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Abstract—Hierarchical Federated Learning (HFL) is a dis-
tributed machine learning training system in which a server
works with several clients and edge nodes while maintaining data
privacy. Distributed machine learning training systems are also
known as Federated Learning, but HFL is a type of Federated
Learning that utilizes a hierarchical network architecture to
address computational issues when dealing with a high number
of clients. However, HFL is vulnerable to attacks such as data
poisoning, which may jeopardize the entire training process and
result in misclassifications. As system defenders, we have to
tackle this issue. Using a label-flipping attack, we investigate the
effect of data poisoning attacks on HFL training. We propose
a trust management-based strategy to mitigate data poisoning
attacks, which assesses client trustworthiness using a Dirichlet
distribution. We maintain a record of previous activities, allowing
the server to enhance its knowledge based on client reliability.
We demonstrate the proposed approach’s effectiveness through
improvements in model performance after removing malicious
clients, using the MNIST dataset as a benchmark.

Index Terms—Data poisoning, hierarchical federated learning,
trust management model

I. INTRODUCTION

Federated Learning (FL) is a large-scale distributed deep
learning approach that enables a central server to collaborate
with numerous Internet of Things (IoT) devices known as
clients to train a machine learning model. This method pre-
serves data privacy by letting clients update the global model
without transmitting raw data to the server [1], in contrast
to conventional Machine Learning (ML) [2], [3]. FL typically
uses a single-server architecture with many clients, which may
not be appropriate for particular processing needs such as
bandwidth when the number of clients is large [4]. To get
around FL’s computational restrictions, Hierarchical Federated
Learning (HFL) applies FL to a hierarchical network design.
The issue of communication expenses, which significantly
delayed training, is resolved by HFL [5]. Although HFL has
many benefits, it shares FL’s vulnerability to security risks
[6]. These flaws are intended to hinder the functioning of
the global FL model and take often the form of poisoning
attacks [7]. Attacks that poison the model or the data are both
possible. For instance, a data poisoning attack occurs when
the attacker modifies the local data of the clients by injecting
false or reversed information [8]. Clients with tainted data are
regarded as malicious and unreliable. To protect the global

model, they must be found and eliminated from the training
procedure.

It can be challenging to identify malicious clients. Using a
fixed decision threshold, it is decided whether or not a client
parameter is correct for the good functioning of the training
process [8], [9]. However, the performance of the whole model
can be harmed if the threshold is set too high, though, as
malicious clients may be able to avoid detection. In contrast,
if the threshold is set too low, good clients can unintentionally
be excluded, which would lower the model’s quality. The
efficiency of protection mechanisms against data poisoning
attacks in HFL must therefore be improved by finding a
balance between the decision threshold and dynamic client
participation. Moreover, An approach that appears to hold
promise for identifying malicious clients is quantifying various
client behaviors in HFL by altering the decision threshold. As
far as we are aware, this strategy has not yet been explored.

Our contribution is a new malicious client detection mech-
anism in HFL that is based on measuring distinct client
behaviors by varying the decision threshold. In contrast to
the literature such as Baseline [5], Multi-Krum [10], and
FoolsGold [11], our method increases detection performance
because we can be sure with a high probability that a client is
honest before maintaining him in the training process or that
a client is malicious before dropping him. Furthermore, our
method is less vulnerable to the presence of malicious clients
than existing solutions.

In this paper, we aim to leverage the hierarchical structure
of HFL to introduce the Dirichlet trust management system to
evaluate the trustworthiness of each client and assign a trust
score accordingly [12]. The trust management system is based
on Dirichlet distribution which is a Bayesian statistical method
that estimates the likely future behavior of a client based on
his past history [13], [14]. This enables the direct expression
of incremental evaluations and their reflection on the generated
confidence scores. By merging the prior trust score with
the fresh evaluations, the Dirichlet trust management system
determines the updated posterior trust score. We use it to
propose a new scheme for detecting malicious clients in HFL
in a hierarchical network architecture consisting of a server,
edge node, and clients. Our system assumes that the server
and edge node are trustworthy, but not the clients. We assign
trust to a client depending on its behavior, reflected by its
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level of credibility. Specifically, each edge node evaluates the
credibility of its corresponding clients to detect the presence
or absence of poisoning, by analyzing the performance of the
model parameters received from its clients. In HFL, client par-
ticipation is dynamic, meaning that a client may switch edge
nodes from one iteration to another, giving the edge node a
partial view of its client’s behavior history. Thus, the edge node
cannot decide to revoke a client. Therefore, we propose that the
server should handle this task by aggregating the behavior of
clients across different edge nodes, removing malicious clients,
and proposing updates to the decision threshold to edge nodes
that have more malicious clients.

