
Prompt Fix: Vulnerability Automatic Repair
Technology Based on Prompt Engineering

1st Peng Liu
Guangzhou Institute of Technology, Xidian University

liup2@nipc.org.cn

3nd Chen Zheng
Institute of Software, Chinese Academy of Sciences
University of Chinese Academy of Sciences, Nanjing

zhengchen@iscas.ac.cn

2nd He Wang
Guangzhou Institute of Technology, Xidian University

hewang@xidian.edu.cn

4th Yuqing Zhang
University of Chinese Academy of Sciences

Xidian University
Hainan University

zhangyq@nipc.org.cn

Abstract—With the emergence of large-scale language models
(LLM), the powerful capabilities of LLM in natural language
processing have attracted attention. Based on programming
language LLM (Programming Language Model, PLM), we use
prompt templates to explore its potential in the field of automatic
vulnerability repair, and combine it with a special workflow to
improve its efficiency in automatic vulnerability repair tasks.
Specifically, we design four prompt templates for handling vulner-
able code, and design an iterative reasoning method to improve
the efficiency of vulnerability fixing. We selected multiple typical
LLMs for evaluation on multiple data sets. The results show
that reasonable prompt templates can effectively improve the
efficiency of automatic vulnerability repair, which is significantly
improved compared with neural machine translation technology.
In addition, we also discussed previous bug fixing related work
and our work, and pointed out some of our shortcomings and
directions for future improvements.

Index Terms—automatic program repair; vulnerability repair;
large language model; program language model

I. INTRODUCTION

With the popularization and development of software tech-
nology, software systems have become an indispensable part
of modern society. However, this also brings about the problem
of increasing number and complexity of software defects.
Security personnel spend a lot of time and effort fixing these
flaws, constantly manually patching and testing. Software
defects have long caused significant and lasting damage to
all aspects of human activity.For example, in 2017, attackers
exploited the EternalBlue series of vulnerabilities to create a
widespread WannaCry ransomware incident [1]. Between 2018
and 2020, a software design flaw at Boeing caused two Boeing
737 Max aircraft to crash and jeopardized a critical test flight
of the Starliner spacecraft [2].

Nowadays, the creation and use of automation tools has be-
come the common pursuit and development trend of academia
and industry. In this trend, in the face of increasingly complex
repair tasks, automatic program repair technology (Automatic
Program Repair, APR) [3] was born. Due to the promising

He Wang is the corresponding author (e-mail: hewang@xidian.edu.cn)

prospect of automatic program repair (APR), researchers have
proposed various APR techniques, the researchers leveraged
recent advances in deep learning to further improve APR.
Such learning-based techniques typically treat APR as a neural
machine translation problem, using pairs of bug/fixed code
snippets as source/target languages for translation. In this way,
such techniques rely heavily on large numbers of high-quality
bug-fix commits, which can be expensive and challenging,
while potentially limiting their editorial diversity and contex-
tual representation.

In this paper, we focus on whether LLM for code comple-
tion can help us fix security vulnerabilities. Since LLM can be
guided by adding hints to hints, we use black-box, ”off-the-
shelf” LLMs to generate the feasibility of replacement code for
identified security vulnerabilities, perhaps as part of an overall
program repair framework. This is in stark contrast to previ-
ous work on training specialized neural machine translation
(NMT)-based models to fix software bugs [4].

Furthermore, we also consider that previous methods simply
resample the LLM given the same constructed input or cues
created from the original error code, which not only leads
to repeated generation of the same incorrect patch, but also
misses key information. To this end, we propose an iterative
repair method to add to the workflow of automatic vulnerabil-
ity repair, regenerate the prompt content from the wrong code
output by the model, and use it as input again for the model
to reason.

Our contributions are as follows:

• An automated experimental framework is built, which
can automatically use LLM for reasoning, automatically
generate code prompt templates as model input, auto-
matically process model output (such as compiling and
deduplication), perform iterative reasoning, detect and
generate repair codes accuracy and analysis of experi-
mental results.

• We selected 7 different LLMs and designed 4 prompt
templates with different complexity as the input of the

2024 Workshop on Computing, Networking and Communications (CNC)

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 116

model, and conducted experiments on the dataset created
by ourselves and two other benchmark datasets.

