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Abstract—The performance of deep learning (DL) empowered
wireless communications, networking, and sensing depends on
the availability of sufficient high-quality radio frequency (RF)
data, which is more difficult and expensive to collect than other
types. To overcome this obstacle, we propose to harness the power
of diffusion models on latent domains to generate hyper-realistic
RF data for RF sensing. We develop a novel lightweight AIGC
framework centered on latent domains, termed RFID-ACCLDM
(Activity Class Conditional Latent Diffusion Model), to generate
large quantities of RF data at low cost, conditioned on activity
class labels. We demonstrate the high quality of RFID-ACCLDM
generated data via the Frechet Inception Distance (FID) metric,
along with a representative downstream task of human activity
recognition (HAR). The model trained with synthesized data
outperforms its counterpart trained by real data.

Index Terms—Artificial intelligence generated content (AIGC),
Conditional diffusion, Data augmentation, Human activity recog-
nition (HAR), Radio frequency (RF) sensing.

I. INTRODUCTION

The past decade has witnessed significant progress deep
learning (DL)-based wireless communications and network-
ing [1]. However, the availability of vast amounts of high-
quality radio frequency (RF) data is a major determinant of
the efficacy of most DL-based methods. RF data possesses
unique randomness features and is much more difficult to
collect than images or texts. First, RF data is very sensitive
to the open-space propagation environment; any variation in
the transceiver location or the surroundings could create a
different data domain. Second, transceiver devices, waveforms,
frequency bands, and protocols all have a significant impact
on measured RF data. Third, the wireless channel is also time-
dependent, exhibiting large variations over the time of the
day, day of the week, and months. Because of such temporal,
spectral, and spatial dependencies, collecting RF datasets is
an extremely costly task, not to mention that a collected RF
dataset might only be used to a limited extent in a different
setting. As a result, the first obstacle to overcome in making
“ML/AI for wireless” successful is obtaining RF data with
high fidelity and diversity while keeping costs low.

Artificial intelligence-generated content (AIGC) has
emerged as a significant trend recently. Unprecedented
systems such as ChatGPT, DALL-E, and Gemini are leading
the way towards Artificial General Intelligence (AGI).
Transformers and diffusion models are commonly used
as the backbone for these applications, which are mostly
developed in the context of text-to-image generation or
text-prompted AI agents. Can we harness the power of

AIGC to tackle wireless communication problems, especially
generating hyper-realistic RF data? As an earlier generation
of AIGC technology, Generative Adversarial Networks
(GANs), have been investigated for data augmentation [2]–
[4]. However, GANs can only be leveraged as a performance
booster via fine-tuning or augmentation with great room for
improvement [5]. Synthesized data of low fidelity or low
diversity is typically the combined outcome of the stochastic
nature of RF data and the difficulty in training GAN models.
The low-dimensional and simplistically synthesized data
would have limited utility in RF sensing applications,
including human activity recognition (HAR) [6], [7].

In the domain of computer vision (CV), 3D pose animation
data of great fidelity, diversity, and coherence have been
generated utilizing diffusion models [8]–[10]. Chen et al. [11]
went one step further in generating vivid 3D human motion
given a wide array of input prompts by performing diffusion
models on the motion latent space. In this paper, we take one
step further to propose utilizing diffusion models on latent
domains that preserve the time-varying nature of RF sensing
data, to generate hyper-realistic RF sensing data for HAR.
In particular, we shall establish a novel lightweight AIGC
framework centered on latent domains for RFID sensing,
named RFID-ACCLDM (RFID-based Activity Class Condi-
tional Latent Diffusion Model), to synthesize high-quality and
high-diversity RF data at low costs, conditioned on a range of
activity classes. We also construct an RFID sensing system that
interrogates the RFID tags attached to test subjects’ joints for
HAR as a representative example of downstream tasks for our
AIGC model. The conditional latent diffusion model (CLDM)-
based RFID-ACCLDM system will generate massive amounts
RF data for training the RFID sensing system, thereby saving
the enormous work of collecting training RF data with human
labor.

