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Abstract—This paper focuses on decentralized dynamic resource
allocation optimization for ad-hoc network communication using
Reconfigurable Intelligent Surfaces (RIS) and a reinforcement
learning approach. Device-to-Device (D2D) communication and
RIS are highlighted for improving spectrum efficiency in wireless
networks. Current centralized D2D schemes incur high signaling
overhead with global information requirements, while distributed
schemes lack global optimization. The proposed framework em-
ploys an Outer-Loop and Inner-Loop strategy, leveraging a Multi-
player Multi-armed Bandit method in the Outer-Loop and the
Twin Delayed Deep Deterministic policy gradient algorithm (TD3)
in the Inner-Loop. The convergence of outer and inner reinforce-
ment learning achieves distributed optimal resource allocation
over time, validated by numerical simulations demonstrating
effectiveness.

Index Terms—Reconfigurable intelligent surfaces, ad-hoc net-
work, Multi-Player Multi-armed bandit, TD3, RIS selection,
Resource block selection, RIS phase shift

I. INTRODUCTION

The next-generation wireless networks, including 5G/6G and
beyond, promise higher data rates, reduced latency, and broader
network coverage, crucial for emerging IoT applications. How-
ever, in ultra-dense networks (UDNs), signaling communication
consumes a substantial share, impacting energy and spectrum
efficiency. Wireless mobile ad-hoc networks (MANETs) alle-
viate this by allowing direct device communication, but face
limitations. Reconfigurable Intelligent Surfaces (RIS) emerge as
a solution. This paper presents an Outer-Loop and Inner-Loop
framework for resource allocation in RIS-assisted MANETs,
addressing multi-player multi-armed bandit challenges. The
approach connects advanced wireless technologies, offering
significant strides in spectrum and energy efficiency.

Key contributions of this paper include:
• Dynamic Resource Allocation Model:formulating resource
allocation in time-varying and uncertain wireless communica-
tion environments in RIS-assisted MANETs.

The support of the National Science Foundation (Grants No. 2128656) is
gratefully acknowledged

•Multi-Objective Optimization:Optimization tackles network
capacity, meeting QoS by addressing RIS selection, spectrum
allocation, phase shifting control, and power allocation.
• Online Optimization Algorithm: An online optimization
algorithm, spanning inner and outer networks, is crafted to
derive optimal resource allocation policies for RIS-assisted
MANETs, thriving in uncertain environments. The outer net-
work employs the D-UCB algorithm for RIS and spectrum
selection, while the inner network utilizes the TD3 algorithm
for swift learning of optimized resource management strategies,
featuring an actor-critic structure that enhances convergence
speed and learning efficiency.

II. SYSTEM AND CHANNEL MODEL

A. System Model
Considering a wireless mobile ad-hoc network consisting of

N pairs of Device-to-Device(D2D) users with M assisted-RIS
using J resource blocks (RB) shown in Figure1. Each RIS
equipped with R electronically controlled elements as passive
relay. The i-th pair of D2D users can select any RIS or RB
at one time slot. Denote the i-th receiver and i-th transmitter
of i-th D2D pair as Dr

i and Dt
i respectively. The received

signal at Dr
i from Dt

i with assistant of RIS m on RB j can
be presented as

yi(t) = hH
i,j(t)xi(t) + fHi,m,j(t)Θi,m,j(t)gi,m,j(t)xi(t)+ni(t), (1)

where hH
i,j(t) is the direct wireless channel from i-th Tx to

i-th Rx using j-th RB. Θi,m,j(t) denotes the m-th RIS phase
shift diagonal matrix used for i-th pair of Tx-Rx using j-th RB.
yi(t) and ni(t) denote the received signal and noise at i-th Rx
respectively, and ni(t) is the additive white noise following
normal distribution CN (0, σ2

k). Transmitted signal is given as

xi(t) =
√

pi(t)qi(t)si(t) (2)

where pi(t),qi(t), si(t) represent the transmit power, beam-
forming vector at Tx and transmitted data to Rx respectively.

