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Abstract—Introducing machine learning (ML) into cooperative
spectrum sensing (CSS) in cognitive radio has yielded effective
data-driven solutions for the spectrum shortage problem. Signif-
icant quantities of labeled data are required for ML-based CSS
model training. However, collecting and annotating data repeat-
edly under dynamic spectrum environmental conditions is time-
consuming, costly, and impractical. To this end, we propose a
novel non-parametric dual transfer framework for CSS (DTCSS)
to solve the poor generalization sensing performance caused by
insufficient labeled data in the target environment with different
wireless signals and propagation. DTCSS features a unique design
that employs a two-stage learning approach. The offline training
stage aims to transfer domain-level and class-level knowledge
from the existing environment to the target environment and
train a target detector. The objective of the online sensing phase
is to utilize the trained detector to deduce the spectrum status of
the target environment. DTCSS is robust and effective without
hyperparameter tuning. Results from simulations indicate that
DTCSS can achieve competitive sensing performance.

Index Terms—Cooperative spectrum sensing, machine learn-
ing, dual transfer learning, non-parametric training, robustness

I. INTRODUCTION

The demand for scarce wireless spectrum has become
urgent due to the widespread deployment of 5G and beyond
networks, the rapid emergence of the Internet of Things,
and the ever-increasing number of various wireless devices.
Traditional static spectrum allocation only permits licensed
primary users (PUs) to use the allocated spectrum bands,
resulting in inefficient spectrum utilization. Cognitive radio
(CR) is then proposed as one promising solution to the
spectrum shortage. The core concept of CR is spectrum reuse,
which permits secondary users (SUs) to periodically sense
spectrum bands and access the idle bands without interfering
with PUs. Spectrum sensing as a technology to identify the
presence or absence of PUs by an individual SU is, therefore,
essential for CR networks [1]. Nevertheless, the performance
of SS is frequently diminished by fading channel conditions
and other destructive effects. To boost the sensing quality,
cooperative spectrum sensing (CSS) is employed in which a
fusion center fuses the sensing results from multiple SUs to
determine the status of PUs for subsequent spectrum access.

Numerous CSS techniques have been proposed [2]. Most
conventional CSS methods concentrate on developing decision
statistics to sense PU signals by analyzing the differences
between signal and channel noise characteristics. Typical con-
ventional CSS methods include the OR rule, AND rule, and

CSU rule based on the energy detector. Nevertheless, the de-
velopment of statistics requires prior knowledge of PU signals
and the spectrum environment, which is not always available in
practice due to dynamics, security, and privacy concerns. CSS
has recently incorporated machine learning (ML) techniques to
improve sensing performance in a data-driven manner due to
its superior performance in extracting data features and iden-
tifying patterns. Support vector machine (SVM) and Kmeans
are known to be more adaptable techniques. The fundamental
concept is to train a mapping model from the training sensing
data to the status of the PUs (presence or absence) and then
make a decision based on the target sensing data. The model’s
success depends on a large quantity of labeled training data
collected under dynamic spectrum environmental conditions
and similar training and test data distributions. For instance, a
model trained in one spectrum environment may not adapt
well to another with different PU signal distributions. The
difference between various environmental conditions is known
as domain shift [3].

Intuitively, to make ML models operational and reduce
domain shift, new batches of labeled training data must be
recollected for the target spectrum environmental condition
to retrain models from scratch. Unfortunately, two obstacles
must be conquered. First, manually annotating data collected
in a highly dynamic environment is time-consuming and labor-
intensive. In addition, retraining models requires additional
training time, resulting in a significant sensing delay. Con-
sequently, it is impractical to repeatedly collect and annotate
sensing data and then train a separate model for each environ-
mental condition.

