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Abstract—Mobile networks are rapidly evolving to cater to the
expanding range of applications. The design of 5G deployments
incorporates the concept of network slices, which are end-to-
end logically isolated segments that provide distinct services.
Within this delivery framework, augmented and virtual reality
(AR/VR) wearables have gained prominence as a service type,
thereby assuming a pivotal role in the realization of the Metaverse.
Beyond the imperative need for stringent latency control, the
successful implementation of the Metaverse relies significantly on
the precise localization of user equipment (UE) within a three-
dimensional (3D) environment. As the successor to the preceding
4G Long-Term Evolution (LTE), 5G networks operate at higher
frequency ranges and denser deployment configurations. Within
such dynamic contexts, ensuring high-precision indoor localiza-
tion becomes a formidable challenge due to the unique signal
characteristics associated with higher frequencies. In pursuit of
this objective, we introduce the 5GPS framework, which leverages
established third-generation partnership project (3GPP) principles
to conceptualize a radio access network (RAN) comprising 5G
femtocells. This framework facilitates the offloading of position-
ing tasks from outdoor base stations (BSs) to enhance indoor
positioning capabilities. The core contribution of our study lies in
illustrating the pivotal impact of the spatial arrangement of 5G
femtocells on the precision of positioning for AR/VR Metaverse
wearable devices. To address this, we present a novel optimization
framework for tackling the NP-Hard problem associated with fem-
tocell deployment, thereby providing a comprehensive solution. We
demonstrate that the utilization of our optimal placement solution
results in a substantial enhancement in positioning accuracy when
contrasted with arbitrary anchor deployments.

Index Terms—indoor positioning, 5G, Metaverse, GDOP, opti-
mal placement

I. INTRODUCTION

The forthcoming mobile network evolution is anticipated
to offer services across diverse sectors, each demanding dis-
tinct quality of service (QoS) standards. To accommodate this
breadth of requirements, 5G and subsequent network genera-
tions rely on a heterogeneous radio access network (RAN). This
RAN comprises 3rd Generation Partnership Project (3GPP) ra-
dio access technologies (RATs) to deliver wireless connectivity
across a spectrum of environments.

Within this ecosystem, an emerging use case involves fa-
cilitating communication among Metaverse users. Companies
such as Meta and Microsoft are striving to establish a seamless
navigation infrastructure encompassing indoor/outdoor cover-
age for Metaverse users. As a result, the need for ultra-precise
localization has become a foundational prerequisite.

LMF

Figure 1: Overview of the 5GPS framework where localization
is offloaded from the 5G base station to the 5G femtocell as
the user moves indoors from outdoors

The Global Positioning System (GPS) is a renowned technol-
ogy for delivering location data outdoors. However, it performs
inadequately in enclosed indoor spaces, leading to service inter-
ruptions. While it is true that in legacy Long-Term Evolution
(LTE) networks, the reported positioning accuracy is notably
inferior to GPS, both cellular and GPS systems encounter
challenges related to limited coverage within indoor settings.

The extensive deployment of heterogeneous 3GPP RANs in
5G has ushered in seamless communication capabilities for 5G-
enabled Metaverse users, delivering dependable coverage and
impressive throughput throughout their outdoor experiences.
Nonetheless, the quest for a universal solution that guaran-
tees highly accurate and reliable localization of Metaverse
users across both indoor and outdoor environments remains
an ongoing challenge. In response to this challenge and to
provide strong coverage indoors, we propose the utilization of
5G femtocells for indoor localization. This approach enables
Metaverse users to enjoy consistent and dependable localization
throughout their entire engagement. A conceptual representa-
tion of this scenario is provided in Figure 1.

The positioning error within indoor environments exhibits a
correlation with both ranging error and geometry-induced error.
For instance, in a scenario where the ranging error is maintained
at or below 10 cm, a benchmark achievable through the
utilization of the ample bandwidth provided by 5G mm-Wave
technology, the geometric dilution of precision (GDOP) for a
specific location equates to 20. This consequently translates to a
final localization error of around 2 m (10 cm × 20 = 200 cm).
This 20-fold increment from 10 cm to 2 m proves to be
unsuitable for use cases where precise positioning is crucial.

