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Abstract—Effective interaction with large public interactive
displays (LPIDs) remains a significant challenge in human-
computer interaction. This paper introduces “Area4U,” a user
interaction area prediction framework designed for enhanced in-
teraction with LPIDs. Area4U employs lightweight deep-learning
techniques to analyze webcam imagery and deduce potential
users’ location and motion information, utilizing this information
to predict and allocate sub-regions users prefer for their usage,
the framework streamlines the transition of potential users
to active participants. Our model was trained on video data
containing 212 sub-region selections from 12 participants. Results
indicate that our method effectively identifies areas of interest to
potential users in an experimental setting, proving the feasibility
and effectiveness of our framework.

Index Terms—Large Public Interactive Displays (LPID), User
Behavior Prediction, Lightweight Deep Learning, Interaction
Hotspots, Multimedia Computing

I. INTRODUCTION

Large public interactive displays (LPIDs) are gaining pop-
ularity in general settings like shopping malls and subway
stations due to their real-time information delivery, interactive
capabilities, personalized content, and improved affordability.
In recent years, these public interactive screens have begun to
replace traditional static billboards in some public areas [1]
and have been widely applied in places such as semi-public
whiteboards [2] and informational boards [3].

LPIDs, unlike traditional devices that require touch, initiate
interaction when a user enters the screen’s influence range. As
depicted in Figure 1 Individuals entering the influence range
are classified as potential users who can either become high-
probability users or passersby. Although it is easy for high-
probability users to become real users, it will also lead to user
loss if there is no good human-computer interaction design.
In their study [4], Madrian et al. pointed out that users often
prefer to choose the default settings when using a system,
which helps them complete tasks quickly. For LPID, providing
default choices can reduce decision stress and attract more
user.

Spatiotemporal resource utilization is another problem for
LPID. Users often need to move back and forth to grasp com-
plete information and engage in touch interactions, leading to
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fatigue [5]. Additionally, current interaction systems primarily
cater to individual users, leading to decreased screen utilization
when a group shares the different purpose. Implementing
a multi-user interaction system would be more efficient in
improving LPID utilization rates.

Actual User

High Probability User
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Predict an area
to attract the user 

Generate information 
for a further potential user
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Fig. 1: Overview of proposed architecture Area4U.

In this paper, we propose “Area4U,” an interactive sub-
area prediction framework for multi-users while adhering to
the constraints of using off-the-shelf equipment. Our study
scenario concept diagram is shown in Figure 1, we divide
the LPID into two distinct areas: the “easy operate area” and
the “difficult operate area.” The “difficult operate area” refers
to the top part of the LPID, which often presents challenges
for most users to access and interact with. In contrast, the
“easy operate area” is subdivided into several “sub-interaction
areas”(the number of sub-areas needs to be defined by the
actual environment). Area4U focuses on identifying users with
high probability. By analyzing the user’s location information
and body behavior, Area4U predicts and allocates one of the
sub-interaction areas, making this area look like a default
choice to attract high-probability users. As our interaction
architecture concentrates on generating an interaction area, no
explicit interaction events are designed in the interaction phase.

Our main contribution lies in developing an interactive sub-
area prediction framework without large amount of computing
that can be deployed on edge devices. Considering practical
LPID usage scenarios with limited computing resources and
deployment costs, we utilize only two webcams as addi-
tional equipment. Both the analysis and prediction modules
in the framework use lightweight deep-learning models to

2024 International Conference on Computing, Networking and Communications (ICNC): Multimedia Computing and Communications

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 1158



reduce computational requirements. By testing on the data
set obtained in the data collection experiment, our proposed
framework process is effective and has a considerable accuracy
rate.

II. RELATED WORK

A. Multiple User Interaction

Past research has focused on multiple user interactions on
LPIDs. Vogel et al. [6] use sensors to create personalized
interaction windows based on the user’s position and distance
from the screen. In recent research, Courtoux et al. [7] have
designed a novel controller that allows for the arbitrary slicing
and copying of content on the LPID to achieve multi-user
interaction.

Compared to existing studies, our study focuses on using
off-the-shelf devices to enable multi-user interaction, that is,
by dividing the screen into multiple sub-regions and assigning
them to users. Compared to controllers or sensors, touch
reduces user learning costs and has better potential for real-
world deployment because it is easier to maintain without
additional equipment.