These obstacles severely limit the practical application of
ML models. For CR networks, designing a blind, robust,
and efficient CSS framework to avoid data annotation and
model retraining has become an urgent matter. To this end,
we propose to incorporate transfer learning into CSS. Transfer
learning (TL) is a promising strategy for improving learning
performance on an unlabeled target domain by leveraging
knowledge from a well-labeled source environmental condition
[4]. For instance, the authors of [5] designed a TL-based
method for deep sensing in SS. To facilitate knowledge
transfer, [6] proposed a TL-based method with multiple hyper-
parameters. Motivated by them, we propose a novel non-
parametric dual transfer framework for CSS (DTCSS) that
is inspired by the advantages of TL. The most significant
contributions are highlighted below:

2024 International Conference on Computing, Networking and Communications (ICNC): Signal Processing for 
Communications

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 1065



• To alleviate the sensing delay in DTCSS, we employ a
two-stage learning strategy. Offline training aims to trans-
fer both domain- and class-level knowledge to the target
environment. The objective of the online sensing phase
is to infer the spectrum status of the target environment.

• To alleviate the domain shift in terms of domain and class
levels, we design a dual feature alignment component
coupled with the offline training stage. The intra-class
compactness is improved.

• DTCSS is a non-parametric framework that does not
require tuning any hyperparameters. Compared to other
CSS schemes, it can achieve comparable sensing perfor-
mance on various transfer tasks.

The rest of this paper is organized as follows. Section
II describes the system model. The proposed framework is
presented in Section III. The performance results and analysis
can be found in Section IV. Section V gives the conclusions.

II. SYSTEM MODEL

We consider a cooperative CR network, where 𝑀 SUs and 𝑍

PUs are deployed in a square area. The SUs carry out spectrum
sensing to sense spectrum holes by distinguishing the activity
status (absence/presence) of the PUs over a spectrum channel
of interest. Thus the sensing problem can be formulated as a
binary hypothesis test problem. Specifically, each SU utilizes
an energy detector to sense the channel and then reports the
obtained local energy level to a fusion center, which would
fuse the energy levels from the 𝑀 SUs and predict the channel
status. The channel has a bandwidth 𝑏. In a sensing duration
𝜏, the 𝑚-th SU collects 𝑏𝜏 signal samples of the channel as
the local sensing results. Let 𝑆𝑚 [𝑘] be the 𝑘-th signal sample
captured by the 𝑚-th SU, and we have the test problem as
follows

𝑆𝑚 [𝑘] =


𝜔𝑚 [𝑘] 𝐻0
𝑍∑︁
𝑧=1

𝑎𝑧𝑔𝑧,𝑚𝑃𝑧 [𝑘] + 𝜔𝑚 [𝑘] 𝐻1
(1)

where the hypothesis 𝐻0 represents the absence of all the PUs’
signals which means the channel is idle; the hypothesis 𝐻1
indicates the presence of at least one PU’s signal which means
the channel is busy; 𝑚 = 1, 2, ..., 𝑀; 𝑘 = 1, 2, ..., 𝑏𝜏; 𝑧 =

1, 2, ..., 𝑍; 𝑎𝑧 indicates the state indicator of the 𝑧-th PU, where
𝑎𝑧 = 0 indicates the absence of the 𝑧-th PU’s signal and 𝑎𝑧 = 1
indicates the presence of the 𝑧-th PU’s signal; 𝑔𝑧,𝑚 is the
channel gain from the 𝑧-th PU to the 𝑚-th SU; 𝑃𝑧 [𝑘] indicates
the 𝑘-th signal sample transmitted by the 𝑧-th PU; 𝜔𝑚 [𝑘]
indicates the local noise. Then the 𝑚-th SU in the 𝑖-th sensing
duration creates a local energy estimate 𝑥𝑖,𝑚 as follows:

𝑥𝑖,𝑚 =

𝑏𝜏∑︁
𝑘=1

|𝑆𝑚 [𝑘] |2 (2)

Hence we have an energy sample from 𝑀 SUs in the 𝑖-th
sensing duration as 𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, ..., 𝑥𝑖,𝑀 )𝑇 fused at the
fusion center. The CSS problem at the fusion center can
be formulated as a binary classification problem. Next, the

fusion center begins to train a target detector and determine
the presence or the absence of the PUs based on the energy
vectors.