The remainder of the paper is organized as follows. Section
II presents the system model and the adversary’s assumption.
In section III, we present the approach we propose. Numerical
results are presented in section IV, and conclusions are drawn
in section V.

II. SYSTEM MODEL AND ADVERSARY ASSUMPTION

Our model relies on a Server-edge-Client architecture,
where each edge node assesses the credibility of its clients
based on the history of their behavior (malicious or not);
adversarial activity results in revocation from the learning
process. This system model uses the hierAVG algorithm [5],
[15], which consists of clients (with learning models) reporting
model parameters to their corresponding edge nodes, who in
turn submit their model parameters to the server.

A. Problem definition

In data poisoning attacks, the data used to train models is
tainted so that the trained model’s outputs correspond with the
attacker’s predetermined targets [16]. We consider the label
flipping assault, one of numerous data poisoning techniques
because it has negative effects on HFL [9]. By changing
the training data’s actual label to a different label, a label-
flipping attack is carried out. Gradients are then computed
using this ”poisoned” data. By taking advantage of the learning
method, such assaults can dramatically reduce the performance
of the classifier [17]. For instance, a hacker may pass off
legitimate customer reviews as fake, spam emails as secure,
and pneumonic X-ray results as expected [8].

As described in Figure 1 illustrating the HFL training
process with poisoning, each client generates its local data
through its activity and uses it to train the model locally.
However, the attacker alters the data of some clients. At
the end of each training phase, clients send their model
weight updates (parameters) to the corresponding edge node
for aggregation and model update at the edge node level.
Unfortunately, poisoned clients have also sent their weight
updates, resulting in a poisoned model on the edge node. Then,
the edge nodes send their model weight updates to the server
for final aggregation and update of the global model, which
makes erroneous classifications as it is based on poisoned
model weights coming from the edge nodes. The updated new
global model is then sent back to all clients, who continue with

Fig. 1. Data poisoning attack in Hierarchical Federated Learning

the next training phase until the local model accuracy can no
longer be improved.

B. Adversary’s assumption

In this work, it is assumed that the proportion of adversaries’
clients to all other clients is never greater than fifty percent.
Up to 40% of our clients were thought to be attackers. We
also suppose that a client can change his corresponding edge
node and behavior from one iteration to the next due to the
client’s dynamic participation. We take into account two cases.
In the first scenario, the model is constantly under attack from
the rogue client. That indicates that such a client updates the
global model with tainted data at all times. In the second case,
we presume that the malicious client will target the model
roughly fifty percent of the time. In other words, from such a
client, 50% of the updates are poisoned and 50% are not.

III. PROPOSED APPROACH

The poisoning of the global model is done through mali-
cious clients who send incorrect updates, hence the need to
detect and revoke them to secure the global model. In this
section, we propose a robust trust management model for
detecting and revoking malicious clients during training. This
model adopts a Bayesian method to assess the trustworthiness
of clients at each edge node and assist the server in identifying
those who are malicious. Specifically, We propose that the
Server calculate the likely future behaviors of each client
based on their prior actions by utilizing the Dirichlet family
of probability density functions. Clients’ prior actions are
computed based on the credibility judgment report of the
related edge nodes. This technique enables the server to
identify malicious clients so that they can be revoked.

A. Credibility Rating

In our model, the server initializes the global model and
selects edge nodes to collaborate with. We assume that edge
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nodes are initially trustworthy. The server also selects the
clients to participate in training and distributes them to each
edge node.

In the beginning, the server broadcasts the global model to
the edge nodes, who in turn disseminate it to their clients. After
local training, each client sends its updates to its corresponding
edge node. The edge node evaluates the update’s credibility
before making a judgment about the client’s behavior. Highly
Trustworthy, Trustworthy, Untrustworthy, and Highly Untrust-
worthy are the four levels of credibility that are correlated with
behavior judgment. Following the updates evaluation, the edge
node transmits to the server a report describing its verdict of
the credibility of each of its clients. For every client, the server
builds an observation vector. The judgment history of every
client is contained in this vector. The server then computes
the Dirichlet probability based on the observation vector to
determine which client to revoke.

