 231-239, 2022.

“Ethereum improvement proposals,”

cessed September, 2023.

“Anatomy of smart contracts,” https://ethereum.org/en/developers/docs/

smart-contracts/anatomy/#events-and-logs, accessed September, 2023.

“how to decode log event of my transaction log?” https:

/lethereum.stackexchange.com/questions/87653/how-to-decode-log

-event-of-my-transaction-log, accessed September, 2020.

“The data field,” https://ethereum.org/en/developers/docs/transactions/#

the-data-field, accessed July, 2023.

“The ethereum blockchain explorer,”

September, 2023.

[10] https://eips.ethereum.org/, ac-

(11]
[12]

[13]

[14] https://etherscan.io/, accessed

1170