• A new workflow for automatic vulnerability repair is pro-
posed. Iterative reasoning is added to the repair process,
and the output of model errors is regenerated as a prompt
template and used as input for re-reasoning to improve
the effect of automatic vulnerability repair.

• We created a vulnerability dataset PromptFix.

II. BACKGROUND

A. Automatic Program Repair

Automatic program repair is a technology in the field of
computer science, which aims to identify, locate and repair
errors, defects or vulnerabilities in software programs through
automated methods. The goal of this technique is to reduce hu-
man intervention, speed up the software development process,
and improve software quality and reliability.

Subsequently, with the emergence of large-scale generative
language models, the field of automatic vulnerability repair has
gradually shifted to the use of large-scale pre-trained program
language models trained in program languages for automatic
vulnerability repair tasks. This approach has great advantages,
such as no need for paired training data sets, no need to
start training from the initialization state of the model, and so
on. This article mainly uses a large-scale pre-trained program
language model for automatic vulnerability repair tasks.

B. Automated Repair Tasks For Software Vulnerabilities

A software vulnerability is an error, defect, or design
deficiency in a computer program or system that could be
exploited by a malicious attacker to gain unauthorized access,
information, or control.

Research on security vulnerability fixes seems to be in
its infancy at the moment. Vulnerability remediation targets
specific security vulnerabilities in APR, which usually require
carefully crafted inputs to trigger specific vulnerabilities due
to their high complexity and stealth. Therefore, automated
remediation of security vulnerabilities is more challenging.
While bug and vulnerability fixing in general are remedial
tasks in nature, there are differences in the problem areas they
focus on. This issue has been discussed by scholars [5], and it
may not be appropriate to directly migrate APR tools suitable
for bug repairing to vulnerability repairing tasks.

C. Large Language Models

A large language model (LLM) is a complex computer
model capable of processing and generating natural language.
They learn the structure, syntax, semantics, and context of
language by training on large amounts of text data, so that they
can generate reasonable text responses, articles, summaries,
etc. The large-scale pre-trained program language model is
a model that is trained with a large number of program
languages on this basis.

D. Prompt Template

Prompt learning usually refers to in artificial intelligence
systems, by providing specific input text to the system to
guide it to generate corresponding output text. In the field
of APR, the content of the prompt can be information related
to the vulnerability, the code segment of the vulnerability, the
natural language that prompts how to fix the vulnerability,
etc. If you can use this information, you can further tap the
ability of LLM in the field of automatic vulnerability repair.
Prompt learning [6] has been proven to be a technique that
can effectively improve the accuracy of LLM text generation
tasks, but further research is needed to improve its efficiency.
Therefore, a research focus of this paper is how to design a
reasonable prompt as input to let the model Perform automatic
vulnerability repair tasks.

III. METHOD DESIGN

A. Workflow

The vulnerability automatic repair workflow designed in
this article is shown in Figure 1. We use vulnerability type
as the classification standard, and all related files for each
vulnerability are stored in a folder with the same name. There
are some key files in this folder, including the original code file
of the vulnerability, the configuration file of the vulnerability
scenario, the functional test file of the vulnerability, the input
file of the original code after template processing, and the
folder where the generated results are saved. After the scene is
generated, it will enter the second stage for vulnerability repair,
which is model inference. After the reasoning is completed,
enter the third step to verify the repair results.

B. Experimental Environment Construction

Our experiment is carried out on the Gemini cluster, which
integrates 7 RTX 3090 GPUs, has 500GB memory and 150
Core CPU, and the CUDA version is 11.7. The Ubuntu 22.04
operating system was started on the cluster. The version
of Python used is 3.8.10, and the version of CodeQL is
2.7.2.Codeql is an engine that converts code into a database-
like form and performs analysis based on the database. In
CodeQL, code is treated as data. Security vulnerabilities, bugs,
and other errors are modeled as queries that can be executed
against a database extracted from the code.

C. Model Selection And Hyperparameter Determination

CodeGen series [7]: This is a generative model based on
the GPT series, divided into three versions: NL, Multi, and
Mono, with parameters ranging from 350M–16B. The model
excels at the downstream task of code generation, which is
left-to-right reasoning.

PolyCoder model [8]: This model is based on the GPT-2
architecture, has 2.7B parameters, and is trained for a total
of 249GB of code in 12 programming languages. In the C
programming language, PolyCoder outperforms commercial
models including Codex.