Note that the level of credibility is established by the
observable impact of the updates on the global model per-
formance at the edge node level [8]. Good updates improve
the global model while bad ones deteriorate it. There can
be different performance metrics to observe updates’ impact
(accuracy, loss function, F1 score...). We choose to consider
the global model accuracy. We assume that each client update
after aggregation creates a deviation between the edge node
accuracy before aggregation and the edge node accuracy after
aggregation and we define k possible levels of deviation. We
also define the function h that maps the levels of deviation
to an interval [0, 1] like ∀i ∈ [1, k], h(i) ∈ [0, 1]; where 0
denotes a benign deviation and 1 is a very bad deviation. In
other words, h strictly preserves the order relation between
deviations such that if deviation i is worse than j (meaning
that if i < j), then h(i) > h(j) as illustrated in Figure 2.

Fig. 2. k-levels of deviation mapping

Remember that client’s update must satisfy the edge node
evaluation in order to be credible. We define three criteria to
assess the edge node’s level of satisfaction:

• the current accuracy a ∈ [0, 1] which represents the edge
node accuracy before the client’s update aggregation ;

• the calculated accuracy o ∈ [0, 1] which represents the
edge node accuracy after aggregation;

• the edge node’s decision threshold ρ ∈ [0, 1], which
characterizes the value at which the edge node decides
that an update is malicious at the time of observation.

This decision threshold is defined in our approach as the
degree of tolerance of the edge node for taking decisions
and making judgments. The decision threshold also impacts
the judgment rate. If it is set too high, honest clients may
be revoked, and if it is set too low, a malicious client may
be kept in the training process. However, a fixed decision
threshold does not adapt to the client behavior variation over
edge nodes and communications. That is the reason why we
chose to update his value after the reporting phase.

To quantitatively measure the credibility of an update, we
defined a function cred(a, o, ρ) ∈ [0, 1] to represent the level
of satisfaction of an update based on the current accuracy, the
distance from the calculated accuracy, and the edge node’s
decision threshold. Formally, this function is written as:

cred(a, o, ρ) =

{
1− ( a−o

max(C1o,1−o) )
ρ

C2 if a > o

1− ( C1(o−a)
max(C1o,1−o) )

ρ
C2 if a ≤ o

(1)

C1 represents the cost of penalties for incorrect estimations.
It is greater than 1 to reflect the fact that updates that
deteriorate the model are more strongly penalized than those
that improve it. C2 reflects the sensitivity of credibility. The
higher its value, the greater the sensitivity to the difference
between the current accuracy and the calculated accuracy.
Additionally, this equation ensures that during observations
of updates when the edge node’s decision threshold is low,
they are more severely penalized in case of bad updates.

B. Dirichlet-based Model

In Bayesian statistics, we have a theoretical basis that
allows us to measure uncertainty in a decision based on a
collection of observations. We are interested in the distribution
of the different levels of credibility of the updates from
each client. Specifically, we want to take advantage of the
information provided by this distribution to estimate the level
of credibility that can be attributed to each client during future
communications. In the case of binary credibility satisfactory,
unsatisfactory, a Beta distribution can be used, as indicated
in [7]. For credibility levels with multiple values, Dirichlet
distributions are more appropriate.

A Dirichlet distribution [8] is based on initial beliefs about
an unknown event, represented by a prior distribution. The
initial beliefs combined with collected information can be
represented by a posterior (or updated) distribution. The poste-
rior distribution is well-suited to our trust management model
because trust is updated based on the history of ”client-edge
node” interactions.

Let Θ be a discrete random variable denoting the level of
credibility of an update. For k possible levels, Θ can take a
value in the set O = {θ1, θ2, . . . , θk} corresponding to the
level of satisfaction of the edge node for that update. Let p⃗ =
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(
p(θi)

)
1≤i≤k

be the probability distribution vector of Θ, and

α⃗ =
(
α(θi) = αi

)
1≤i≤k

the vector of cumulative observations
and prior beliefs about Θ. Then, we can model p⃗ using a
posterior Dirichlet distribution as follows:

f(p⃗|α⃗) = Dir(p⃗|α⃗) =
Γ(

∑k
i=1 α(θi))∏k

i=1 Γ(α(θi))

k∏
i=1

p(θi)
α(θi)−1. (2)

where 
p(θ1), ..., p(θk) ≥ 0;∑k

i=1 p(θi) = 1;

α(θ1), ..., α(θk) > 0.