B. User Location Prediction

User location prediction has always been a prominent
topic, frequently mentioned in areas like smart cities. Castro-
Gonzalez et al. [8] statistically analyzed users’ hotspot loca-
tions and movement patterns, utilizing Hidden Markov Chain
methods to achieve pedestrian location prediction. Kooij et al.
[9] constructed Bayesian networks to predict whether pedes-
trians will cross the road in autonomous driving scenarios.

There is no doubt that their contribution is excellent, but the
above studies have ignored the computational performance of
the deployed machines in the actual deployment. LPID, as
an edge computing device, has weak computational power,
running normal deep learning models is challenging, and
placing a high-performance GPU device behind the screen is
impractical in the actual deployment environment. Therefore,
to ensure the mobile deployment capability of the proposed
method, the use of lightweight deep learning models is a better
choice which was our research goal.

Fig. 2: Architecture of the whole framework.

III. FRAMEWORK ARCHITECTURE

Area4U aims to analyze whether a user will become a high-
probability user through their location information. For high-
probability users, an interaction area is predicted by analyzing

their movements and allocating to them. This framework
consists of three parts: Pedestrians Detection System, Two
Steps Analysis Method, and Area Prediction Module.

A. Pedestrians Detection System

The Pedestrians Detection System offers vital data structure
for subsequent procedures. Precise pedestrian detection is a
critical factor for the framework’s effective operation. To fulfill
this, we have devised our Pedestrian Detection System based
on a lightweight deep learning algorithm YOLOv7-tiny, a
streamlined iteration of YOLOv7 [10], which is well-suited
for edge devices such as LPIDs.

By modifying its backbone network architecture, we en-
hanced YOLOv7-tiny’s capability to detect details and small
objects, specific implementation details will be disclosed in a
later paper. In the output layer, we optimize the loss function.
The loss function used in YOLOv7-tiny is represented as
equation (1), consisting of bounding box position loss Lbox,
class loss Lcls, object confidence loss Lobj .

L = Lbox + Lcls + Lobj (1)

We choose VarifocalLoss to enhance YOLOv7-tiny’s learn-
ing ability on low-resolution images. Varifocal Loss puts
forward an indicator IACS(IoU-Aware Classification Score)
that can simultaneously represent Lbox Lcls and the equation
is shown below:

V FL(p, q) =

{ −q(qlog(p)) + (1− q)log(1− p) q > 0
−αpγ log(1− p) q = 0

(2)

Where p is the prediction box’s IACS score and q is the
target IoU score. For positive samples in training, q is set to
IoU between the predict bounding box and the ground truth
box, and for negative samples in training are set to 0. The final
loss function of our method is as follows:

L = LV FL + Lobj (3)

To verify the reasonableness of the structural changes and
loss function optimization, and let the model learn the multi-
scale features of pedestrians, we wrote a Python script to
merge WiderPerson [11] and CrowdHuman [12]. Finally, we
trained the improved YOLOv7-tiny on it and estimate the
performence.

In the detection layer of YOLOv7-tiny, we integrated the
Mono-Depth to estimate pedestrians’ distances. The distance
of the detected pedestrian can be generated with coordinates
and the picture’s depth map. While monocular depth estima-
tion may not match the precision of stereo or depth cameras, it
performs well when the background is stable. Using monocular
depth estimation as the distance generator is a good choice, as
it aligns with our principle of minimizing additional devices.

B. Two Steps Analysis Method

Due to the absence of a public data set on user interactions
with LPIDs, using the deep learning method to estimate
pedestrians’ using probability is infeasible. Therefore, we
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(a) Original Data (b) Data in ”side” and ”mid”

Fig. 3: Data distributions used in initial probability analysis.

choose to collect simulated data which represents the selection
when users stand at the edge of the LPID’s influence scope.
The distribution of the selection is shown in Figure 3, here
“side” refers to the regions at the leftmost and rightmost, and
“mid” encompasses the areas excluding the “side” regions,
concepts of them will be used in the following. Obvious data
imbalance observed in Figure 3(a), making it difficult to train
a classifier to calculate the usage probability of each choice,
and to combat this problem, we proposed Two Steps Analysis
Method.

The Method is applied to the scenarios shown in Figure 4.
An operating zone was defined to simulate the range of user
interactions. Subsequently, distinct zones were designated at
varying distances: Zone 1(1m to 2.5 m) zone 2 (2.5m to
4m), and Zone 3 (4m to further). Distance setting depends
on the actual environment and the display’s size. This setting
of different interaction intervals was applied in [13] to design
different interaction methods, and here we set it to examine
the impact of distance on users’ sub-region selection.

