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Abstract— The Deep Transfer Learning (DTL)-based Channel
State Information (CSI) approach exploits the Deep Neural
Network (DNN) model to provide low-cost CSI feedback for the
target channel. It involves offline training on a given CSI dataset,
followed by fine-tuning for a new environment using a small
amount of collected CSI data, reducing feedback costs. However,
in practical scenarios, the fine-tuned model performs worse on
the source channel compared to the original source model. This
leads to continued use of the poorly performing target model until
it’s fine-tuned again with newly acquired data. To address this,
we propose combining DTL-based CSI feedback with continual
learning. We introduce elastic weight consolidation (EWC) into
the loss function during fine tuning. Simulations show that our
method significantly reduces the degradation of the target model
on the source channel, as measured by NMSE, compared to a
method without continual learning.

I. INTRODUCTION

Channel State Information (CSI) feedback is one of the most
common approaches to acquiring downlink CSI at the base
station (BS), wherein the user equipment (UE) estimates the
CSI and sends it to the BS. While CSI feedback employing
deep neural networks (DNN) has superior CSI reconstruc-
tion performance [1], the limited generalization capability of
DNNs can pose challenges with varying wireless channels,
necessitating retraining with updated CSI data. In the context
of FDD Massive MIMO, the high-dimensionality of down-
link CSI necessitates a substantial dataset for effective DNN
training. To address this issue, the Deep Transfer Learning
(DTL) based CSI feedback was proposed in [2]. DTL is a
technique that leverages knowledge acquired from a specific
environment and adapts it to a different environment. The
DTL-based CSI feedback targets Clustered Delay Line (CDL)
channel models representing various channel environments,
which are categorized into five types from CDL-A to CDL-
E. In the DTL-based CSI feedback, a deep learning model
(source model) is initially trained using a large amount of
CSI data (source data) collected from a source channel (CDL-
A). Subsequently, the parameters of the source model are
fine-tuned using a limited amount of CSI data (target data)

acquired from a target channel (CDL-B/C/D/E). By doing so,
it becomes possible to create a model tailored to the target
environment (target model) using less data and in significantly
less time. However, despite improving the CSI feedback in
terms of Normalized Mean Square Error (NMSE) in the target
channel, the fine-tuned model generated using this approach
[2] no longer performs well in the source channel. In real-
time-varying channel environments, it is quite possible for
the channel environment to transition back from the target
channel environment to the source channel environment. In
such cases, the target model, which performs poorly on the
source channel, continues to be used until it can be fine-tuned
with the source data again. Continual learning enables DNN
to leverage knowledge acquired from previous tasks (or in
previous environments in our case) without the need to retrain
from scratch even if the data used from these previous tasks
is no longer available [3].

In this paper, to mitigate the degradation of the target
model’s reconstruction performance on the source channel, we
propose a method that combines the DTL-based CSI feedback
with continual learning. In wireless communications, continual
learning has been applied to enhance robustness in areas of
signal detection and channel estimation [4] [5]. However, as
far as our investigation reveals, continual learning has not
been previously employed in the context of DTL-based CSI
feedback. In this paper, we apply one of the continual learning
methods, a regularization-based technique known as Elastic
Weight Consolidation (EWC), to the DTL-based CSI feedback
approach. This incorporation of EWC aims to make the target
model less susceptible to forgetting the knowledge acquired
from the source data. Simulation results show that the target
model generated by our method can alleviate the degradation
of the NMSE on the source channel when compared to the
target model without EWC. Furthermore, we illustrate that the
target model produced by our method, using the CDL-ALL
source data, which encompasses a mixture of CDL-A through
CDL-E, consistently achieves favorable NMSE performance
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Fig. 1. A process of the DNN-based downlink CSI feedback approach

across various channels.
The remainder of this paper is structured as follows. Section

II highlights the key idea and concepts behind the DTL-based
CSI feedback as described in [2]. Section III describes our
method, which combines DTL-based CSI feedback and con-
tinual learning. Section IV describes our computer simulation
parameters and presents the obtained results. Finally, Section
V concludes this paper.