Our primary objective is to investigate the implications of
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GDOP and optimize the placement of indoor anchors, which
are referred to as positioning beacons, and are essentially
5G femtocells. While previous research in the literature [1]–
[3] primarily concentrates on ameliorating ranging errors to
enhance location accuracy, our approach encompasses consid-
erations related to the system’s spatial geometric configuration.
Leveraging a novel optimization algorithm, we ascertain the
most advantageous arrangement for 5G femtocells within a
given indoor environment, thereby achieving high-precision
positioning. To support this endeavor, we calculate the Cram’er-
Rao Lower Bound (CRLB) on the position estimator, which
elucidates that the localization error in time difference of
arrival (TDOA) trilateration techniques is a consequence of both
ranging inaccuracies and the relative geometric relationship
between a user and positioning nodes.

Our experimental verification reveals that, even in scenarios
marked by minimal ranging errors, the presence of poor GDOP
can significantly impair the ultimate localization accuracy
of Metaverse users within a three-dimensional (3D) space.
Through the deployment of coverage heatmaps, we illustrate
that GDOP stems from both vertical and horizontal dilution of
precision (i.e., VDOP and HDOP), with the former exerting
a more substantial influence on the overall degradation of
estimation accuracy compared to the latter.

Our contributions are succinctly summarized as follows:
• The proposal of a comprehensive localization system inte-

grating outdoor 5G base stations and indoor 5G femtocells,
all seamlessly connected to a unified localization entity
within the 5G core network.

• The establishment of an optimization framework utilizing
Evolutionary Algorithms (EAs) to address the challenging
NP-Hard problem associated with the placement of 5G
femtocells within indoor settings.

• Conducting an analysis of the impacts of VDOP and
HDOP to demonstrate that the former constitutes a more
substantial error source in contrast to the latter. Conse-
quently, this highlights the necessity for implementing
more stringent constraints during the evaluation of the
optimization problem.

II. 5GPS CORE NETWORK MODEL

In a 5G network, the uninterrupted retention of localization
data is paramount, particularly for scenarios involving high-
mobility User Equipment (UEs). Consequently, we introduce
the model depicted in Fig. 2. This model establishes a unified
core network repository for tracking the location details of a
designated UE throughout its connection lifecycle in a hetero-
geneous 5G system with outdoor and indoor nodes.

The illustrated scenario presents both macro and micro base
stations (BSs) designated for outdoor coverage via the 3GPP-
standardized 5G NR [4]. Simultaneously, indoor coverage is
achieved using 5G femtocells. A critical aspect of the connec-
tivity lies in the conveyance of localization data, sourced both
from outdoor 5G NR and indoor femtocells, to a singular Lo-
cation Management Function (LMF) within the core network.

5G Core

Heterogenous 3GPP Access Network

5G femtocells
SMF

3GPP localization feedback

UPF

LMF AMF

Figure 2: An overview of a multi-RAT 5G network with
indoor/outdoor coverage and shared core network

This integration provides a comprehensive understanding of the
drone’s location within both the indoor and outdoor RANs.

In this configuration, the drone is capable of transitioning
between outdoor nodes and indoor femtocells, ensuring the
precision of its location is upheld in both external and internal
environments. Moreover, this kind of hybrid deployment aligns
with ongoing standardization endeavors. This alignment implies
that there’s no need to alter the LMF application programming
interface (API).

In the subsequent sections of this paper, we delve further into
the inaccuracies associated with indoor localization. We operate
under the assumption of a stable outdoor cellular configuration,
primarily consisting of 5G-NR nodes for positioning.