The main contributions of this study can be summarized as
follows:

• To the best of our knowledge, this is the first work that
applies CLDM to generate RF data. Our AIGC data
is of higher quality than existing methods in terms of
accessibility, quantity, fidelity, and diversity. The pro-
posed AIGC model only requires a minimal quantity of
real RF training data, combined with the utilization of
latent representations, thus saving a substantial amount
of time and computation resources on diffusion training
and inference.
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• We quantitatively show that the RFID-ACCLDM gener-
ated data is of high quality through metric of Frechet
Inception Distance (FID) [12].

• Our RFID-ACCLDM generated data is highly effective
in boosting the performance of HAR tasks without the
need for mitigating the domain gaps using additional real
RF data. We demonstrated this by using a representative
downstream task of HAR with RFID sensing, where the
DL model trained with RFID-ACCLDM generated data
outperforms that trained with real RF data.

In conclusion, we address two important problems with an
AIGC for RF sensing approach: (i) how to save the demanding
cost of collecting RF data, and (ii) how to conveniently
synthesize large amounts of high-quality RF data for effective
training of ML models.

The remainder of this paper is structured as follows. We
review related work in Section II and then describe the system
design in Section III. Section IV presents our experimental
study and Section V summarizes this paper.

II. RELATED WORKS

Diffusion-based AIGC applications have largely been ex-
plored in the domain of CV. Ground-breaking results on image
synthesis were reported in [13]. The fidelity of these generated
content and the generalizability and adaptability of diffusion
models have inspired several applications utilizing diffusion
in fields outside of CV. Cao et al. [14] applied diffusion
models in high-frequency spaces and achieved excellent, fast
MRI reconstruction performance. Moreover, diffusion models
conditioned on inputs such as texts and labels have also been
proven to be capable of generating more complex and variant
data. A conditional Denoising Diffusion Probabilistic Model
(DDPM) was used to generate coarse but complete 3D point
clouds based on real-scanned partial 3D point clouds [15],
while a conditional Score-based Diffusion model was used for
time-series imputation tasks for healthcare and environment
data [16].

With the increasingly difficult task of bettering content
generation, some researchers have shifted their attention to the
simpler, lower-dimensional latent space. The ingenious and
natural idea that diffusion models should have even better
performance on latent dimensions, stimulates some recent
applications across different fields. Latent Diffusion models
(LDMs) were first introduced in [17] and has enabled state-of-
the-art image synthesis without excessive computations. Then,
Blattmann et al. in [18] turned an image-based LDM into
an unprecedented high-quality video generator, by inserting
a temporal dimension based on temporal attention to the
LDM. Vision-based 3D human pose estimations have had
prior success using plain diffusion models [8], but the rather
complicated human movements created a huge computational
overhead for the diffusion model. Instead of directly perform-
ing diffusion on human movements, the authors in [11] per-
formed diffusion on the motion latent space. As a result, novel
fidelity was achieved on extensive human motion generation
with greatly reduced cost. Conditional inputs such as textual

descriptions were embedded to enable vivid generation with
only users’ input prompts.

RFID, WiFi, and FMCW radar have been extensively
exploited for HAR [6]. Recently, the incorporation of DL
models has helped improve RF sensing performance. However,
a massive amount of training data with high quality and
diversity is typically needed for the DL models to work [19].
The inherently massive and noisy RF measurements are also
subject to the impact of changes in the environment, user
location, orientation, and user body shape, leading to a difficult
uphill battle for making DL models scalable and generalizable.
One direct and effective method to address these challenges
is data augmentation, and GAN-based methods have been
investigated in this regard [2], [4], [20]. Amplitude-Feature
Deep Convolutional GAN (AF-DCGAN) [20] was presented
to mitigate the efforts involved in collecting WiFi fingerprints
by synthesizing CSI amplitude feature maps. However, any
alteration to the indoor environment may cause a degradation
in location accuracy. Additionally, a complicated multimodal
GAN [21] including two generators and one classification
model was designed to synthesize CSI (channel state infor-
mation) data for addressing the impacts of environmental
changes. Despite their effectiveness in boosting sensing per-
formance, most GAN-generated data exhibit a relatively large
domain gap from real data, which limits their usefulness. A
simple yet powerful data augmentation approach is needed for
such RF sensing applications.