(3)

The expectation probability value of the Θ random variable is
defined as follows:

E(p(θi)|α⃗) =
α(θi)∑k

i=1 α(θi).
(4)

C. Trustworthiness evaluation of client

After receiving and evaluating an update, an edge node
assigns a credibility value to this update in accordance with
equation 1. This credibility value is assigned to one of the
satisfaction levels in the set O = θ1, θ2, ...θk that has the
closest value. Each satisfaction level θi also has a weight wi.
Let p⃗µε be the probability that client µ provides updates to
edge node ε with satisfaction level i, such that:
p⃗µε = (pµεi)i=1,...,k|

∑nk

i=1 p
µεi = 1) .

To express the trust score as a single value, we assign a
weight value wi to each rating level i, which is calculated as:
wi =

i−1
k−1 or wi =

i+1
k+1 .

We model p⃗µε using equation 2. Let Θµε be the random
variable that represents the weighted average of the probability
of each satisfaction level in p⃗µε.

Θµε =

k∑
i=1

pµεwi (5)

After receiving reports from the edge nodes, the server aggre-
gates them and calculates the trust score of the client as:

T µε = E(Θµε) =

k∑
i=1

E(Θµε
i )wi =

∑k
i=1 wiα(θi)

µε∑k
i=1 α(θi)

µε
(6)

where α(θi)
µε is the cumulative evidence that µ has sent an

update to ε with satisfaction level θi. Clients with a low trust
score are revoked, and edge nodes with the most poisoned
clients are advised to improve their decision threshold by one
step d.

IV. PERFORMANCE EVALUATION AND DISCUSSION

The details of the performance evaluation to support our
analysis and proposed approach for minimizing poisoning
attacks are presented in the following sections. We specifically
offer details on the dataset used, the classification model
architecture, and the numerical results.

A. Dataset

In this work, we utilize the MNIST dataset [18], which is
extensively utilized for classification tasks. It contains 60,000
training samples and 10,000 test samples with ten-digit classes
and is made up of handwritten English digits (0-9). The data
is in CSV format, and 60% of the training examples are
poisoned or have inverted labels for experimentation, while the
remaining 40% are not poisoned. The dataset’s original labels
are inverted at random to yield poisoned labels. The dataset
does not initially conform to the conventional data distribution,
but we transform it by subtracting each value from the mean
and dividing it by the standard deviation. To make it easier
to detect malicious clients, we partition the dataset equally
among clients as data shards in an i.i.d way. We present the
numerical results and classification model architecture in the
following subsections.

B. Learning Model and Experimental Setup

The classification model in our work is a 3-layer MLP
with an input layer, a hidden layer with 200 neurons, and
an output layer with 10 prediction probabilities for the digits.
We use the Convolutional Neural Network (CNN) with 21840
trainable parameters as in [2]. After shuffling, we distribute the
dataset among 50 clients and we share equally the 50 clients
among 5 edge nodes. To simulate an assault using the label-
flipping approach, we distribute batches of data with label-
flipped samples to 20 clients (40% of the 50 clients), while the
remaining 30 clients receive batches of data with the original
label. As a result, there are 20 poisoned clients and 30 honest
clients. Our approach experiment’s purpose is to identify those
poisoned clients.

At first, each edge node has a copy of the designed catego-
rization model. The data from the local clients are then con-
verted into TensorFlow dataset objects and batch-processed.
At each communication round, the server broadcasts its global
model to edge nodes which sends it to the participating clients
to begin the training process. The training settings are as
follows: C = 50, B = 16, e = 10, lr = 0.01, d = 0.1
and lr − decay = 0.995 for the number of communication
rounds (R), batch size (B), number of epochs for each local
client (e), decision threshold(d), learning rate (lr) and learning
rate decay (lr − decay). The server collects clients’ behavior
reports from each edge node throughout 100 communication
rounds. After updating its parameters from each client, the
edge node determines the loss and accuracy of the global
model at each communication round, using categorical cross-
entropy as the loss function. The report collector then uses the
collective report from each client to calculate the trust score
model.

C. Results and Discussions

This section describes our approach’s outcomes and how
it effectively eliminates malicious clients with poisoned data.
We provide a full explanation of our methodology’s results.

Figures 3 and 4, which show average client update out-
comes, indicate the global model’s accuracy after averaging
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Fig. 3. Accuracy on the global model by local client updates. 50% of the
data held by poisoned clients are label-flipped datasets

clients’ updates on each communication round. The number
of polluted data points is the only distinction between the
two statistics. With regard to Figure 3, it illustrates accuracy
when 50% of the data points on two clients (clients 1 and 3)
are poisoned, while Figure 4 demonstrates the outcome when
100% of the data points are poisoned.