III. 5GPS POSITIONING

In this section, we commence with an overview of localiza-
tion prerequisites. Subsequently, we explain how 5GPS ensures
real-time, uninterrupted Metaverse user location data. Lastly,
we determine the positioning error bound (PEB) and emphasize
the critical role of spatial geometry in localization accuracy.

A. Fundamental Prerequisites for Localization

Our main focus centers on localization techniques rooted
in ranging-based approaches [5]. These methods involve the
utilization of signals transmitted and received between the user
and anchor nodes. These signals can take the form of either
acoustic [6] or Radio Frequency (RF) [7], depending on the type
of transceivers employed. Beyond signal type, a localization
system relies on an array of measurements, including Received
Signal Strength (RSS), Time of Arrival (TOA), Time Difference
of Arrival (TDOA), or Angle of Arrival (AOA).

Compared to RSS and AOA, a less complex yet highly
reliable measurement method is TOA, which can be estimated
without requiring extensive processing power or specialized
antenna arrays [8]. Time measurements are translated into
distance using the formula r = c × t, where r represents the
distance between the transmitter and receiver, c denotes the
speed of the wave carrying the signal, and t signifies the time it
takes for the waves to travel from the transmitter to the receiver.
By obtaining distance measurements between multiple anchor
nodes and the user, trilateration techniques can be employed to
determine the final location.

A significant challenge associated with TOA techniques is
the demand for precise synchronization between the user and
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positioning nodes, a requirement often unattainable in practical
settings. To that end, TDOA emerges as an alternative approach
reliant on the measurement of arrival times without necessitat-
ing synchronization between users and positioning anchors.

B. 5GPS Trilateration

Within our setup, we depend on TDOA to enable 3D
localization. In general, for the localization of an object in
two dimensions via trilateration, a minimum of three anchor
nodes are essential. Extending this to three dimensions, the
requirement escalates to a minimum of four sources.

After successfully measuring the arrival time stamp at each
of the 5G femtocells, trilateration based on the TDOA technique
is executed to determine the user’s 3D position.

Synchronization is not established between the Metaverse
user and the 5G femtocells. Nonetheless, all the 5G femtocells
possess synchronized clocks, facilitated by a wired connection
among them. Consequently, the received times share the same
synchronization bias, allowing for the representation of corre-
sponding distances as follows:

ri = c× (ti − tT + β) = c× (τi + β), (1)

where ri denotes the corresponding distance between the Meta-
verse user and the i-th 5G femtocell, ti is the received time at
the i-th 5G femtocell, tT is the transmit time, i.e., the time
that the signal left the 5G transmitter on the Metaverse user, β
is the synchronization bias between the user transmitter clock
and any of the 5G femtocells, τi is the propagation time delay
between the Metaverse user and the i-th 5G femtocell, and c is
the speed of light; i ∈ {0, · · · , N −1}, where N is the number
of 5G femtocells which equals four in our design.

As evident in Eq. (1), the precise distances remain unknown
due to the presence of the synchronization bias denoted by β.
Nevertheless, the elimination of β becomes feasible when one
of the anchors is regarded as the reference point as follows:

ri − r0 = c× (ti − t0), (2)

where i ∈ {1, · · · , N − 1}, and the precise measurement of t0
and all the remaining ti values exist. The geometric depiction
of a set of points in a 3D space, where each point maintains
a constant distance subtraction from three specified points (the
foci), results in the formation of a hyperboloid. The intersection
of these hyperboloids collectively denotes the user’s location,
expressed as follows:

[x y z]T = min e(x, y, z), (3)

where [x y z]T is the location of the user in a Cartesian
coordinate system and e(x, y, z) is defined as:

e(x, y, z) =
N−1∑
i=1

{
(ri − r0)−

√
(xi − x0)2 + (yi − y0)2 + (zi − z0)2

}
,

where [xi yi zi]
T values are the Cartesian coordinates of the

i−th 5G femtocell.