III. SYSTEM DESIGN

As shown in Fig. 1, the proposed RFID-ACCLDM system
consists of two stages. The first stage is a recurrent variational
autoencoder (R-VAE) that can accurately sample latent dis-
tributions and faithfully reconstruct the latent representations
back into original RF data. The latent space of RF activity
data is compact and lightweight, while capturing a significant
amount of features of the raw RF domain. The second stage
is a CLDM that performs the diffusion process on the latent
dimensions. The trained model is able to mass-generate latent
vector representations that can be decoded into realistic and
diverse RF data corresponding to different human activities.

A. R-VAE

The RF data corresponding to human activities, i.e., xL
1:N =

{xL
i }Ni=1, are 2D time-variant data with numerous features, in

which N stands for the time frame number, and L denotes
the number of RF features. RF signals are readily impacted
by nearby movements, and, when captured by RF devices,
behave in a cyclical fluctuation pattern distinctive to different
human activities. To learn the time dependencies in temporal
RF data and sample latent vectors with time dependencies,
we incorporate LSTM (Long Short-Term Memory) units into
the VAE encoder and decoder structure, termed LSTM RF
encoder ε and LSTM RF decoder ψ, respectively. The encoder
ε encodes real RF data xL

1:N into a latent vector z = ε(xL
1:N ) ∈

R1×ld, whose dimension is a 1D vector with arbitrary length.
The LSTM encoder is fed with the input RF sequence over
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Figure 1. The procedure of conditional RF data generation with RFID-
ACCLDM. The reverse process p (see (2)) progressively transforms random
Gaussian noises into plausible time series data, conditioned on embedded class
labels. The structure of the denoiser, the U-Net model, is also illustrated.

time, and the neural network attempts to store all of its data
in its final hidden state ct (cell state) by encapsulating it.
The mean µ and log variance σ2 can then be obtained after
passing through a linear layer. The latent distribution z can
be parameterized by a normal distribution with such mean
and log variance. To enable back propagation for this random
block computation, a reparameterization trick is executed to
approximate z as z = µ + σ̃ · ϵ, where σ̃ = e0.5×log σ2

and ϵ
is sampled from a standard normal distribution N (0, I) with
the same shape of the standard deviation σ̃. The internal states
are then passed onto the decoder ψ consisting of LSTM cells,
which will be used to reconstruct the target sequence. The
encoder and decoder are implemented by a 3-layer LSTM with
a hidden size of 1,024. The latent length of z is set to 256.

The overall training objective is to minimize the total recon-
struction error and negative Kullback-Leibler (KL) divergence
score, which can be expressed as follows [22]:

min
ϕ,θ

LR−V AE(ϕ, θ) (1)

= Eqϕ(z|xL
1:N )[log pθ(x̃

L
1:N |z)]−KL(qϕ(z|xL

1:N )||p(z)),

where qϕ(z|xL
1:N ) and pθ(x̃

L
1:N |z)] are parametric probability

distributions modeling the encoder and decoder, respectively,
with ϕ and θ being the variational parameters; P (z) repre-
sents the latent distribution of N (0, I). The first term in (1)
is similar to autoencoder’s reconstruction loss and can be
trained with mean squared error (MSE) (xL

1:N − x̃L
1:N )2. The

second term can be transformed to −0.5
∑ld

l=1(1+ log(σ2
l )−

µ2
l − exp log(σ2

l )). In each epoch, the total loss is calcu-
lated through

∑M
m=1 xm for M amounts of RF data with

xm = xL
1:N being the RF data for the mth individual activity.

B. RFID Data Generation with Conditional Latent Diffusion

Denoising diffusion probabilistic models [23] progressively
perturb data with random noises (termed the “forward dif-
fusion” process), and then remove noises in succession to
generate new data samples (termed the “reverse diffusion”
process). The former can be designed with a T-length Markov
chain with fixed-variance scheduler to alter data distribution
into an Isotropic Gaussian distribution, whereas the latter
also utilizes a T-length Markov chain to reverse the Gaussian
corruption by learning the transitional kernels parametrically
modeled by a neural network ϵθ(xt, t) such as the U-Net [24].