B. Inteference Analysis

In the RIS-assisted Multi-user Ad-Hoc Network, the SINR
at the i-th Rx with the m-th RIS on RBj is obtained from
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Fig. 1: multi-RIS assisted ad-hoc wireless network

Equation (3). DJ denotes allocated D2D pairs. Moreover,the
real-time sum-rate of the overall MANET can be given as

R(t) =
N∑
i=1

Ri(t) =

N∑
i=1

Bilog2(1 + γi,j,m(t)), (4)

with Bi being the bandwidth of RBj .

III. PROBLEM FORMULATION
This paper aims to maximize the overall data rate presented

in (4) by an Outer and Inner Loop optimization, subject to the
power limits of all pairs, phase shifting limits of RIS and the
SINR requirements of the pairs, as given by

(P ) max
SRIS ,SRB ,Θ,W

R(SRIS , SRB ,Θ,W)

s.t. γi ≥ γth
i

0 < tr(WHW) ≤ Pmax

θi,m,j ∈ [0, 2π)

(5)

Where SRIS and SRB indicate RIS and RB selection. Θ is
RIS phase shifting, W is Transmitter power. γth

i is the SINR
requirement for the i-th pair. We propose a joint optimization
algorithm for phase shifting and power allocation.

A. Outer Loop of MPMAB framework

1) MPMAB formulation of RIS and RB selection problem:
We consider that at time slot t, an RIS and an RB are al-
located to a particular D2D pair decentralized. Let the set
A = [a1, a2, ..., aMJ ] be the arms set for the MPMAB, where
M is the total number of RIS, J is the total number of RB,
an ∈ M ⊗ J and ⊗ is the Cartesian product of the RIS set
and RB set. Multiple players play at the same time, they have
no information about other players, it can be assumed that
for each player, the rewards are independent. More than one
players can pick the same arm. We don’t consider the collision
situation due to we defined the reward for particular player
and the influence of collision can be captured on the reward.
The illustration will be given below.

2) Illustration of reward for i-th D2D pair: Let R1
i,a(t) be

the instantaneous reward selecting arm a of i-th D2D pair at
time t with phase shifting Θ and power allocation W is given.
In first stage, for i-th D2D pair, the problem is formulated as

(P1) max
SRIS ,SRB

R1
i (SRIS , SRB |Θ,W)

s.t. γi ≥ γth
i

(6)

In the following, the regrets is described to quantify the
performance loss that the players select the suboptimal arms
rather than the optimall arm in this MPMAB problem. The
joint RIS and RB selection profile by A = [a1, a2, ..., aMJ ],
in the first stage, we aim to solve the following problem

a∗ = argmax
a

N∑
i=1

r̂1i (7)

where a∗ = a∗1, a
∗
2, ..., a

∗
N is the optimal stratagy set. Then

the expression of accumulated regrets is given by

Reg =

T∑
t=1

N∑
i=1

r1i,a∗
i
(t)−

T∑
t=1

N∑
i=1

r1i,ai
(t) (8)

B. Inner Loop of Joint Optimal Problem Formulation
1) power consumption: Firstly, with the definition of system

and channel models, the power consumption model for the i-th
D2D pair can be represented as

Pi(t) = Ptrans,i(t) + PRIS,i(t) + PDt
i
+ PDr

i
(9)

2) Joint Optimal Problem Formulation for RIS assisted
MANET: To jointly optimize the transmitters’ beamforming
for Rx W = [WTR,1, ...,WTR,NT ] , and RIS phase shift Θ =
[Θ1, ...,ΘR], we can formulate the optimal design problem
for RIS assisted MANET as maximizing the following term,

max
Θi,Wi

TF∑
t=1

[
N∑
i=1

ηEE,i(t)

]
(10)

with uΘ and uW being the controlling variables as RIS phase
shift and transmission power allocation, g(·) being positive
defined function. ηEE,k(t) denotes the energy efficiency of pair
k that can be defined as ηEE,k(t) = Ri(t)/Pi(t). According
to (4), (9), ηEE,i(t) can be further represented as

ηEE,i(t) =
Bilog2(1 + γi(t))