C. 5GPS Positioning Error Bound

A valuable metric for evaluating localization precision is the
Cramer Rao Lower Bound (CRLB), representing the minimum
achievable location variance when utilizing an unbiased loca-
tion estimator. Assuming independence and a zero-mean Gaus-
sian noise with constant variance σ2

r in range measurements [9],
the positioning error bound for 5GPS is derived.

As previously mentioned, obtaining an accurate estimation of
ri is not feasible. Nevertheless, precise clock synchronization
among the 5G Femtocells facilitates the accurate calculation of
the difference ri−rj . To proceed with the remaining steps, we
designate r0 as the reference femtocell and compute the values
of ri − r0 as follows:

ri − r0 =
√
(x− xi)2 + (y − yi)2 + (z − zi)2

−
√
(x− x0)2 + (y − y0)2 + (z − z0)2. (4)

Due to the presence of ranging measurement inaccuracies,
the precise value of ri − r0 remains unknown, leading to
errors when solving for [x y z]T in Equation (4). In order to
establish a relationship between the collective 3D positioning
error, denoted as σT (x, y, z), and the distance estimation errors,
σri , originating from the measurement devices, it is essential
to determine the variance of the 3D location estimator:

σT (x, y, z) =
√
σ2
x + σ2

y + σ2
z , (5)

where (σ2
x, σ

2
y, σ

2
z) are the variances of the error for x−, y−,

and z−axis estimation, respectively. Let ∆X = [∆x ∆y ∆z]T

be the derivative on the [x y z]T estimations; then, for the
positioning variance, based on Eq. (5), we have:

σ2
T (x, y, z) = Trace

(
E
(
∆X∆XT

))
, (6)

and Trace(.) denotes the sum of the diagonal elements of the
matrix. Next, the correlation between σ2

T (x, y, z) and the σ2
ri

is derived. To achieve this, we differentiate Eq. (4), that is

∆ri −∆r0 =
∆x(x− xi) + ∆y(y − yi) + ∆z(z − zi)√

(x− xi)2 + (y − yi)2 + (z − zi)2

−∆x(x− x0) + ∆y(y − y0) + ∆z(z − z0)√
(x− x0)2 + (y − y0)2 + (z − z0)2

, (7)

where second- and higher-order terms have been neglected.
For the localization system with N 5G femtocells, Eq. (7)
can be written as ∆Ri − ∆R0 = Ψ∆X, or equiva-
lently ∆X = (ΨTΨ)−1ΨT (∆Ri − ∆R0); where ∆Ri =
[∆r1 · · · ∆rN−1]

T , ∆R0 = [∆r0 · · · ∆r0]
T, and

Ψ =


x−x1

r1
− x−x0

r0

y−y1

r1
− y−y0

r0
z−z1
r1

− z−z0
r0

...
...

...
x−xN−1

rN−1
− x−x0

r0

y−yN−1

rN−1
− y−y0

r0

z−zN−1

rN−1
− z−z0

r0

 .

We can make the assumption, without loss of generality, that
Var(ri) = σ2

r , and that the errors ∆ri are uncorrelated. Thus:

Cov(∆X) = Φ (IN−1 + JN−1)Φ
Tσ2

r , (8)

where Φ = (ΨTΨ)−1ΨT , IN−1 is the identity matrix of size
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(a) Beacon placement with low
location estimation error

(b) Anchor placement with high
location estimation error

Figure 3: Comparison of GDOP on location estimation error
due to different anchor placement

Table I: Evaluation of GDOP Values

GDOP Values Evaluation of the Geometry
1 Ideal

1− 2 Very Good
2− 5 Good
5− 10 Medium
10− 20 Sufficient
> 20 Bad

(N − 1)× (N − 1) and JN−1 is the (N − 1)× (N − 1) matrix
with all its entries equal to one. Based on Eq. (6) the variance
of the 3D location estimator is:

σ2
T (x, y, z) = G(x, y, z) · σ2

r , (9)

and G(x, y, z) = Trace
(
Φ(IN−1 + JN−1)Φ

T
)
.