Nevertheless, raw RF data typically have sophisticated
motion-specific features over time coupled with high-
frequency outliers, which hinder the diffusion model to learn
the true data distribution. With increasing variations of activity
classes, a base diffusion setup with DDPM schedules and a
U-Net will have difficulties generating realistic RF data true to
their class labels (i.e., human activities), while at the same time
consuming more computational time and resources. Therefore,
we propose to carry out the diffusion process on a represen-
tative and low-dimensional RF latent space, i.e., z ∈ R1×256,
to reduce the cost and enhance the generative quality. To meet
the input dimensions of the U-Net, we first reshape the latent
space into a 2D representation of size 1×16×16. The proposed
RFID-ACCLDM system is capable of generating RFID data
of high fidelity and diversity that closely aligns with various
activity classes. The impressively realistic data samples vividly
capture long-range correlation of movement trajectories as
well as short-range delicate movement information of human
joints.

In RFID-ACCLDM, the latent vector is denoted as zRF
t

for convenient reference at any time step within the forward
and reverse diffusion process. Following the notation, zRF

0 =
ε(xL

1:N ) is the first and pre-noising sample in the forward
process, as well as the final sampled latent vector. The forward
diffusion on latent space can be modeled as a Markov nosing
process as follows:

q(zRF
t |zRF

t−1) = N (zRF
t ;

√
αtz

RF
t−1, 1− αtI).

q(zRF
1:T |zRF

0 ) =

T∏
t=1

q(zRF
t |zRF

t−1),

in which the constant αt ∈ (0, 1) is a hyper-parameter for
noising and sampling, and αt is calculated as 1− βt.

Furthermore, we use A to designate the class label of human
activities ranging from simple one-limb activities (e.g., drink-
ing) to complex full-body activities (e.g., fortnite dancing).
To enable conditional latent diffusion, we design a reverse
diffusion process tailored to the latent space of RFID sensing,
and a supervised training method. The class label A is taken
as the conditioning input. The Markov chain for the reverse
process of RFID-ACCLDM is defined as:

pθ(z
RF
t−1|zRF

t ,A) = N (zRF
t−1;µθ(z

RF
t , t | A),Σθ(z

RF
t , t | A))

pθ(z
RF
0:T |A) = p(zRF

T )
∏T

t=1pθ(z
RF
t−1|zRF

t ,A).
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Next, we define a new denoiser U-net ϵθ(zRF
t , t | A), using

activity class labels as the conditional input. The parameteri-
zation of pθ(zRF

t−1 | zRF
t ) is is given by:

µθ(z
RF
t , t) =

1√
αt

(
zRF
t − 1− αt√

1− ᾱt

(ϵ− ϵθ(z
RF
t , t | A)

)
,

where zRF
t is defined as

√
ᾱt · zRF

0 +
√
1− ᾱt · ϵ0 with

ϵ0 ∼ N (0, I) and ᾱt =
∏t

τ=0 ατ . As in [23], the reverse
process of our RFID-ACCLDM system can trained by solving
the following optimization problem:

min
θ

LRFID−ACCLDM (θ) (2)

= Et,ϵ∼N (0,I),zRF
0 ∼q(zRF

0 )

∥∥(ϵ− ϵθ(z
RF
t , t | A)

)∥∥2 .
The denoising function ϵθ(z

RF
t , t | A) estimates the noise

vector ϵ that was introduced to its noisy latent vector input zt.
During the training of the U-Net, the encoder ε can be frozen
to compress motion into zRF

0 . If the overhead of computation
is troublesome for computing devices with limited power,
latent vectors of RF data from different activity classes can
be computed before the diffusion at the cost of scalability and
convenience for the entire system. During the reverse diffusion
stage, ϵθ(z

RF
t , t | A) first predicts zRF

0 with T successive
denoising steps. Then the decoder ψ reshapes and decodes
zRF
0 back to RF data corresponding to specific human activity.

The U-Net, deployed as the denoiser network for the diffu-
sion process of RFID-ACCLDM, is based on a wide ResNet.
We choose U-Net since it can compress and reconstruct a
noisy latent input at time step t to predict the noise that has
been added to the latent input, hence achieving the effect
of “denoising,” which is one step of the reverse diffusion
process of generating new samples. The training objective in
each epoch can be conveniently modeled by (ϵθ − ϵ)2, i.e.,
the MSE function between the predicted noise ϵθ and the
introduced noise ϵ. To capture the time step t when the latent
representation within a batch is currently computed for the
U-Net, we apply sinusoidal positional encodings to encode
the noise level and time step t. To incorporate activity class
conditioned diffusion generation, we first embed the class
labels using an MLP (multilayer perceptron) layer, which can
be easily implemented through a Pytorch function. The class
embedding is then integrated into the U-Net by concatenating
the embedded label with time step t. We denote the resulting
time step as t̃. The implementation of our U-Net network is
shown in the lower part of Fig. 1. We use a basic architecture
of U-Net model for diffusion including residual blocks and
the self-attention mechanism. The encoder compresses our
reshaped latents zRF

0 ∈ R16×16 to as small as R4×4.