Fig. 4: Conceptual data collection experiment setting.

The Two Steps Analysis Method is based on XGBoost
[14] machine learning algorithm for analyzing user interaction
probabilities for each sub-area. The input data structure for the
Two Steps Analysis Method is represented as follows:

(Z(dis), P, U = [A1, A2, . . . , Ax] | Ax ∈ {−1, 0, 1})
x = Number of SubArea

(4)

Here, U signifies the collection of usage statuses for all
screen sub-regions. These statuses encompass three conditions:
−1 (in current use), 0 (not currently used), and 1 (selected).

Permissible transitions exist from −1 to 0 and 0 to 1; no
transition occurs from −1 to 1. Z is denoted as the zone based
on the distance dis. P is the left and right position of where
the detected pedestrian is.

The Two Steps Analysis Method involves using DSM
(Divide Side and Mid) and XGBoostTrainer. DSM helps in
dividing the data into two subsets “side” and “mid.” The
algorithm for this division is shown in Algorithm 1. Here, ds
represents the Data Structure, while side and mid represent
the two subsets. This algorithm identifies the regions with the
highest and lowest labels within the input data and assigns
them to the side subset. The remaining regions are grouped
into the mid-subset.

Algorithm 1 DSM (Divide Side and Mid)

Input: Data Structure ds = (Z, P, U, Selection Result) as ds
Output: Side Training Data Mid Training Data
1: if ds = null then

2: return null
3: end if

4: side ← {}
5: mid ← {}
6: leftSideIndex ← ds.Selection Result.Min
7: rightSideIndex ← ds.Selection Result.Max
8: for item in ds do

9: if leftSideIndex = rightSideIndex then

10: mid.append(item)
11: end if

12: if item.Selection Result = leftSideIndex
13: or item.Selection Result = rightSideIndex then

14: side.append(item)
15: else

16: mid.append(item)
17: end if

18: end for

19: return side, mid

For Algorithm 2 XGBoostTrianer uses the copied data set
to train “MS Classifier” to judge ”mid” or ”side,” and uses the
original “side” data set to train left side and right side classifier
“LR Classifier.” Then put them in the list of global variables
“ListOfXGBoost” in the order of MS Classifier followed by
LR Classifier.

Algorithm 2 XGBoostTrainer

Input: Data Structure = (Z, P, U, Selection Result) as ds
Output: ListOfClassifier
1: ListOfXGBoost(GlobalV ariable) ← {}
2: (side,mid) ← DSM(ds)
3: if side �= null then

4: sidecopy ← side
5: midcopy ← mid
6: sidecopy.Selection Result ← ”side”
7: midcopy.Selection Result ← ”mid”
8: train ds ← sidecopy.append(midcopy)
9: x ← train ds.drop(Selection Results)

10: y ← train ds.get(Selection Results)
11: MS Classifier ← XGBoost.fit(x, y)
12: xx ← side.drop(Selection Result)
13: yy ← side.get(Selection Result)
14: LR classifier ← XGBoost.fit(xx, yy)
15: ListOfXGBoost.append(MS Classifier, LR classifier)
16: XGBoostTrainer(mid)(Start from line 2)
17: else

18: return null
19: end if

20: return ListOfXGBoost

For the usage method of classifiers, inter-group classifiers
retain odd identifiers, while intra-group classifiers possess even
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identifiers. We assign the index 0 to the first MS Classifier in
the list. The Two Steps Analysis Method proceeds as follows:

1) Input the data structure and apply the MS Classifier to
calculate the probability for the “side” mid “mid.”

2) If the probability for “side” is higher then use the
following LR Classifier to determine left or right. If
“mid” is higher skip the next LR Classifier and use the
next MS Classifier for mid-subset, repeat step 1.

At each step, if the probability of both options is less than
50%, then the person will not be considered a high-probability
user and the framework process terminates.

C. Area Prediction Method

As the last part of the framework, the Area Predic-
tion Method aims to predict the interaction area for high-
probability users by analyzing their body motivation identified
by the first two modules. Based on the idea of easy deploy-
ment, the module is built on the lightweight deep learning
framework MoviNets [15].