As a result, the overall location accuracy is influenced by the
geometry-induced error G(x, y, z), which is entirely determined
by the relative geometry between the localization anchors and
the user.

In satellite navigation G(x, y, z) is known as GDOP which is
a term used to specify the error propagation as a mathematical
effect of navigation satellite geometry on positional measure-
ment precision.

GDOP consists of HDOP and VDOP, GDOP =√
HDOP 2 + V DOP 2. HDOP, which is the G(x, y), repre-

sents the effect of the relative geometry between positioning
anchors and the user on the X − Y plane, while VDOP, G(z),
shows the impact of geometry on the Z-axis estimation. Table I
shows the evaluation of the GDOP values.

The graphical representation of GDOP is presented in Fig. 3
for two distinct scenarios. In the first scenario, illustrated in
Fig. 3a, the beacons exhibit a more favorable placement in com-
parison to the configuration shown in Fig. 3b. Consequently,
this disparity leads to varying location estimation errors, as
evident in the respective shaded regions.

We aim for optimal GDOP while ensuring reasonably low
HDOP and VDOP values simultaneously. Good HDOP with
poor VDOP results in accurate 2D localization but poor Z-
axis estimation. Most existing literature focuses on 2D local-
ization [9], [10], which is why they often overlook optimal
anchor deployment. Yet, in 3D environments like the Meta-
verse, precise Z-axis estimations are crucial. In this section, we
introduced GDOP, HDOP, and VDOP to address localization
errors. In the next section, we propose an algorithm for optimal

5G femtocell placement in indoor settings to achieve favorable
GDOP, HDOP, and VDOP.

IV. 5GPS FEMTOCELL DEPLOYMENT STRATEGY

Recent years have witnessed extensive research into an-
chor placement optimization, addressing both indoor localiza-
tion [9]–[13] and wireless network configurations [14], [15].
This research primarily focuses on determining the optimal
number of anchors necessary to effectively cover a given indoor
space, which is heavily influenced by the sensor technology
in use, given the diverse coverage capabilities they offer. For
instance, in low-power Bluetooth systems, the transmission
is typically omnidirectional whereas ultrasound-based systems
have beam angle constraints, impacting sensor quantity and
placement [16].

Previous localization methodologies primarily focused on
stationary targets within 2D scenarios, thus neglecting the intri-
cate spatial relationships that exist in three dimensions between
the target and anchor points. Consequently, determining the
optimal placement for a mobile target within a 3D space
remains an ongoing challenge [10]. Furthermore, establishing
an anchor placement configuration for indoor localization that
minimizes the relative geometric error between the nodes of the
localization system and the user at any given position has been
recognized as a well-established NP-Hard problem [9]–[12].

In this section, we introduce an optimization algorithm
designed to determine the optimal placement of 5G femtocells
with the aim of reducing the localization error resulting from
unfavorable relative geometry. The presented optimization algo-
rithm is devised to ensure that both the X−Y plane (horizontal)
and the Z-axis (vertical) exhibit high levels of accuracy in
localization estimation.

It is worth noting that the Z-axis is especially susceptible to
errors from geometric factors. Even when the overall GDOP
for a given point is favorable, there is no guarantee that the
VDOP will be as favorable as the HDOP for the same point.
This often leads to precise estimations in the X − Y plane but
substantial inaccuracies in the Z-axis estimations.

To the best of our knowledge, we are the first to propose
an algorithm aimed at enhancing the localization accuracy for
indoor Metaverse users, encompassing both the X − Y plane
and the Z-axis.

To tackle the NP-Hard problem, we employ two constraints
related to the average values of G(x, y) and G(z). Once these
constraints are met, the configuration with the lowest G(x, y, z)
value represents the final solution. Although there might be
other solutions with similar or lower G(x, y, z) values, our
primary objective is to ensure that the location estimation for
every point in the room is minimally affected by the relative
placement of anchors. Therefore, finding a configuration that
meets the specified thresholds for the averages of G(x, y)
and G(z) fulfills our goal. This approach streamlines our
optimization algorithm while preserving our commitment to
minimizing the impact of geometric factors.