III. PROPOSED METHOD

The notations in our proposed method are denoted as
follows. We are given a labeled source domain Θ𝑠 =

(𝑋 (𝑠) , 𝑌 (𝑠) ) = {(𝑥 (𝑠)
𝑖

, 𝑦
(𝑠)
𝑖

)}𝑁𝑠

𝑖=1, where 𝑥
(𝑠)
𝑖

∈ R𝑀 is the 𝑖-
th energy sample of total 𝑁𝑠 samples collected by 𝑀 SUs
in the source spectrum environmental condition. We are also
given an unlabeled target domain Θ𝑡 = 𝑋 (𝑡 ) = {𝑥 (𝑡 )

𝑗
}𝑁𝑡

𝑗=1
for training, where 𝑥

(𝑡 )
𝑗

∈ R𝑀 is the 𝑗-th target energy
sample of total 𝑁𝑡 samples collected by 𝑀 SUs in the target
spectrum environmental condition. Assume Θ𝑠 and Θ𝑡 are
collected under different spectrum environment conditions in
the same considered CR network. 𝑄(𝑥 (𝑠) ) and 𝑄(𝑥 (𝑡 ) ) denote
the marginal distributions of Θ𝑠 and Θ𝑡 . 𝑄(𝑦 (𝑠) |𝑥 (𝑠) ) and
𝑄(𝑦 (𝑡 ) |𝑥 (𝑡 ) ) indicate the conditional distributions of Θ𝑠 and
Θ𝑡 . The marginal and conditional distributions can be mea-
sured by the differences between domains and that between
classes, respectively. Under different spectrum environment
conditions, we, without loss of generality, posit that Θ𝑠 and Θ𝑡

have different joint distributions, i.e., 𝑄(𝑥 (𝑠) ) ≠ 𝑄(𝑥 (𝑡 ) ) and
𝑄(𝑦 (𝑠) |𝑥 (𝑠) ) ≠ 𝑄(𝑦 (𝑡 ) |𝑥 (𝑡 ) ). We aim to transfer the knowledge
from Θ𝑠 to Θ𝑡 and then make inferences for a new target
samples 𝜒 (𝑡 ) . Fig. 2 shows the procedure of our proposed
method. We will introduce the designed dual feature alignment
components in terms of domain and class levels. Then we will
describe the two-stage component.

4

Domain-level 
Alignment

Class-level 
Alignment

Source 
Domain

Target 
Domain

Fig. 1: The procedure of our proposed DTCSS method

A. Feature Alignment

Due to the differences across spectrum environmental con-
ditions, a detector trained by source domain data would have
an unsatisfactory sensing performance for target domain data.
In this paper, we aim to dual transfer both domain-level
and class-level knowledge by aligning the data marginal and
conditional distributions. To conduct distribution alignments,
there have been many proposed distribution measurements.
Among them, correlation alignment (CORAL) as a simple yet
efficient strategy could measure the distribution distance across
domains in the original feature space by aligning the second-
order statistics (i.e., co-variance matrices) [7]. We use CORAL
strategy to perform the alignments.

The domain-level alignment aims to reduce marginal distri-
bution discrepancy by performing target re-correlation at the
domain level. That is to add the correlation of the target data to
the source data in the feature space. The transformed source
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domain features at the domain level 𝐺 (𝑑) can be found as
follows:

𝐺 (𝑑) = 𝑋 (𝑠) ∗ 𝐶−1/2
𝑠 ∗ 𝐶1/2

𝑡 (3)

where 𝐶𝑠 and 𝐶𝑡 indicate the domain-level co-variance ma-
trices of source and target data, respectively. They can be
calculated by

𝐶𝑠 =
1

𝑁𝑠 − 1
[(𝑋 (𝑠) )𝑇𝑋 (𝑠) − 1

𝑁𝑠

(1𝑇𝑋 (𝑠) )𝑇 (1𝑇𝑋 (𝑠) )], (4)