II. DTL-BASED CSI FEEDBACK

In this section, will first describe how DNNs are used for
CSI feedback approach using DNN. Afterwards, we introduce
the DTL-based CSI feedback approach [2].

A. The DNN-based downlink CSI feedback approach

The DNN-based downlink CSI feedback approach is illus-
treated in Fig. 1. Initially, the UE estimates the downlink CSI,
represented as H. This estimated CSI is then passed through
the DNN’s encoder, resulting in a low-dimensional code word
represented as s. Subsequently, the code word, s is fed back
from the UE to the BS. When the BS receives s, it is input
to the decoder in the DNN and reconstructed into the original
CSI Ĥ. To assess the accuracy of DNN recovery, we employ
the NMSE as an evaluation metric.

NMSE = E

[∥∥∥H− Ĥ
∥∥∥2
2
/
∥∥∥Ĥ∥∥∥2

2

]
. (1)

B. DTL-based CSI feedback approach

The wireless scenarios in this research are simulated using
CDL channel model [6]. CDL channel model is specifically
defined within the 5G standard. It includes five types: CDL-A,
CDL-B, and CDL-C for Non Line-of-Sight (NLOS) channel
environment, and CDL-D and CDL-E for Line-of-Sight (LOS)
channel environment.

In [2], DTL is utilized to obtain the DNN for individual
target channels. First, the DNN is trained as the source
model using an extensive dataset of CDL-A source channel
as the source data. Subsequently, the source model undergoes
fine-tuning using a smaller dataset of CDL-B/C/D/E target
channel, which serve as the target data respectively. This
process enables the generation of a target model for each
target channel, CDL-B/C/D/E, with fewer samples and shorter
training time compared to approaches that do not employ DTL.
However, the target model tends to forget the training results
of the source task, resulting in a significant degradation in
NMSE performance on source channel compared to that of the

TABLE I
NMSE ACHIEVED BY THE SOURCE MODEL AND THE TARGET MODEL

(SOURCE CHANNEL CDL-A, TARGET CHANNEL: CDL-B).

Evaluation channels
NMSE of each model

in evaluation channels [dB]
source model target model

CDL-A (source channel) -28.48 -20.77
CDL-B (target channel) -14.82 -25.22

source model. Table I shows the NMSE that the source model
and the target model achieve on the source channel (CDL-
A) and the target channel (CDL-B). In general, when dealing
with new tasks, neural networks tend to forget the knowledge
acquired from previously learned tasks. In the case of Table
I, the DNN has forgotten the source task, which involved
training on the source data (CDL-A), while it was focused
on the target task of fine tuning with the target data (CDL-B).
As a result, the NMSE of the target model on CDL-A source
channel is much worse than that of the source model. This is
known as catastrophic forgetting, and it presents a challenge in
real-time-varying channel environments. In real-time-varying
channel environments, it becomes necessary to collect data
from the changed environment and retrain the target model
with this new data. There’s a possibility that the environment
may change and become similar to the source data. In such
cases, the target model must continue to be used with degraded
performance until retraining is finished.

Continual learning is a progressive learning mechanism to
mitigate catastrophic forgetting and enable a model to learn
multiple tasks. Methods of continual learning can be broadly
categorized into three main categories: (i) regularization-based,
(ii) replay, and (iii) parameter isolation methods [3].

III. PROPOSED METHOD

To mitigate the substantial degradation of NMSE in the
source channel of the target model, we introduce continual
learning into the DTL-based CSI feedback approach [2]. As
mentioned earlier, there are three main methods of continual
learning: regularization-based, replay, and parameter isolation
method. We opt for a regularization-based approach called
EWC. It is the most straightforward to apply to the DTL-
based downlink CSI feedback approach among the three
methods because there is no need to modify the architecture
of the neural network itself. In EWC, a regularization term
is incorporated into the loss function, which signifies the
importance of retaining knowledge from previous tasks.