Our observations show that the poisoned clients are close
to acting similarly to the non-poisoned clients from the 100th
communication cycle in the first attack scenario (Figure 3).
This similarity, however, is not present in the second attack
scenario (Fig. 4). In the first scenario, only a fifth of the data
pieces are poisoned, but clients rapidly begin acting honorably,
making defense more challenging. For the remainder of the
analysis, we concentrate on the first attack scenario.

Fig. 4. Accuracy on the global model by local client updates. All of the data
held by poisoned clients are label-flipped datasets

There are 50 clients; 20 are poisoned, leaving 30 honest
clients. While edge node only has a partial view, the server
oversees each client’s learning process. Equation 6 is used
to determine a trust score for each of the 50 clients by taking
into account the edge node credibility judgment that the server
stores for each client as a report vector. Figure 5 shows the
clients’ trust scores, with some clients having favorable ratings

and others having negative ratings. Clients whose trust score
is lower than 0 are revoked by the server.

Fig. 5. Trust score of 50 Clients

Table I illustrates changes in the edge node judgment
rate and the fluctuation of threshold decision values. It can
be observed that with a threshold decision of 0, the attack
detection rate is 1.05, indicating that the system has identified
and eliminated 21 clients as malicious (as shown in Figure 5),
with only one honest client wrongly identified as an attacker.
This is considered more acceptable than undetected attacking
clients. On the other hand, choosing a threshold score of -0.7
would result in the detection of fewer attacking clients, with
an attack detection rate of 0.80. Therefore, rejecting all clients
with a trust score lower than 0 is a reasonable decision.

Judgement Ratio 0.80 0.92 1.05 1.05 1.05 1.12 1.20
Decision threshold -0.7 -0.5 -0.3 0 0.1 0.3 0.5

TABLE I
EDGE NODE JUDGEMENT RATIO WITH THE VARIATION OF THE DECISION

THRESHOLD

The HFL server revokes all clients whose trust score is be-
low 0. In our experiment, 21 clients are identified as attackers,
so the server removes them from the training process. After
removing the identified clients, we evaluate the performance
of the MNIST classification model with the remaining clients.
The model’s accuracy improves significantly when the server
removes the reported model parameters from malicious clients,
as shown in Figure 6. Note that accuracy refers to the accuracy
of the global model updated after averaging the weights of
each client at each communication round. We observed that
after removing the attacker clients, the classification model’s
accuracy increased from 80.2% to 92,8% over 100 communi-
cation rounds, as shown in Figure 6

Therefore, by using our proposed trust management-based
approach, we can detect data poisoning attacks and improve
the classification model accuracy by around 12.6%, as shown
in Figure 6. We show the comparative analysis of our proposed
approach with baseline simple averaging [5], HFL with Multi-
Krum aggregation [10], and FoolsGold [11] in Table II. Multi-
Krum aggregation can tolerate the presence of up to 31%
attackers and fails above this threshold. On the contrary, our
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Fig. 6. Accuracy of the global model with attacker vs without attacker

Poison clients(%) Baseline MultiKrum FoolsGold Our approach
0% 0 0 0 0

13% 0.34 0.4 0.17 0.23
31% 0.93 0.98 0 0
40% 0.95 0.97 0 0

TABLE II
THE RATE OF ATTACK WAS MEASURED FOR DIFFERENT APPROACHES AS

THE PERCENTAGE OF ATTACKERS VARIED

approach is defensive even with 40% attackers. Similarly,
the attack rate increases significantly with the growth of
the attacker percentages on both Baseline and Multi-Krum
approaches. Our approach outperforms these two approaches
however FoolsGold shows good performance at 13% of attack-
ers. Our future work will look at the performance of attacker
percentages over 40% and evaluate other benchmark datasets.

V. CONCLUSION

Our method identifies malicious clients and excludes them
from the training process by applying a Dirichlet trust manage-
ment and score elimination. This strategy assures that only out-
standing models are utilized for classification algorithms and
contributes to protecting clients’ private information against
poisoning attacks. Last but not least, it should be mentioned
that our Dirichlet trust-based management methodology can
be used in various HFL scenarios where malevolent clients
may jeopardize the training process using a data poisoning
attack. In order to increase the precision of fraudulent client
detection, our approach can be expanded to take into account
additional elements such as clients’ histories of involvement
level.
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