𝐶𝑡 =
1

𝑁𝑡 − 1
[(𝑋 (𝑡 ) )𝑇𝑋 (𝑡 ) − 1

𝑁𝑡

(1𝑇𝑋 (𝑡 ) )𝑇 (1𝑇𝑋 (𝑡 ) )] . (5)

where 1 is a column vector with all ones.
As we know that the marginal distribution adaptation cannot

guarantee the conditional distribution adaptation for each class.
We can further have the class-level alignment to add the
correlation of the target data to the source features at the class
level. The transformed source class features 𝐺 (𝑐) at the class
level for class 𝑐 are given by:

𝐺 (𝑐) = 𝐺
(𝑑)
𝑐 ∗ 𝐶−1/2

𝑠,𝑐 ∗ �̂�1/2
𝑡 ,𝑐 (6)

where 𝑐 = {0, 1} in which 𝑐 = 0 means the channel is idle
and 𝑐 = 1 means the channel is busy; 𝐺

(𝑑)
𝑐 indicates the

transformed source data samples by Eq. (3) in class 𝑐; 𝐶−1/2
𝑠,𝑐

is the co-variance matrix of class 𝑐 of the source domain; �̂�1/2
𝑡 ,𝑐

is the estimated co-variance matrix with the pseudo label 𝑐 of
the target domain. Similarly, they can be computed as

𝐶𝑠,𝑐 =
1

𝑁𝑠,𝑐 − 1
[(𝐺 (𝑑)

𝑐 )𝑇𝐺 (𝑑)
𝑐 − 1

𝑁𝑠,𝑐

(1𝑇𝐺 (𝑑)
𝑐 )𝑇 (1𝑇𝐺 (𝑑)

𝑐 )]
(7)

�̂�𝑡 ,𝑐 =
1

�̂�𝑡 ,𝑐 − 1
[( �̂� (𝑡 )

𝑐 )𝑇 �̂� (𝑡 )
𝑐 − 1

�̂�𝑡 ,𝑐

(1𝑇 �̂� (𝑡 )
𝑐 )𝑇 (1𝑇 �̂� (𝑡 )

𝑐 )] (8)

where 𝑁𝑠,𝑐 is the number of the source samples in class
𝑐; �̂�

(𝑡 )
𝑐 and �̂�𝑠,𝑐 are the estimated target samples and the

corresponding amount in class 𝑐, respectively. Since we do
not know the target data labels, we would obtain the pseudo
labels at the offline training stage.

B. Offline Training

The offline training stage aims to transfer the knowledge
from source domain to target domain by performing both
domain-level and class-level alignments.

Specifically, we can use 𝑋 (𝑠) and 𝑋 (𝑡 ) to perform the
domain-level alignment and the transformed source features
𝐺 (𝑑) can be learned by Eq. (3). To obtain the predicted pseudo
labels for class-level alignment, given 𝐺 (𝑑) and 𝑋 (𝑡 ) , we firstly
estimate each source class center 𝑔

(𝑐)
𝑑

by

𝑔
(𝑐)
𝑑

=
1

𝑁𝑠,𝑐

𝑁𝑠,𝑐∑︁
𝑗=1

𝐺
(𝑑)
𝑗

. (9)

where 𝐺
(𝑑)
𝑗

is 𝑗-th source feature vector of 𝐺 (𝑑) . Then we
measure the distance Ω𝑖𝑐 between each target sample 𝑥

(𝑡 )
𝑖

and
each source class center 𝑔

(𝑐)
𝑑

as follows:

Ω𝑖𝑐 = | |𝑥 (𝑡 )
𝑖

− 𝑔
(𝑐)
𝑑

| |2𝑓 (10)

where | | · | | 𝑓 is the Frobenius norm.
Given the distance matrix Ω, we introduce an indicator ma-

trix 𝐹 to denote an initial classifier. We let 𝐹 ∈ R𝑁𝑡×2, where 2
means we have 2 classes; its each entry is 𝐹𝑖𝑐 ∈ [0, 1] denoting
the probability of 𝑥