In the remainder of this section, we explain the details
of our proposed optimization framework. In Sec. IV-A, we
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formulate the NP-Hard optimal placement problem followed
by the illustration of the optimization algorithm’s mechanism
in Sec. IV-B.

A. Problem Formulation

Considering the continuous mobility of the user, the com-
putation of G(x, y, z), G(x, y), and G(z) for a single location
is insufficient. Therefore, we calculate their averages across all
points within the indoor space, based on the provided floor
plan. Our objective is to identify the optimal placement for
a set of four 5G femtocells by minimizing the average value
of G(x, y, z), denoted as G(x, y, z), while ensuring that the
averages of G(x, y) and G(z), represented as G(x, y) and G(z)
respectively, remain below the specified threshold levels. The
ultimate optimization can be expressed as follows:

min
∑

U Trace
(
Φ(IN−1 + JN−1)Φ

T
)

s.t. G(x, y) < hT ; G(z) < vT

where U is the user domain which is a subspace of the indoor
environment that includes all the possible positions where the
Metaverse user can be, Φ comes from Eq. (9), hT , and vT are
the threshold values for G(x, y) and G(z), respectively.

Our objective is to minimize G(x, y, z) with the aim of
enhancing localization accuracy. Simultaneously, we enforce
constraints on G(x, y) and G(z) to maintain low horizontal
and vertical estimation errors. This approach guarantees that
overall localization accuracy improvement encompasses both
the estimation of the X − Y plane and the Z-axis. These
computations are extended across all points within the set U.

The anchor domain, denoted as set A, encompasses the
permissible region for the deployment of 5G femtocells. It
includes the entirety of the ceiling and the upper half portion
of all the side walls.

B. Placement Framework

In order to minimize computational time, we have designed
a program utilizing the evolutionary algorithms (EAs) class.
Initially, within our evolutionary algorithm (EA) framework,

Algorithm 1 5G Femtocells Deployment Algorithm

Input: User domain (U), Anchor domain (A), G(x, y) thresh-
old (hT ), G(z) threshold (vT )

Output: Placement of a set of four 5G femtocells
1: while G(z) > vT & G(x, y) > hT do
2: Generate a set of PT random individuals, where each

individual is a set of four 5G femtocell anchors
3: for i = 1 to i = number of iteration do
4: Check the fitness of all available individuals;
5: Kill the worst ones to keep having PT individuals;
6: Select the individuals with better fitness as parents;
7: Crossover adjacent parents, make an offspring;
8: end for
9: end while

we generate a set of PT random individuals. Each individual is

Table II: 5G femtocells placement for different room sizes with
a random solution to benchmark the optimal case

Room Dimensions 5G-FC #1 5G-FC #2 5G-FC #3 5G-FC #4

Office Room
(5m × 5m × 4m) (3,4,4) (3,2,4) (3,1,4) (4,1,4)

Conference Room
(10m × 10m × 4m) (6,10,4) (2,7,4) (3,7,4) (7,1,4)

Game Room
(20m × 20m × 4m) (18,10,4) (14,3,4) (19,11,4) (14,1,4)

comprised of four 5G femtocells, chosen at random from the
domain A. To mitigate the risk of converging into local minima,
these individuals are distributed into distinct groups.

Following the initial generation, the individuals are arranged
in accordance with their fitness (cost) function, and the selection
for reproduction is based on the obtained results. The fitness
function, which is the average of G(x, y, z) over the complete
set U using a specific configuration of four 5G femtocells,
serves as the criterion. Subsequently, the algorithm chooses the
first Ps individuals as the parent group to create new offspring.