MoviNets uses streaming buffers to substantially decrease
the memory requirements for training and inference. Moreover,
it facilitates online inference for streaming videos. The under-
lying principle of this approach is elucidated in Equation (5).
Where Bi is denoted as the buffer, xclip

i is the different
clips of a video. When calculating the feature of clip Fi,
the next buffer Bi+1 is updated with the last b frames’
feature, concatenated with the next clip’s xclip

i+1 for subsequent
analysis. As the number of clips increases, features expand
progressively without incurring additional computational load,
facilitating online video inferences.

Fi = f(Bi ⊕ xclip
i ) (5)

Fi = f(Bi ⊕ xclip
i ) (6)

Due to its ability to motivate analysis and need less com-
putation, we chose this lightweight deep learning method to
be basis of the prediction. Apart from MoviNets itself, we
incorporated a video data preprocessing module to generate
training sets and enhance prediction speed for the subsequent
sub-interaction area.

IV. DATA COLLECTION EXPERIMENT

A. Overall

We designed a data collection experiment to deal with the
absence of publicly available data on user interactions with
LPIDs. The core idea of the design was to simulate the actual
situation as much as possible under the condition of controlled
variables to obtain the datasets for training the Two Steps
Analysis Method and Area Prediction Module.

B. Experiment Setting

The real-world experiment setting is the same as the con-
ception diagram in Figure 4, as shown in Figure 5(a): short
green markers correspond to the red stars, while long markers
on the right correspond to the blue stars. The left line signifies
the boundary of the screen’s influence range. We invited 12

graduate students as participants, ages 23 to 28, with an
average age of 24.6.

For devices, an 85.6-inch large touchscreen (AHA Co. Ltd)
was used as the experimental LPID with the data collection
system shown in Figure 5(b), a PC (HP OMEN 7) with
two webcams (Logitech C870) with different angles used to
record participants’ selections and body movements during the
experiment.

(a) Environment (b) Data Collection System

Fig. 5: Experimental environment and equipment.

C. Collection Task

The experiment consists of the right-side static experiment
and the left-side dynamic experiment. To calculate the initial
probability, right side experiment needs to collect the tendency
of the participants to each sub-area when they are located
at the edge of the influence range of the screen with dif-
ferent distances. The left-side dynamic experiment collected
participants’ choices and body motivation information in the
screen’s influence range. It was set on the left because previous
experiments on the right gave participants the impression of
the space distribution of the sub-area, which reduced their
screen selection time and distorted the movement data col-
lected. Switching the directions of the two experiments won’t
affect the results, because there is a mirror effect on the area
selection task.

(a) First Select (b) Last Selection

Fig. 6: Right side experiment setting.

1) Right-side Static Experiment: In the experiment on the
right-hand side, one participant is positioned on the rightmost
label of a specific zone and asked to choose an area that
is currently unused. Once this initial selection is made, an
assistant will utilize the chosen area. After that, the partic-
ipant makes a second selection from the remaining choices,
and another assistant will use that selection. Finally, for the
third choice, the participant completes the selection process,
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concludes the experiment for that particular label, and moves
on to the next rightmost label in a different zone. Figure 6
shows some photos of the experiment.

In this experiment, the screen occlusion by the assistant
is crucial for two reasons. Firstly, it is essential to simulate
a real-world scenario involving multiple users. Secondly, the
absence of the assistant would result in all three choices under
the same conditions. This absence would distort the selection
results, consequently impacting the subsequent calculation of
user usage probabilities.

2) Left-side Dynamic Experiment: The left-side experiment
is illustrated in Fig 7. Participants are instructed to stand
outside the “Start Line” on the left side of the experiment scene
to prepare. Once prepared, the participant can hold the timer
controller and proceed to the specified ground label. During
both the preparation and walking phases, participants must
keep their gaze parallel to the screen to avoid selection bias
caused by observing the screen. From another perspective, this
approach aims to control the variable factors in the experiment,
ensuring its reproducibility.

(a) Preparation (b) Move to screen

Fig. 7: Left side experiment setting.

After using the controller to start the timer, the participant
can move their gaze and body, select one area, walk to
its operating area, close the timer, and touch the area to
complete the selection. The data collection system records
the selected area and time cost. At this stage, there are
no restrictions on selecting and reaching the selected area,
such as walking directly or wandering. Like the right-side
experiment, an assistant would use the selected area after
each participant’s selection, and the participant would make
the following selection. Each experiment point involves three
selections, with six experiment points on the left side.

D. Collected Data

In the right-side experiment, we collected 108 times choices
from participants’ selection for initial probabilities analysis.
The left-side experiment collected 216 area selections and
participants’ motion video data.