(𝑡 )
𝑖

belonging to class 𝑐; 𝑖 = {1, 2, ..., 𝑁𝑡 }.
Inspired by the Softmax layer of a neural network, 𝑥 (𝑡 )

𝑖
would

have the class label �̂� (𝑡 ) by

�̂�
(𝑡 )
𝑖

= argmax𝑐 (𝐹𝑖0, 𝐹𝑖1) (11)

where 𝐹𝑖0 +𝐹𝑖1 = 1. Before that, the initial classifier 𝐹 can be
learned by minimizing the objective function

min
𝐹

1∑︁
𝑐=0

𝑁𝑡∑︁
𝑖=1

𝐹𝑖𝑐Ω𝑖𝑐

𝑠.𝑡. 0 ≤ 𝐹𝑖𝑐 ≤ 1, 𝐹𝑖0 + 𝐹𝑖1 = 1

(12)

We can solve Eq. (12) by a linear programming strategy and
generate the pseudo target labels �̂� (𝑡 ) with Eq. (11).

After the domain-level alignment and the initial classifier
learning, we align the marginal distributions of the two do-
mains and obtain the pseudo target labels. The next step is to
perform the class-level alignment and learn the target classifier.
The co-variance matrices for each class of the source and target
domains can be computed by Eq. (7) and Eq. (8), respectively.
Then we have the class-level transformed source features 𝐺 (𝑐)

with 𝑐 = {0, 1} by Eq. (6). As such, the source class center
can be updated using 𝐺 (𝑐) as follows:

𝑔
(𝑐)
𝑐 =

1
𝑁𝑠,𝑐

𝑁𝑠,𝑐∑︁
𝑗=1

𝐺
(𝑐)
𝑗

. (13)

C. Online Sensing

After the offline training stage, we have the updated source
class centers in the aligned feature space. For the online
sensing stage, given a new target energy sample 𝜒 (𝑡 ) , we firstly
compute the distance matrix Ω∗

Ω∗
1𝑐 = | |𝜒 (𝑡 ) − 𝑔

(𝑐)
𝑐 | |2𝑓 (14)

Similarly, we can have the target classifier 𝐹∗ and the target
label Υ(𝑡 ) given by

min
𝐹∗

1∑︁
𝑐=0

𝐹∗
1𝑐Ω

∗
1𝑐

𝑠.𝑡. 0 ≤ 𝐹∗
1𝑐 ≤ 1, 𝐹∗

10 + 𝐹∗
11 = 1

(15)

Υ(𝑡 ) = argmax𝑐 (𝐹∗
10, 𝐹

∗
11) (16)

Algorithm 1 summarizes the proposed two-stage learning
framework. We are given labeled source data from the past
or existing environmental condition and unlabeled target data
from the target or new environmental condition for offline
training. The offline training stage first performs domain-level
alignment to transfer the domain-level knowledge from the
source domain to the target domain and then obtain the pseudo
target labels. Then it performs class-level alignment to transfer
the class-level knowledge and obtain the updated source class
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centers. At the online sensing stage, we are given a new energy
sample collected at the fusion center and predict the channel
status.

Algorithm 1 DTCSS Framework

Input: Labeled source training data (𝑋 (𝑠) , 𝑌 (𝑠) ), target train-
ing data 𝑋 (𝑡 ) , and target testing data 𝜒 (𝑡 ) .

Output: The labels of the target testing data Υ(𝑡 )

Stage 1: offline training
1: Perform domain-level alignment by Eq. (3) to have 𝐺 (𝑑) .
2: Calculate the source class centers by Eq. (9) and the

distance matrix Ω by Eq. (10).
3: Solve Eq. (12) to learn the indicate matrix 𝐹 and compute

the pseudo target labels �̂� (𝑡 ) by Eq. (11).
4: Perform class-level alignment by Eq. (6) to have 𝐺 (𝑐) .
5: Update the source class centers by Eq. (13).