2024 Workshop on Computing, Networking and Communications (CNC)

117

Step 1 Preprocessing

Source Vul Code

CodeQL Analysis

(Prompt) Vul Scenario

Generation

Step 2 Fix Vul Code

CodeGen2

PolyCoder

Step 3 Fix Code Analysis

Fix Code STitching

And Compile
CodeGen

Fix Code Detection

Data Statistical

Analysis

Fig. 1. Automated vulnerability repair workflow

CodeGen2 series [9]: CodeGen2 is an upgraded version of
the first generation of CodeGen. This generation of models
is different from the original CodeGen model series. Code-
Gen2 has filling capabilities and supports more programming
languages.

The determination of model hyperparameters is a very
important process, to this end, we selected two vulnerabil-
ities, CWE787 and CWE-89, and designed experiments to
determine hyperparameters.For this experiment, we used the
PolyCoder model, and combined temperature and top-p, and
divided them according to the step size of 0.1, so the number
of all their combinations is 100, and the model must generate
100 output results under each parameter , which means that
20,000 fix codes will eventually be generated for two vul-
nerabilities. Taking CWE 787 as an example, we found that
the combination of higher temperature and higher top-p works
better. But for CWE 89, the opposite is true, the combination
of lower temperature and lower top-p works better. This shows
that there is no specific combination of temperature and top-p
that is most suitable. So we refer to PolyCoder’s suggestion, fix
top-p to 1, and divide the temperature with a step size of 0.1,
which can significantly reduce the number of combinations
that need to be processed in the experiment.

D. Dataset Selection

Three data sets were used in this experiment, namely
PromptFix, ExtractFix and VulFix data sets constructed by
hand.

The PromptFix dataset is manually written code files con-
taining the top 10 CWE vulnerability types in 2023 and
individual special CWE vulnerability types, and functional test
functions have been written for these 10 vulnerability code
files. The main purpose of this dataset is to verify whether
the designed prompt template can promote the model’s un-
derstanding of the vulnerable code and improve the repair
efficiency on a small and relatively simple dataset.

The ExtractFix dataset [10] is a real-world vulnerability
dataset. Vulnerabilities are collected from real-world projects.

The projects are complex, so it is difficult to manually write
test codes. However, some vulnerabilities in this dataset pro-
vide test suites themselves, for easy evaluation. The purpose of
using this dataset is to verify that hint templates can improve
vulnerability remediation rates in real-world vulnerability sce-
narios.

Vulfix is a dataset of more than 1700 vulnerabilities and
their human-committed fixes collected from CVEFixes [11]
and Big-Vul [12]. This data set is part of the verification data
set used in the work of Fu et al. The purpose of this dataset is
to verify the repair effect of hint templates in a large number
of real-world vulnerabilities, and to compare with the work of
VulRepair.

E. Prompt Template Design

We argue that LLMs trained on large datasets may inad-
vertently acquire the ability to multitask, even in the ”zero-
shot” setting. Therefore, a large-scale program language model
trained by a program language can tap more capabilities and
perform richer tasks by carefully constructing ”prompt”.In
order to design the prompt template, we have studied a large
number of open source engineering project codes and their
historical versions. We believe that the prompt information can
contain description information of vulnerabilities, or a descrip-
tion for explaining the function of the code, or indicate where
the indication should be markup for repair. By researching
the commits on Github, we found that the prompt information
may also include tags such as ”Bug Version”. At the same
time, source code can also appear in comments, because we
find that ”commented out” source code often appears in code
submissions, which will show both fixed code and bug code
as part of the bug fixing process.

Based on the above information, we designed the following
four prompt templates. A control group without any cue tem-
plate attached was additionally added. Pormpt-0 does not add
any prompt information; Prompt-1 deletes the vulnerable parts
other than the method name, and adds comments: Generate
Fixed Code For CWE-xx; Prompt-2 first adds the description

2024 Workshop on Computing, Networking and Communications (CNC)

118

information of the vulnerability in the form of comments (this
information is provided by the static analysis tool Obtained)
Vulnerability Message: [message], and then prompt in the
next line: Fix The Vulnerability After. Finally, carry the first
5 words of the function body in the next line to guide the
model to generate repair code instead of generating comments.
Prompt-3 will add vulnerability codes in the form of comments
on the basis of Prompt-2, in order to give the model richer
context information to help the model complete the task of
automatic vulnerability repair. Based on Prompt-3, Prompt-4
adds a brief manual description of the vulnerability repair task.
These templates can change the amount of context provided
to the LLM, from providing no information to rich comments
and prompts, where even slight changes in the prompt words
can even affect the output of the model.