Each pair of adjacent individuals in the parent group partici-
pates in a crossover process, yielding a total of Ps/2 offspring.
The algorithm then reevaluates the fitness function for each new
individual. From the total population of Pn = PT + Ps/2, the
least fit Pk = Ps/2 individuals are removed, resulting in a final
population of PT individuals.

In the process of generating new offspring, each set of
parents comprises a total of eight 5G femtocells, with four
belonging to each parent. The crossover technique involves
interchanging the coordinate parameters of the first four 5G
femtocells with those of the second set.

Once the specified number of iterations, denoted as Niter,
ends, the first individual in the lineup, determined by the fitness
function, is chosen. If this individual exhibits an G(x, y) and
G(z) below the respective thresholds of hT and vT , then this
individual serves as the definitive solution, representing the
configuration for the placement of the four 5G femtocells.

In cases where the selected individual does not meet these
criteria, the algorithm restarts by generating a fresh batch of
PT individuals and reinitiating the procedure. The algorithm
continues this iterative process until a result is obtained that
complies with the specified constraints.

The values for PT , Ps, and Niter are established during the
pre-processing phase, a critical step that factors in the specifics
of the given floor plan. The selection of these parameters
involves careful consideration and may necessitate a trade-
off between computational efficiency and the precision of the
solution. It is worth noting that the flexibility in adjusting pa-
rameters allows for adaptability to various floor plans, thereby
enhancing the overall utility of this approach in addressing
geometric-induced localization errors.

V. RESULTS & EVALUATIONS

Within this section, our presentation unfolds in two phases.
Initially, we present the outcomes arising from the arbitrary
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(a) Random configuration for an office room (b) Optimal configuration for an office room

(c) Random configuration for a conference room (d) Optimal configuration for a conference room

(e) Random configuration for a game room (f) Optimal configuration for a game room

Figure 4: Comparison of G(.) Values: Random vs. Optimal Placement in Varied Indoor Space Dimensions

Table III: 5G femtocells placement for different room sizes with
optimal solution

Room Dimensions 5G-FC #1 5G-FC #2 5G-FC #3 5G-FC #4

Office Room
(5m × 5m × 4m) (0,1,2) (5,1,2) (5,5,3) (2,2,4)

Conference Room
(10m × 10m × 4m) (7,3,4) (6,1,4) (0,9,4) (8,0,2)

Game Room
(20m × 20m × 4m) (19,10,4) (3,8,4) (8,20,3) (2,0,2)

placement of anchors. This is done to underscore the pro-
nounced influence of geometric considerations on both the
GDOP and the ultimate accuracy of positioning. Subsequently,
we transition to a comprehensive exposition of the results stem-
ming from the implementation of our deployment framework
to assess the performance of our proposed algorithm.

The simulations were conducted using MATLAB 2022a on
a Dell Optiplex 7080 computer. Simulations are based on the
deployment of four 5G femtocells. The primary goal of these
simulations is to determine the optimal arrangement of these
femtocells, a configuration that is inherently dependent on the
dimensions of the room, specifically the provided floor plan.
Accordingly, our algorithm takes the floor plan as input and
furnishes the optimal placement for the 5G femtocells as output.

To assess the algorithm’s effectiveness and adaptability, it
has been tested on three distinct floor plans, each representing
different room dimensions. The first scenario involves a typical
office room with dimensions of 5m × 5m × 4m, designed for
virtual gaming experiences using virtual reality (VR) devices.
The second scenario encompasses a larger space, a conference
room measuring 10 m × 10 m × 4 m, suitable for augmented
reality (AR) applications in more expansive settings. Lastly, the
algorithm is put to the test in an extreme scenario, a large game
room spanning 20 m × 20 m × 4 m, catering to multi-user

AR/VR games such as laser tag. These diverse tests showcase
the algorithm’s versatility across room dimensions ranging from
moderate to exceedingly spacious.