Stage 2: online sensing
6: Calculate distance matrix Ω∗ by Eq. (14) with testing

target data 𝜒 (𝑡 ) .
7: Solve Eq. (15) to learn the indicate matrix 𝐹∗ and compute

the target labels Υ(𝑡 ) by Eq. (16).
8: return Target testing labels Υ(𝑡 ) .

D. Complexity Analysis

The computational complexity of our proposed DTCSS
framework can be found as follows. For the offline training
stage, the domain-level alignment takes at most 𝑂 (𝑁3

𝑠 ), and
the class-level alignment takes at most 𝑂 (𝐶3𝑁3

𝑠 ), where
𝐶 = 2 indicating the channel is idle or busy. For the online
sensing stage, it takes 𝑂 (𝑁2

𝑡 ) given that Eq. (15) is a linear
programming problem. Thus the overall DTCSS framework
takes about 𝑂 (𝑁3

𝑠 + 𝑁2
𝑡 ).

IV. EXPERIMENT

A. Simulation Protocol

It has been challenging to improve sensing robustness under
dynamic spectrum environmental conditions. Given labeled
source signal data under one environmental condition and
unlabeled target signal data under another environmental
condition, several experiments are conducted to evaluate the
performance of our proposed DTCSS framework on the target
domain. In the experiments, for each domain, we produce one
type of digitally modulated signal (such as Gaussian, BPSK,
QPSK, PAM4, and 16-PSK) under additive white Gaussian
noise (AWGN) channels as positive samples and the noise
as negative samples. The simulation parameters in terms of
spectrum environmental conditions can be found below: the
equal presence probability of the PUs’ signals, the noise
power spectral density [−153, −174] dBm, the transmission
power 200 mW, the unity shadow fading and multi-path fading
components, the path-loss exponent [4, 5], the bandwidth 5
MHz, the sensing time interval 10𝜇𝑠 for each observation,
and the number of samples in a sensing time interval 𝑏𝜏 = 50.

The baselines are compared with DTCSS: three TL-based
methods (joint distribution adaptation (JDA) [8], scatter com-
ponent analysis (SCA) [9], and transfer joint matching (TJM)
[10]), two ML-based methods (KMeans, SVM), and three
conventional CSS methods (OR rule, AND rule, CSU rule).
Therein, JDA aligns both marginal and conditional distribu-
tions; TJM aligns marginal distribution with source sample
selection; SCA aligns scatters in subspace. For JDA, TJM,
and SCA, their hyper-parameters are tuned to obtain the best
results. Unlike them, our proposed method has no hyper-
parameters to tune and is robust to dynamic environments.
Note that we also add a baseline DCSS, the variant of DTCSS
without class-level alignment, to verify the importance of
class-level alignment. All the experiments are implemented
in Matlab. For evaluation metrics, we use the area under the
curve (AUC) values and the receiver operating characteristic
(ROC) curves to measure the sensing performance of all the
methods. The ROC curve is a curve of the probability of false
alarm and probability of detection. The method can achieve a
larger AUC value, indicating it performs better.

B. Experimental Results

The first CR network scenario considers one PU with coor-
dinates (0, 0) and three SUs, which are randomly distributed
in a 2000 × 2000 area. The Monte-Carlo simulations are
used to generate 2, 000 observations for the source domain,
target training domain, and target testing data, respectively.
We have two transfer tasks: Gaussian → 16-PSK and 16-PSK
→ Gaussian.