(µWH
i Wi + PRIS,i)(t) + PDt

i
+ PDr

i

(11)

With the optimization problem formulated in (10), the opti-
mal policies can be obtained as

[Θ∗,W∗] = argmax

TF∑
t=1

[
N∑
i=1

ηEE,i(t)

]
(12)

IV. OUTER AND INNER LOOP OPTIMIZATION
ALGORITHM WITH ONLINE LEARNING

We proposed a Decentralized Upper Confidence Bound
(UCB) algorithm to address the Multi-Player Multi-Armed
Bandit (MP-MAB) problem formulated in eq.(7). While TD3
is used to optimize the actions of individual players in a
continuous action space, we create an algorithm based on
TD3 to solve eq.(10) with the control from (12). The overall
structure is shown in Fig.2.

A. Outer Loop Optimization: Novel MPMAB Algorithm

In the multi-player MAB, two phases exist, namely the
exploration phase and exploitation phase.

Exploration phase: The input includes player count (N), total
arms (JM ), exploration parameter (C), and time horizon (T ).
In initialization, each player i creates arrays of length JM to
track arm selections (ni,a(t)), sample mean rewards (Xi, a(t)),

2024 International Conference on Computing, Networking and Communications (ICNC): Wireless Ad hoc and Sensor 
Networks

1122



γi,j,m(t) =
|Wi(t)(hH

i,j(t) + fHi,m,j(t)Θi,m,j(t)gi,m,j(t))|2∑K
dk∈DJ ,k ̸=i |Wk(t)(gHk,i,j(t) + fHk,i,m,j(t)Θi,m,j(t)gk,i,m,j(t))|2 + σ2

i

, (3)

Fig. 2: Overall Outer and Inner Network Structure1

and distributed upper confidence bounds (D-UCBi, a(t)) for
arms a ∈ a1, a2, ..., aMJ . From t = 1 to T, for each player i
will select RIS m and RB j, we define a D-UCB index as,

D−UCBi,a := Xi,a(t) +

√
Clog(ni(t))

ni,a(t)
(13)

where Xi,a represents the sample mean of rewards from
action a for player i at time,

√
Clog(ni(t))

ni,a(t)
is the exploration

term, ni(t) represents the number of times player i plays the
game in frame t, ni,a(t) denotes the number of times player i
selects action a up to time t.

The update of the MAB estimated action value Xi,a(t) is
using the following formula

Xi,a(t) = Xi,a(t) + (1/ni,a(t)) ∗ [Ri,a(t)−Xi,a(t)] (14)
The D-UCB algorithm is adopted to select the corresponding

action, the design is expressed as

Ai(t) ≡

{
argmax

a
(D-UCBi,a) (15a)

randomly choose untried arm A (15b)

If all arms have been tried, the agent will follow (15a) to
select the arm, otherwise, it will follow (15b). After selecting
action A at time t and obtaining its corresponding reward Xi,a,
the average achievable data rate E[Xi,a] and selection count
ni,a(t) are updated in steps 11 and 12 of Algorithm 1.

Exploitation Phase: After the exploration phase, players
switch to the exploitation phase.

Each player i selects an arm a that maximizes the estimated
mean reward, i.e., Select arm a∗ = argmax(Xi,a(t)) for all
available arms a. Then each player i plays the selected arm a∗

and receives a reward R∗
i,a(t).

Algorithm 1 D-UCB Algorithm

1: Input: Number of agents N and arms A.
2: Initialization:Initialize the following variables:
3: for i = 1 to N do
4: Initialize array Xi,a, ni,a and D-UCBi,a(initialize to 0

for all arms)
5: end for
6: Choose exploration parameter C = 2
7: for t = 1 to T do
8: for i = 1 to N do
9: Select the arm following the rules from eq.(16)

10: Execute arm Ai(t) and observe the reward Ri,A(t),
where Ri,A(t) is getting from the inner loop Alg.(2)

11: Update the estimated mean reward Xi,A(t) for the
selected arm Ai(t) using the eq.(14)