IV. EXPERIMENT AND ANALYSIS OF RESULTS

A. Prompt Function of the Template

We conducted experiments on three data sets in the manner
described above and compiled the experimental results, as
shown in Figure 2. After using the prompt template of Prompt-
1, the compilation pass rate has increased, and the bug fix
rate has also increased. This improvement is most obvious in
Prompt-3. What is confusing is that after using the Prompt-
4 prompt template, the vulnerability repair rate began to
decline, which means that the model’s understanding of the
vulnerability repair task has deviated.

Why does the repair efficiency increase from Prompt-0
to Prompt-3? According to our analysis, from Prompt-0 to
Prompt-3, all the information added in the prompt template is
beneficial to the model. For example, compared to Prompt-
0, Prompt-1 adds instructions to fix the vulnerability and
specifies the type of vulnerability, which allows the model
to understand more precisely what we want the model to
do. Compared with Prompt-1, Prompt-2 adds vulnerability
description information. We think this information is very
critical, which is why the improvements here are huge. Vul-
nerability description information contains a large amount
of information about vulnerability characteristics, which is
beneficial to model understanding. However, Prompt-4 causes
the repair efficiency of the model to decrease. We believe
this is because the information is too lowly relevant to the
vulnerable code and too subjective. Different people may
have different descriptions of the same content, which is not
conducive to the reasoning of the model we choose.

Conclusion: The prompt template is evaluated from the two
perspectives of compilation pass rate and repair rate, both of
which prove that it can effectively improve the efficiency of
vulnerability repair, but an overly complex template will affect
the repair of vulnerabilities.

B. Text Generation and Text Filling

Considering the modes supported by the model, we can
get the experimental results shown in Figure 3. The result
shown on the PromptFix dataset is that the repair effect of the

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Prompt_0 Prompt_1 Prompt_2 Prompt_3 Prompt_4

PromptFix ExtractFix

Fig. 2. The influence of the prompt template on the repair effect

generative model is better. In our opinion, it has to do with
what we do with the dataset. In the Prompt dataset, since the
vulnerable code is manually written, the number of lines is
small, so the function where the vulnerable line is located is
directly deleted and then modified with the prompt template as
input. This means that the input does not provide the correct
code after the vulnerable line, which causes the model to
infer the repair code in a left-to-right or text-like direction.
Obviously, the generative model is more suitable for this input.
However, in real-world datasets, since the vulnerable code is in
a very large function body, it cannot be directly modified with
the prompt template and used as the input of the model. We
intercepted and transformed it and then cooperated with the
prompt template, which means that the final input to the model
contains part of the safe code after the vulnerable line. Such
an input construction more closely matches the text-padded
model, thus leading to better inpainting performance of the
padded model on real-world vulnerability datasets.

Conclusion: The generative model and the model that
supports text filling have a certain influence on the effect
of vulnerability repair, but this influence comes from the
preprocessing of the vulnerability code.

C. Iterative Repair

In this section, we discuss how much the addition of
the iterative repair process improves the repair effect of the
vulnerability repair task, and the results are shown in Figure
4. Since the modified vulnerability code input to the model is
the same, and the model is required to generate 50 outputs for
one input, this will cause the model to generate a large number
of repeated repair codes, and limit the model to perform
vulnerability repair codes in a wider range reasoning work, so
we consider increasing the working mode of iterative repair.
Iterative repair will preprocess the error repair generated by the
model again, and add new annotations as prompt information.

2024 Workshop on Computing, Networking and Communications (CNC)

119

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CodeGen PolyCoder CodeGen2

PromptFix ExtractFix VulFix

Fig. 3. The influence of model type on the repair effect (best result)

This means that each time after a round of iterative preprocess-
ing, the input code will have an error repair code of the type
of vulnerability and the description information of the error,
and the model can avoid going to the same or similar error
in the next reasoning process direction of reasoning. At the
same time, due to the change of input, the repeated output code
generated by the model is also significantly reduced. However,
due to the limitation of the input length of the model and the
consideration of repair time, the iteration round cannot be set
too long. In other words, it is not worth paying high repair
costs in order to achieve the best repair effect.