The area selection behavior consists of three stages: prepa-
ration, decision, and action. The preparation stage won’t
be used to train the Area Prediction Module. Participants
accompanied their body movements during the decision stage
and moved their gaze to find the best choice. In the action
stage, participants moved towards the operating zone of the
selected area. An illustrative example is shown in Fig 9.

Fig. 8: Data distribution in three different zones.

E. Data Process

Using the time-recording function of the experimental sys-
tem, we analyzed the time spent in different zones. As shown
in Fig 8, it takes approximately 4-6 seconds to complete area
selection actions in zone 1, 5-7 seconds in zone 2, and 4-8
seconds in zone 3. The time cost data revealed four erroneous
motion data, which we removed manually. The remaining 212
motion data contained various ways of moving and walking
toward the screen from six different positions in front of the
screen. We extracted relevant video frames from the recorded
footage using this information. For training the area prediction
method combined with the decision and action stage, we
extracted 180, 210, and 240 frames from the videos of zone
1, zone 2, and zone 3, respectively.

To solve the problem that the selected frames contain redun-
dant information, affecting the model’s training performance
due to the same frame with different labels, some experiment
was set to find the best FPS for model training. Additionally,
to synchronize with the Pedestrians Detection System, we
wrote an automatic script to preprocess the input motion data,
resized the videos to 512×512 resolution, and cropped them
according to the specified duration. Finally, we get the data
set for training the Area Prediction Method with the motion
video as the data selection area as the label.

F. Training Result

TABLE I: Pedestrian Detection System’s Accuracy

Model mAP@.5 mAP@.95 FLOPs FPS

YOLOv7 67.6 39.2 103.2G 69.0
YOLOv7-tiny 66.6 36.9 13.0G 106.4
Ours 69.1 40.2 12.8G 102.0

Results are shown in Table I by training on the joint dataset
of WiderPerson and CrowdHuman, with input 512×512 pixels,
and testing on the WiderPerson test set. The test results
show that our changes to YOLOv7-tiny improve the model’s
accuracy in low-resolution scenes and significantly reduce the
amount of calculation, providing theoretical support for mobile
device deployment.

We employed the Two Steps Analysis Method on the Ran-
dom Forest and XGBoost, respectively, to test the method’s
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Prepare Consider Consider Consider Move

Fig. 9: Example area selection actions.

TABLE II: Result for Apply Two Steps Ananlys Method

Method Accuracy F1-Score

Random Forest 65.74% 65.74
XGBoost 70.67% 70.33
Random Forest(Two Steps Analysis Method) 71.30% 73.24
XGBoost(Two Steps Analysis Method) 80.13% 79.21

effectiveness, as outlined in Table II. Due to the limited
availability of training data, the precision of the results is not as
high as observed in other studies. Still, outcomes demonstrate
that the decision models derived from the Two Steps Analysis
Method surpass the accuracy of directly classified models.
The method mitigates the data imbalance problem in the sub-
interaction area selection scenario.

TABLE III: Architecture’s Final Accuracy and Time Cost

Image Size FPS Accuracy(%) Inference Time(s)

1920×1080 30 78.81 100
512×512 30 77.56 40
512×512 10 88.60 18
512×512 5 88.12 4
512×512 2 86.74 2

The accuracy of our Area Prediction Method in predicting
areas with motion videos under different conditions is shown
in Table III. The accuracy generated with five-fold cross-
validation represents the overall performance of our frame-
work, as the first two modules are responsible for screening
the prediction objects of the prediction module and providing
corresponding motion data. The final region prediction still
depends on the prediction module itself. Results show that
our preprocessing for motion data is effective. Additionally,
we found that reducing FPS does not cause a significant loss
of accuracy, making our framework theoretically feasible for
practical deployment when faster prediction speed is needed
in actual scenes.

V. CONCLUSION

In this paper, we proposed “Area4U,” a framework with a
three functions pipeline that detects pedestrians, judges the
probability of being the user, and predicts and allocates an
area to the high-probability user. The methods used in this
framework all have low computational requirements and with
just two webcams, making it easy to deploy in real-world
environments. Our framework achieved promising results in
predicting interested areas by analyzing 212 selection actions
from 12 participants. However, our study has limitations. We
only tested our idea using simulated data and under ideal
conditions. Additionally, there are unresolved user privacy
concerns due to webcams. In the future, we plan to conduct

further tests in real-world environments to validate our re-
search and prove its feasibility, where we can deal with more
complex situations.
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