For the first transfer task, the source domain has the
observed Gaussian signal as the positive samples; the tar-
get domain has the observed 16-PSK signal as the positive
samples. For the second transfer task, we interchange the two
domains of the first task. The sensing performance by different
baselines and DTCSS on the two transfer tasks are shown
in Fig. 2 (a) and (b), respectively. From the ROC curves
and the corresponding AUC values, our proposed DTCSS
method outperforms the other baselines and enhances the
robustness of the two tasks. Roughly, the TL-based and ML-
based methods have better performance than the conventional
CSS approaches, which verifies the superiority of data-driven
schemes. Specifically, DTCSS can improve the robustness by
alleviating the domain shift at the domain and class levels
through the designed two-stage learning strategy since it
performs better than DCSS, which is the DTCSS without
the second-stage learning. Moreover, DTCSS performs better
than the other TL-based methods, indicating that the effective
knowledge is transferred to the target domain. Additionally, for
the conventional CSS approaches, OR rule and CSU rule have
comparable performance and perform better than AND rule.
Note that the source domain with the 16-PSK signal shown in
Fig.2 (b) makes better guidance than that with the Gaussian
signal shown in Fig.2 (a) in the knowledge transfer.

To explore the effects of the number of SUs on sensing
performance, we conduct experiments with different numbers
of SUs on the transfer tasks: Gaussian → 16-PSK. We have
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(b) Sensing performance on the transfer task: 16-PSK →
Gaussian

Fig. 2: Sensing performance (ROC curves and AUC values)
by different methods with three SUs for two transfer tasks.

one fixed PU and 10 SUs, which are randomly distributed in
the same area. We also generate 2000 observations for each
domain in which each observation is a 10-dimensional energy
vector. We select the first 𝑀 estimated energy levels as a vector
for the case with different numbers of SUs, where 𝑀 can
be 2, 3, 5, 8, and 10. Therein, the sensing results for 𝑀 =

3 are also shown in Fig. 2 (a). Roughly, from Table II, the
averaged AUC values over five runs become larger as more
SUs, demonstrating the CSS strategy’s benefits.

TABLE I: AUC values with different numbers of SUs

# of SUs 2 3 5 8 10 Average
DTCSS 0.786 0.899 0.919 0.942 0.963 0.902
DCSS 0.735 0.810 0.849 0.892 0.912 0.840
JDA 0.685 0.766 0.841 0.854 0.865 0.802
TJM 0.718 0.807 0.836 0.862 0.902 0.825
SCA 0.748 0.781 0.883 0.891 0.923 0.845

KMeans 0.716 0.799 0.856 0.863 0.882 0.823
SVM 0.739 0.837 0.855 0.879 0.902 0.842
AND 0.523 0.567 0.572 0.589 0.554 0.561
OR 0.637 0.751 0.828 0.834 0.896 0.789

CSU 0.634 0.709 0.723 0.729 0.882 0.735

To verify the effects of the number of labeled source
training samples, we conduct experiments by TL-based and

ML-based methods on the transfer task: Gaussian → 16-PSK
with different training sizes while fixing the target domain
under the first scenario. In this case, the traditional CSS
methods (OR rule, AND rule, and CSU rule) have the same
performance as before shown in Fig.2 (a) since they only work
on the target domain without the need for training samples.
We generate 3,000 samples in total and randomly select 500,
1000, 2,000, 2,500, and 3,000 from them as the labeled source
training samples. Table III shows the best AUC values in terms
of different labeled training sizes. It can be observed that the
obtained AUC values increase as the size of source training
data increases. DTCSS has superior performance even given a
small amount of labeled source data since it can learn domain-
invariant features and adapt the source features to the target
domain.

TABLE II: AUC values with different numbers of labeled
source training samples (# of samples for short)

# of samples 500 1000 2000 2500 3000 Average
DTCSS 0.827 0.885 0.899 0.914 0.931 0.891
DCSS 0.783 0.795 0.810 0.846 0.835 0.814
JDA 0.727 0.745 0.766 0.854 0.867 0.792
TJM 0.732 0.760 0.807 0.852 0.874 0.805
SCA 0.749 0.762 0.781 0.884 0.906 0.816

KMeans 0.697 0.761 0.799 0.847 0.858 0.792
SVM 0.675 0.715 0.837 0.851 0.864 0.788