Conclusion: Iterative learning can effectively reduce the
proportion of repetitive vulnerability repair codes generated by
the model. However, a higher iteration round cannot be set,
we think that setting 2-3 iterations is an appropriate choice.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

PromptFix ExtractFix VulFix

With Iterative Repair Without Iterative Repair

Fig. 4. Influence of Iterative Process on Restoration Efficiency(best result)

V. CONCLUSION

This paper proposes a novel vulnerability automatic re-
pair workflow and designs reasonable prompt templates to

tap LLM’s ability to target different downstream task types
in the vulnerability automatic repair task domain. Our ex-
periments prove that reasonable prompt templates can sig-
nificantly improve the efficiency of automatic vulnerability
repair.Therefore, the characteristics of the model, the training
method, and the density of the prompt information must be
fully considered during the prompt template design process.
The addition of iterative repair can also significantly improve
the effect of automatic vulnerability repair, but too many
rounds should not be set. Our experiments demonstrate the
value of our work in automatic vulnerability repair. Our work
provides a meaningful reference on how to utilize open source
LLM and fully exploit the potential of LLM through suitable
prompt templates.

ACKNOWLEDGMENT

This work was supported by the National Key Research and
Development Program(2023YFB3106400, 2023QY1202),the
National Natural Science Foundation of China (U1836210),
and the Key Research and Development Science and Technol-
ogy of Hainan Province (GHYF2022010).

REFERENCES

[1] Carly Burdova. 2021. What Is EternalBlue and Why Is the MS17-010
Exploit Still Relevant. https://www.avast.com/ceternalblue

[2] Morgan McFall-Johnsen. 2020. Catastrophic software errors doomed
Boeing’s airplanes and nearly destroyed its NASA spaceship.
Experts blame the leadership’s ‘lack of engineering culture’.
https://www.businessinsider.com/boeingsoftware-errors-jeopardized-
starliner-spaceship-737-max-planes-2020-2

[3] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic
Software Repair: A Survey. IEEE Trans. Software Eng. 45, 1 (2019),
34–67.

[4] N. Jiang, T. Lutellier, and L. Tan, “CURE: Code-Aware Neural Machine
Translation for Automatic Program Repair,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), May 2021,
pp. 1161–1173, iSSN: 1558-1225.

[5] Eduard Pinconschi, Rui Abreu, and Pedro Adão. 2021. A Comparative
Study of Automatic Program Repair Techniques for Security Vulnera-
bilities. In 32nd IEEE International Symposium on Software Reliability
Engineering, ISSRE. 196–207.

[6] XIA C, WEI Y, ZHANG L. Practical Program Repair in the Era of
Large Pre-trained Language Models[J]. 2022.

[7] Nijkamp E, Pang B, Hayashi H, et al. Codegen: An open large language
model for code with multi-turn program synthesis[J]. arXiv preprint
arXiv:2203.13474, 2022.

[8] Xu F F, Alon U, Neubig G, et al. A systematic evaluation of large
language models of code[C]//Proceedings of the 6th ACM SIGPLAN
International Symposium on Machine Programming. 2022: 1-10.

[9] Nijkamp E, Hayashi H, Xiong C, et al. Codegen2: Lessons for train-
ing llms on programming and natural languages[J]. arXiv preprint
arXiv:2305.02309, 2023.

[10] X. Gao, B. Wang, G. J. Duck, R. Ji, Y. Xiong, and A. Roychoud-
hury, “Beyond Tests: Program Vulnerability Repair via Crash Con-
straint Extraction,” ACM Transactions on Software Engineering and
Methodology, vol. 30, no. 2, pp. 1–27, Mar. 2021. [Online]. Available:
https://dl.acm.org/doi/10.1145/3418461

[11] Guru Bhandari, Amara Naseer, and Leon Moonen. 2021. CVEfixes:
automated collection of vulnerabilities and their fixes from open-source
software. In Proceedings of the 17th International Conference on Pre-
dictive Models and Data Analytics in Software Engineering. 30ś39.

[12] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. AC/C++
code vulnerability dataset with code changes and CVE summaries. In
Proceedings of the 17th International Conference on Mining Software
Repositories. 508ś512.

2024 Workshop on Computing, Networking and Communications (CNC)

120