In this paper, the regularization term is used in the loss
function during fine tuning. Generally, the loss function during
fine tuning denoted as Ltarget for the DNN is represented as
follows.

Ltarget =
1

Ns

Ns∑
i=1

∥f(θtarget,Hi)−Hi∥2 (2)
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Fig. 2. A flow of proposed approach. (The conventional DTL-based CSI
feedback approach uses Ltarget instead of LEWC )

where Ns is the number of samples used for fine tuning, Hi

is the estimated CSI, f(θtarget,Hi) is the output of DNN,
θtarget are weights of the target model. This loss function
will learn for the target task forgetting the source task. In this
paper, we introduce LEWC , which combines Ltarget with an
EWC regularization term, as a loss function during fine tuning.

LEWC = Ltarget +

L∑
i=1

µ

2
Fi(θtarget,i − θsource,i)

2 (3)

L represents the number of DNN layers, and µ is the coeffi-
cient, which indicates the importance of the source task with
respect to the target task. Fi is the Fisher information matrix
for layer i. θsource,i and θtarget,i are the weight matrices of
the source and target models of layer i, respectively. By adding
the EWC regularization term, during the learning of a target
task, any deviation from the optimal weights of the source
task is penalized. This prevents the weights from becoming
biased toward the target task, allowing the target model to
retain knowledge from the source task. It is also important to
highlight that this approach is agnostic to the DNN architecture
and can be applied to various types of DNNs. The flow of this
approach is presented in Fig. 2.

IV. SIMULATION RESULTS

A. Parameters Setting

Our experiment focused on the FDD massive MIMO sce-
nario. The uplink channel frequency is 2.0 GHz, while the
downlink channel frequency is 2.1 GHz. The Number of UE
antenna is 2, and the BS has 32 antennas. Our experiment
employed 72 subcarriers with a spacing of 15 KHz and 14
OFDM symbols. The estimation of the UE’s CSI and the
feedback CSI at the BS were assumed to be error-free. In the
simulation, we used the DNN from [2], and the compression
ratio was set at 1/8. 50000 source data samples are used for pre
training while fine-tuning employs 1000 target data samples.
As for the source channel, we utilized CDL-A and CDL-ALL,
where CDL-ALL consists of 10 000 samples from each CDL-
A/B/C/D/E.

B. Simulation Results

1) Evaluating the impact of EWC coefficient µ: First, we
evaluated the effect of the EWC coefficient µ. Table III

TABLE II
SIX CASES TO BE CONSIDERED.

# Source channel Model to measure NMSE

1 CDL-A Source model

2 CDL-A Target model without EWC

3 CDL-A Target model with EWC

4 CDL-ALL Source model

5 CDL-ALL Target model without EWC

6 CDL-ALL Target model with EWC

illustrates the NMSE of the target model as µ = 2x is varied.
The target channel is CDL-B and the source channel is CDL-
A. The bottom columns of Tables III display the average
NMSE for the five evaluation channels (CDL-A, CDL-B,
CDL-C, CDL-D, and CDL-E). For instance, in the first row
and first column of Table III, the value of -22.22 dB represents
the NMSE in CDL-A of the target model fine-tuned in CDL-B
with µ = 2−9, using the source model trained in CDL-A. As µ
increases, the NMSE achieved by the target model in the CDL-
B target channel tends to degrade, while the NMSE achieved in
the source channel (CDL-A) tends to improve. This is because
with increasing µ, the penalty for large deviations from the
source model parameters also increases. Figures 3 and 4 depict
the average NMSE across the five evaluation channels of
the target model as µ is varied. Fig. 3 displays the NMSE
for models fine-tuned with CDL-B/C/D/E target channels,
using the CDL-A source channel. On the other hand, Fig.
4 illustrates the NMSE for the model fine-tuned with CDL-
B/C/D/E target channels, using the CDL-ALL source channel.
For example, the value of -23.75 dB in Fig. 3 corresponds
to the entry in the first column of the sixth row of Table
III (the average NMSE across the five evaluation channels
of the target model fine-tuned in CDL-B with µ = 2−9,
using the source model trained in CDL-A). Based on this,
we aimed to identify the value of µ that yields good NMSE
performance, irrespective of the channel model. For the CDL-
ALL source channel, it was observed that the average NMSE
tends to be smaller when µ = 2−6. In the case of the CDL-A
source channel, the lowest average NMSE is achieved when
µ = 2−9. However, Table III indicates that the NMSE in the
CDL-A source channel at µ = 2−9 experiences a significant
degradation compared to that at µ = 2−6. Considering the
above results, we selected µ = 2−6, and this value will be
used for subsequent simulations.