IV. EXPERIMENTAL STUDY

A. Implementation and Experiment Setting

As a paradigmatic downstream task, we design a holistic
RFID-based HAR system to evaluate the performance and
advantages of our generative network model. As shown in
Fig. 2, an off-the-shelf Impinj R420 reader, passive ALN-9634
(HIGG-3) tags, and three S9028PCR polarized antennas are

Figure 2. The setup of the RFID-based HAR experimental system.

used in the system. We attach 12 RFID tags to the test subject’s
joints, including the hip, neck, left upper leg, left knee, right
upper leg, right knee, left shoulder, left arm, left forearm,
right shoulder, right arm, and right forearm. A Lenovo Legion
gaming laptop with an Nvidia GTX 1660 Ti GPU and an
Intel Core i7-9750H CPU is used to process raw RF signals
and train diffusion models.

We collect RFID phase data from three antennas of the
reader An Xbox Kinect 2.0 device is used to obtain vision
data, which is used as labels for supervised training in the
original baseline system. The variations between RFID phase
values from two successive time frames are computed as the
ground truth RF data. The sampling rate of RFID phase data
is around 110 Hz, while the frame rate of Kinect is 30 frames
per second (fps). Every collected data sample is preprocessed
and synchronized prior to being downsampled to 7.5 Hz.

In the R-VAE and diffusion training, we set the length of
RFID activity data to 64 samples (or, 8.53 seconds). A window
of 30 frames (4 seconds) with a sliding factor of 10 frames
(1.3 seconds) is slid across 64 frames to obtain 4 RFID data
units of 30 frames, which are used for the downstream task
of HAR. The total dimension of RF data is 30 × 36 where
30 refers to the number of time frames, and 36 denotes the
number of RF features.

We use six RFID data files with a length of 64 frames per
activity class as the U-Net’s training data. These data were
captured from three test volunteers with similar body shapes.
All our models are trained with the AdamW optimizer with a
batch size of 4. As for the R-VAE training, the learning rate is
set to 0.0001. The training task lasts 4 hours. A linearly scaled
variance βt is chosen from β0 = 10−4 to βT = 0.02 for the
diffusion training. The number of noising steps T is set to
1,000. We utilize a cyclical learning rate mechanism with the
maximum learning rate set to 0.005. For run time, the U-Net
is trained for 12 hours, while the diffusion training on raw
RFID data takes 16 hours. For sampling, our latent diffusion
technique only takes 4 seconds to generate one sample, while
the diffusion model on raw data takes nearly 40 seconds.
Classifier-free guidance [25] is implemented to improve data
generation and prevent the model from synthesizing images of
conflicting classes.
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Table I
COMPARISON OF FID SCORES: RFID-ACCLDM VS. RFPOSE-GAN

Standing still Waving Walking

RFID-ACCLDM (proposed) 4.5583 7.0073 3.6421
RFPose-GAN [4] 36.1981 32.2464 45.3412

B. Quality of Synthesized RF Data

A distinctive advantage of the proposed RFID-ACCLDM
model is that it produces high-quality RFID data with great
diversity, as opposed to merely producing data that is homoge-
neous and similar to the training set. Such diversity is highly
desirable for training robust DL models. In this study, we
employ the Frechet Inception Distance (FID) [12] to evaluate
the distribution similarity between collections of generated
and real RFID data. The FID score quantifies the distance
between feature vectors in a high-dimensional latent space.
A lower FID score indicates that the generated RFID data is
more faithful to the real data (higher fidelity).