12: Update the selection number for arm Ai(t):
ni,A = ni,A + 1

13: Calculate the D − UCBi,A index using (13)
14: end for
15: end for

B. Inner Loop Optimization: A TD3-based RIS Phase Shifting
and Power Allocation algorithm

Twin-delayed deep deterministic policy gradient (TD3) is
primarily an off-policy model that is suitable for continuous
high-dimensional action spaces. Based on the settings of the
TD3 network, we give the state, action, and reward settings
for our problem first, and then illustrate the proposed solution.
They are given in the following.
1) Problem Reformulation Based on MDP

The MDP problem includes agent, state, action, reward,
and environment, the elements of MDP are illustrated in the
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following.
• State space: Denoted as S, includes current channel condi-

tions, D2D device positions, previous RIS phase shifting
and power allocation, and energy efficiency. S has

s(t) = {{ht
i, f

t
i , g

t
i}i∈N , pi, a

(t−1), {ηtEE,i}i∈N} (16)

• Action space: Denote as A, encompassing phase shifting
transmission power. a(t) is given by

a(t) = {Θ, {Wi}i∈N} (17)

• Reward function: The agent receives an immediate reward
rti linked to energy efficiency (Eq.(11)), i.e.,

rti = ηtEE,i (18)

2) Phase Shifting and Power Allocation Algorithm based on
TD3 The actor network in our TD3 DRL model selects actions,
while the critic network evaluates actions. Parameterized by
θπ, θq1, and θq2, the actor network generates actions with
a = π(s|θπ) using the current state s. Critic networks, based on
the current state s and action a, output the Q value according to
the policy π. The Q value is defined as Qπ(s, a) = r(s, a)+γ∗
E[Qπ(s

′, a′)], considering the next state s′ and action a′. Critic
networks approximate Q values as Q(s, a|θqi), with i = (1, 2).
Target networks mirror the main networks in structure.

Experience pairs s, a, r, s’ are stored in a replay memory.
Randomly sampled batches from this memory calculate the loss
value, updating critic networks. Using the target actor network,
a′ = π′(s′|θπ′

). Then, based on the target policy smoothing
regularization, add noise to the target action a′ as

a′ = a′ + ϵ = π′(s′|θπ
′
) + ϵ (19)

where ϵ ∼ clip(N(0, σ),−c, c) is a clipped noise with bounds
equal to −c and c. Continuing with the concept of dual net-
works, calculate the target value as

y = r + γmini=1,2Q
′
i(s

′, a′|θqi) (20)

Finally, utilize the gradient descent algorithm to minimize the
loss function for the critic networks which is defined as

Lci = (Qi(s, a|θqi)− y)2 (i = 1, 2) (21)

After updating the critic1 and critic2 networks for d steps,
trigger the Actor network update. Employ the Actor network to
compute the action for state s as anew = π(s|θπ). Subsequently,
use either critic1 or critic2 to evaluate the state-action pair
(s, anew), assuming critic1 is used

qnew = Q1(s, anew|θq1) (22)

Finally, we use a gradient ascent algorithm to maximize qnew,
completing the update for the actor network.

Target networks undergo a soft update method with a learning
rate (or momentum) τ . This computes a weighted average of
old and new parameters, assigning the result to the target

network

θqi
′
= τθqi + (1− τ)θqi

′
(i = 1, 2) (23)

θ′π = τθπ + (1− τ)θ′π (24)

Algorithm 2 TD3 based RIS phase shifting and power
allocation Algorithm

1: Input: CSI: {hi, fi, gi}, γ, τ , Td, replay buffer capacity
D, batch size B

2: Output: Optimal phase shifting of RIS θ and power
allocation matrix W

3: Initialization:Initialize the following variables:
Actor network: π(s|θπ) with weight θπ

Critic networks: Qi,π(s, a|θqi, i = 1, 2, with weights θqi

Corresponding target networks Q′
i,π′ and π′ with weights

θπ
′ ← θπ , θπ

′ ← θπ

4: for i = 1 to N (num of D2D pairs) do
5: Collect current system state s(1)