C. Comparison of the case with and without EWC

We conducted a comparison between cases with and without
the EWC regularization term, i.e., using LEWC versus using
Ltarget as the loss function during fine tuning. Table V shows
the NMSE achieved by the source model, the target model
without the EWC regularization term, and the target model
with the EWC regularization term on both the source channel
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Fig. 3. Average NMSE across the five evaluation channels achieved by the
target model when varying µ = 2x (source channel: CDL-A, target channel:
CDL-B/C/D/E)
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Fig. 4. Average NMSE across the five evaluation channels achieved by
the target model when varying µ = 2x (source channel: CDL-ALL, target
channel: CDL-B/C/D/E)

(CDL-A) and the target channels (CDL-B/C/D/E). The NMSE
of the target model without the EWC regularization term on
the source channel significantly degraded compared to that
of the source model. On the other hand, the target model
with the EWC regularization term mitigated the degradation
of NMSE achieved on the source channel, although it led to
a degradation in NMSE on the target channel compared to
the target model without the EWC regularization term. This
result shows that in real-time-varying channel environments,
our method can reduce the relearning cost of the target model
when the environment switches from the target channel back
to the source channel.

D. Consideration of the case when a good NMSE is achieved
on any channel

We considered the case when a good NMSE is achieved on
any channel. The six cases shown in Table II were considered.
For source channels, we examined both CDL-A and CDL-
ALL. CDL-ALL was considered because it is advantageous
to incorporate a diverse set of channel models in the source
data to attain good NMSE across various channels. Table IV

TABLE III
NMSE ACHIEVED BY THE TARGET MODEL WHEN VARYING µ (SOURCE

CHANNEL: CDL-A, TARGET CHANNEL: CDL-B)

Evaluation NMSE of the target model when varying µ = 2x

channels in evaluation channels [dB]
x = −9 x = −8 x = −7 x = −6 x = −5 x = −4

CDL-A -22.22 -23.08 -24.09 -25.42 -27.12 -28.24
CDL-B -23.14 -21.62 -19.9 -18.13 -16.42 -15.33
CDL-C -23.82 -23.12 -22.28 -21.9 -21.91 -21.72
CDL-D -25.01 -24.42 -24.32 -25.15 -26.33 -27.23
CDL-E -25.34 -24.56 -24.17 -24.67 -25.32 -25.62
AVG -23.75 -23.22 -22.58 -22.05 -21.37 -20.74

illustrates the NMSE achieved by the models generated in the
six cases outlined in Table II across different channels (CDL-
A/B/C/D/E). The target channel varies from the CDL-B to
CDL-E samples. The target model created using CDL-ALL as
the source channel and fine-tuned with the EWC regularization
term (case 6 in Table II) exhibits superior NMSE compared
to the other cases, regardless of the channel. These results
indicate that the cases using CDL-ALL as the source channel
and incorporating the EWC regularization term tend to achieve
a good NMSE for any channel.

V. CONCLUSIONS

In this paper, we propose a DTL-based CSI feedback
combined with continual learning to mitigate the degradation
of the NMSE achieved by the target model on the source
channel. Specifically, we introduced the EWC regularization
term into the loss function during fine tuning. The target
model generated by our method showed less degradation in
the NMSE achieved on the source channel than the model
generated without the EWC. Furthermore, when using the
CDL-ALL source channel, our method’s target model con-
sistently achieved favorable NMSE across different channels.
These results suggest the our approach can adapt effectively
to real-time-varying channel environments, maintaining good
performance without the need for extensive relearning.
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TABLE IV
NMSE THAT THE SOURCE MODEL, THE TARGET MODEL WITHOUT EWC, AND THE TARGET MODEL WITH EWC,

ACHIEVE ON THE SOURCE AND THE TARGET CHANNELS (SOURCE CHANNEL: CDL-A).