The proposed algorithm is anticipated to exhibit favor-
able performance, especially in scenarios with smaller room
dimensions. Impressively, it has demonstrated its capability
to efficiently generate optimal solutions even for substan-
tially larger spaces. Moreover, in instances where the di-
mensions are exceedingly large, such as a room measuring
100 m × 100m × 4 m, where the coverage range of 5G
femtocells may fall short of spanning the entire floor plan, the
sole adjustment needed is the introduction of additional 5G
femtocells to meet the coverage demands.

The non-optimized benchmark and the optimal deployments
are enumerated in Table II and Table III, respectively. The
measurements in both tables are presented in meters.

Our objective is to illustrate the xDOP values, encom-
passing HDOP, VDOP, and GDOP, which are represented as
G(.) values, namely G(x, y), G(z), and G(x, y, z), within
3D spaces. To achieve this, we compute the average xDOP
values for each (x, y) point across all z planes and present
them through heat maps. This approach not only simplifies the
spatial representation but also allows us to consider all z planes
comprehensively, as opposed to just a limited subset, leading
to more inclusive results.

In order to discern the distinct impacts on localization accu-
racy between the X−Y plane and the Z-axis, we depict HDOP,
VDOP, and GDOP individually. This enables us to highlight
scenarios where a particular configuration may yield favorable
horizontal accuracy but less satisfactory vertical estimations,
thereby providing a more nuanced view of the performance.

Figure 4 illustrates a comparative analysis of xDOP values,
examining both optimal and random placements. The displayed
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Figure 5: CDF plot representation of G(.) values for various
room dimensions with optimal configuration shown in Table III
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Figure 6: CDF plot representation of G(.) values for various
room dimensions with random configuration from Table II

results demonstrate that the algorithm consistently yields favor-
able outcomes across all tested scenarios.

Moreover, the figure underscores the significance of employ-
ing the proposed optimization algorithm for the deployment
of 5G femtocells, as opposed to a random placement method.
This preference is substantiated by the substantial influence
of GDOP values on the overall accuracy of the system. In
order to decrease the multiplicative factor in the σ2

T (x, y, z) =
G(x, y, z) · σ2

r , we want to attain lower GDOP values and by
utilizing the proposed algorithm we achieved this goal.

In Fig. 5, the cumulative distribution function (CDF) of G(.)
values for optimal placement in three setups is depicted. This
analysis aims to show the points in set U with G(x, y, z) values
below a specific threshold. The optimization objective was to
ensure that most points had G(x, y, z) values below 20, which
is achieved in all scenarios, as shown in the figure.

For instance, in a typical office room, over 95% of U points
have G(x, y, z) values below 8, while in a large conference
room, it’s 14, and in a spacious game room, it’s 12. These
values, all below 20, confirm the effective performance of our
optimization framework.

In order to establish a benchmark and emphasize the impor-
tance of optimal placement, we display in Figure 6 the same
plots as in Figure 5, but with random placement. As seen in
this figure, the G(x, y, z) values rise to several hundred, rather
than mostly staying below 20. This suggests that without the
anchor placement strategy, the three-dimensional accuracy may
be unreliable due to the high G(x, y, z) values.

VI. CONCLUSION AND FUTURE WORK

Conclusion. In this study, we focused on how the geometric
relationship between a 5G-enabled Metaverse user and 5G
femtocells impacts indoor localization accuracy. We found that
errors result from both ranging and GDOP, where the latter
is more affected by Z-axis estimation than X − Y plane. To
improve positioning accuracy, we developed an optimization
algorithm for 5G femtocell placement. Our evaluations demon-
strated that our approach notably enhances Z-axis estimation
and overall GDOP, aligning with VDOP patterns.

Future Work. We have successfully established a 5G testbed
utilizing OpenAirInterface (OAI) 5G within our controlled
laboratory setting, and we have conducted comprehensive as-
sessments encompassing resource utilization and over-the-air
experiments [17]. Our future plans entail implementing the
5GPS system by integrating femtocells with this OAI 5G core,
thereby creating a proof-of-concept demonstration.
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