To verify the effectiveness of the two-stage learning strategy
of DTCSS, as an example, we use the t-SNE technique [11] to
visualize the source and target domain data learned at different
stages on the transfer task of 16-PSK → Gaussian. In Fig. 2,
the red dots indicate class 0, and the blue dots represent class
1 for the source and target domains. The dots with the same
color belong to the same class for the two domains and are
expected to be aligned well. Fig. 2 (a) shows the visualization
of the original source and target data. Note that the dots with
different colors are mixed together, indicating that the domain
shift exists between the source and target domains. Fig. 2
(b) shows the visualization of the initially aligned domain
data by the variant DCSS. It can be observed that the dots
with the same color are roughly aligned. Fig. 2 (c) shows
the visualization of the aligned domain data by our proposed
DTCSS method. We can notice that both the separation across
different classes and the compactness within the same class are
improved. Fig. 2 verifies that DTCSS aligns the two domains
well and simultaneously ensures the intra-class compactness
as well as inter-class separation.

The second CR network scenario considers 𝑀 = 5 SUs and
𝑍 = 2 PUs with coordinates (0,0) and (1000, 500), which have
equal presence probabilities and are activated independently
from each other. We fix 𝑁𝑠 = 𝑁𝑡 = 2000. To evaluate
the model robustness, the sensing performance by the TL-
based methods is tested on the different transfer tasks. Table
IV shows the averaged AUC values by different approaches
over five runs. It can be observed that different AUC values
are obtained by the approaches when the source domain and
the target domain are interchanged. That’s because different
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(a) Original domain data before training
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(b) Initially aligned data after training by DCSS
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(c) Aligned domain data after training by DTCSS

Fig. 3: t-SNE visualization of the source and target domain data at different stages on the transfer task: 16-PSK → Gaussian.
For both domains, the red dots in Class 0 means the channel is idle and the blue dots in Class 1 means the channel is busy.
The dots with the same color are expected to be aligned.

TABLE III: AUC values on different transfer tasks

Methods DTCSS DCSS JDA TJM SCA
BPSK → Gaussian 0.959 0.895 0.836 0.843 0.903
Gaussian → BPSK 0.885 0.803 0.756 0.770 0.798

QPSK → PAM4 0.973 0.922 0.864 0.838 0.925
PAM4 → QPSK 0.920 0.854 0.823 0.806 0.891
BPSK → QPSK 0.966 0.908 0.895 0.917 0.925
QPSK → BPSK 0.987 0.917 0.908 0.923 0.938

QPSK → Gaussian 0.941 0.875 0.817 0.825 0.899
Gaussian → QPSK 0.906 0.834 0.709 0.783 0.815

Averaged AUCs 0.942 0.876 0.826 0.838 0.887
Offline training time 0.541s 0.236s 6.679s 11.39s 13.42s
Online testing time 0.086s 0.086s 2.873s 2.792s 4.502s
Total running time 0.627s 0.322s 9.552s 14.18s 17.92s

types of signals have different guidance in the process of
knowledge transfer. When the two domains have more similar
distributions, such as BPSK and QPSK signals as the positive
samples, the approaches can achieve comparable performance
on the interchanged tasks. In addition, we also assess the
computational complexity. The averaged offline training time,
online testing time, and total running time (seconds) by the
TL-based methods over five runs on the eight tasks are shown
in the last three rows of Table IV. The total running time by
DTCSS is roughly two times that of its variant DCSS since it
is a dual transfer learning method. DTCSS can take first place
in terms of the testing time at the online sensing stage and
second place in terms of the training time and total running
time. It outperforms the baselines.

V. CONCLUSION

In this paper, a novel non-parametric dual transfer-based
CSS (DTCSS) framework is proposed. DTCSS utilized a two-
stage learning strategy to perform the knowledge transfer from
labeled source environmental condition to unlabeled target
condition, where the PU signal modulation and propagation
differ. DTCSS aligns the two domains in terms of domain and
class levels at the offline training stage and infers the channel
status at the online sensing stage. By incorporating transfer

learning into the CSS scheme, DTCSS improves efficiency
and robustness. The experimental results demonstrated the
effectiveness of our method. In the future, we will extend it
to determine the modulation of PU signals.
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