(a) Target channel: CDL-B.

Evaluation channels

NMSE of each model
in evaluation channels [dB]

source model target model target model
w/o EWC w/ EWC

CDL-A -28.48 -20.77 -25.42
CDL-B -14.82 -25.22 -18.13

(b) Target channel: CDL-C.

Evaluation channels

NMSE of each model
in evaluation channels [dB]

source model target model target model
w/o EWC w/ EWC

CDL-A -28.48 -25.55 -26.89
CDL-C -21.37 -28.09 -23.98

(c) Target channel: CDL-D.

Evaluation channels

NMSE of each model
in evaluation channels [dB]

source model target model target model
w/o EWC w/ EWC

CDL-A -28.48 -25.50 -28.04
CDL-D -27.27 -32.54 -29.30

(d) Target channel: CDL-E.

Evaluation channels

NMSE of each model
in evaluation channels [dB]

source model target model target model
w/o EWC w/ EWC

CDL-A -28.48 -24.31 -28.19
CDL-E -25.27 -32.26 -27.05

TABLE V
NMSE THAT THE MODELS OBTAINED BY SIX CASES IN TABLE II.

(a) Target channel: CDL-B.

Evaluation NMSE of each model obtained by six cases
channels in evaluation channels [dB]

#1 #2 #3 #4 #5 #6
CDL-A -28.48 -20.77 -25.42 -21.94 -16.97 -21.75
CDL-B -14.82 -25.22 -18.13 -22.04 -24.27 -22.38
CDL-C -21.37 -24.58 -21.90 -25.57 -22.52 -25.59
CDL-D -27.27 -25.72 -25.15 -30.91 -26.07 -30.94
CDL-E -25.27 -26.32 -24.67 -31.25 -27.52 -31.35

(b) Target channel: CDL-C.

Evaluation NMSE of each model obtained by six cases
channels in evaluation channels [dB]

#1 #2 #3 #4 #5 #6
CDL-A -28.48 -25.55 -26.89 -21.94 -21.63 -22.02
CDL-B -14.82 -20.27 -16.06 -22.04 -20.85 -22.13
CDL-C -21.37 -28.09 -23.98 -25.57 -26.68 -25.82
CDL-D -27.27 -29.28 -27.23 -30.91 -30.27 -31.49
CDL-E -25.27 -28.94 -26.13 -31.25 -30.46 -31.92

(c) Target channel: CDL-D.

Evaluation NMSE of each model obtained by six cases
channels in evaluation channels [dB]

#1 #2 #3 #4 #5 #6
CDL-A -28.48 -25.50 -28.04 -21.94 -21.59 -22.03
CDL-B -14.82 -16.88 -15.69 -22.04 -20.06 -22.11
CDL-C -21.37 -23.72 -22.64 -25.57 -24.97 -25.76
CDL-D -27.27 -32.54 -29.30 -30.91 -33.03 -31.61
CDL-E -25.27 -31.43 -27.72 -31.25 -32.86 -32.02

(d) Target channel: CDL-E.

Evaluation NMSE of each model obtained by six cases
channels in evaluation channels [dB]

#1 #2 #3 #4 #5 #6
CDL-A -28.48 -24.31 -28.19 -21.94 -20.92 -22.03
CDL-B -14.82 -17.93 -15.61 -22.04 -21.06 -22.12
CDL-C -21.37 -24.07 -22.50 -25.57 -24.96 -25.76
CDL-D -27.27 -31.92 -28.52 -30.91 -32.46 -31.59
CDL-E -25.27 -32.26 -27.05 -31.25 -33.52 -32.06
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