6: for t = 1, 2, ..., T (timesteps) do
7: Select action a(t) = π(s(t)|θπ + ϵ1, ϵ ∼ N (0, σ2)
8: Execute action a(t) to obtain instant reward r(t) and

next state s(t+1)

9: Store (s(t), a(t), r(t), s(t+1) in the replay buffer D
10: Sample mini-batch B from replay buffer
11: for j=1,2,...,B do
12: Compute target action from eq.(19)
13: Compute the target Q value according to eq.(20)
14: end for
15: Update the critic network by minimizing the loss

function defined in eq.(21)
16: if t mod Td then
17: Update the actor policy by using the sampled policy

gradient of eq.(22), i.e.
18: Update the target networks by eq.(24)
19: end if
20: end for
21: end for

V. SIMULATION

This section presents simulation results for the proposed
Inner and Outer joint RIS-RB selection and resource allocation
optimization algorithm in a multi-RIS assisted MANET.

Initially, we compared the U-DCB algorithm with the stan-
dard MAB method. Subsequently, we compared the TD3
algorithm with two other reinforcement learning methods, Q-
learning and Deep Q Network (DQN). In the simulation, the
number of RIS and RB is set as (10, 20), (10, 20) respectively,
with 10 transmitters and 10 receivers randomly located in a
1000m × 1000m map. The channel matrices HBR and HRR
follow a dynamic Rayleigh distribution [10]. Each D2D user
pair is allocated one Resource Block (RB) and one Reflecting
Intelligent Surface (RIS), with both RBs and RISs allocatable
to multiple D2D pairs. Therefore, the number of RBs and RISs
is set to be the same as or larger than the number of D2D
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TABLE I: Simulation Parameters

Parameter Value
Number of D2D pairs 10

Number of RIS (10, 20)
Number of RB (10, 20)

Tx transmission power 20dBm
Rx hardware cost power 10dBm
RIS hardware cost power 10dBm

path loss in reference distance(1m) -30dBm
target SINR threshold 20dBm

power of noise -80dBm
D-UCB time-steps 500

D-UCB Exploration Parameter C 2
TD3 Time Steps 1000

reward discount factor γ 0.99
network update learning rate τ 0.005

Target Network Update Frequency Td 2
policy noise clip ϵ 0.5

Max replay buffer size 100000
Batch size 256

(a) RIS selection of agent 1 (b) RIS selection of agent 2

(c) RIS selection of agent 3 (d) RIS selection of agent 4

Fig. 3: RIS selection variation between agents

user pairs. The size of the experience replay buffer is set to
1,000,000. RISs and D2D pairs are randomly distributed within
the cell, and detailed parameters can be found in Table I.

The performances of the developed Inner-Outer actor-critic
based RL algorithm are illustrated as follows.
1) RIS selection In Figure 3, utilizing the D-UCB algorithm,
agents dynamically select the most suitable RIS to enhance
the overall quality of the RIS-aided wireless ad-hoc network.
In the time-varying wireless environment, the online learning-
based algorithm adeptly captures changes, ensuring effective
and dynamic RIS selection for network quality maintenance.
2) Regrets of D-UCB algorithm vs. MAB algorithm with differ-

ent number of arms Figure 4 compares regrets of the network
with different situations and methods. As shown in Figure 4,
the control policy performance well and the regrets will be
converging with training steps increasing. The performance of
D-UCB is better than the normal MAB algorithm.

(a) Average EE compared with differ-
ent methods

(b) Average SE compared with differ-
ent methods

Fig. 4: An illustration of the variation in EE and SE with varying transmit power using
various methods.

VI. CONCLUSION

This paper presents a two-loop online distributed Actor-Critic
RL algorithm for optimizing multi-Reconfigurable Intelligent
Surface (RIS) assisted Mobile Ad-Hoc Networks (MANETs).
Utilizing multi-player multi-armed bandit (MPMAB) learning,
the algorithm dynamically selects optimal RIS, transmit power,
and phase shift, demonstrating effectiveness in real-time net-
work quality enhancement amid uncertainties, as confirmed by
simulation comparisons.
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