We randomly sample 80 latent diffusion generated and real
RFID data from different activities for FID calculation and
comparison. The activities range from a simple activity of
standing still to a complicated activity of boxing that involves
all the body parts. As can be seen in Table I, superior FID
scores are achieved by our proposed model over our previ-
ous work RFPose-GAN [4]. RFPose-GAN uses a supervised
GAN to map a specific 3D pose data to its corresponding
synthesized RFID data. It may be hard to train such GAN
models, where only some parts of the data distributions were
learned sometimes. Consequently, it is rather challenging to
synthesize specific activities with minimal variations over time
under noise and interference from the environment, which
result in the high FID scores of RFPose-GAN. On the other
hand, the significantly lower FID scores of RFID-ACCLDM
demonstrate the high fidelity of its generated RFID data. Such
a caliber of FID scores is on a par of state-of-the-art image
synthesis works [17].

C. Human Activity Recognition Results

As a final test of RFID-ACCLDM, we use its synthesized
RFID data to train a downstream task’s DL model. In this
study, the quality of our generated data is tested using an
RFID-based HAR system with six activity classes. We deploy
a straightforward CNN model for the classification task, which
consists of four 2D convolutional layers each accompanied by
a dropout layer to help reduce overfitting. The second, third,
and fourth convolution layer is followed by a maxpooling2D
layer. For the purpose of calculating final accuracy, the convo-
lution output is flattened and fed into a fully connected layer.
Given that the The test data are from the collected ground
truth data including two different subjects at locations slightly
different from where the training data was collected. They
are also processed with time windows starting and ending at
random time frames to try to replicate a real-life scenario.

In Fig. 3, three confusion matrices for RFID-based HAR
are presented. They are obtained by training on 32 minutes
of real data (left), 16 minutes of RFID-ACCLDM generated

data (middle), and 64 minutes of RFID-ACCLDM generated
data (right), respectively. Despite using synthesized data that
is only half the amount of real data, the accuracy and F1 score
are slightly better than training with real data. This is because
our synthesized data offers more fine-grained diversity while
reaching the same level of fidelity as real data. Furthermore,
with the addition of another 48 minutes of RFID-ACCLDM
synthesized data, both the accuracy and F1 score completely
outperform the case of training with real data by a large margin
(reaching 91.80% and 91.56%, about a 9.7% improvement).
This result proves the superiority of our AIGC model because
it only takes us about 36 minutes to create this amount of
synthesized data. It is important to note that the CNN designed
for the classification task is only to showcase the effects of
our generated data, but not to bring out the full potential
of such data and real data. Future work will involve a more
comprehensive system of classifiers for an ablation study.

Fig. 4 shows a comprehensive comparison of F1 scores
obtained through our proposed model by progressively syn-
thesizing larger amounts of data at different training epochs.
It can be seen that the F1 score is steadily improved as more
synthesized data are used in model training. The F1 curve is
able to surpass the model trained on 32 minutes of real data
when only 16 minutes of generated data are used after 480
epochs of pursuit. With 64 minutes of synthesized samples,
the F1 curve becomes higher than that of training on 32
minutes of real data for the entire training process. The models
trained on 128 minutes of synthesized data converge to a high-
performance state after merely 40 epochs, and its F1 curve
reaches a new height of 93.05%. This demonstrates the greatly
reduced domain gap between real and generated data, which
is very common in the case of GAN generated data.

It is important to highlight that the superior F1 scores are
obtained by only using synthesized data: this is an AIGC
method, rather than a data augmentation method. This exper-
iment proves that the data generated by the proposed RFID-
ACCLDM method are can replace real data for CNN-based
HAR. The fidelity and diversity of the AIGC RFID data
synthesized by our model are validated.

V. CONCLUSIONS

In this paper, we proposed an AIGC for RF sensing approach
to address the challenge of lacking RF data. The proposed
RFID-ACCLDM framework utilizes a latent diffusion model
conditioned on activity class labels to generate RFID sensing
data. We demonstrated the high quality and usefulness of
the synthesized data by the proposed RFID-ACCLDM system
through the metric of FID, followed by a representative down-
stream task. The proposed AIGC for RF sensing approach
offered a convincing solution to the pressing issues of how to
obtain high-quality RF data and minimize the high expense of
RF data acquisition.
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Figure 3. The confusion matrices obtained with CNN models trained on 32 minutes of real data (left), 16 minutes of RFID-ACCLDM generated data (middle),
and 64 minutes of RFID-ACCLDM generated data (right).
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Figure 4. F1 scores of human activity classification when the quantity of
RFID-ACCLDM generated data is progressively increased.
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