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Abstract—With the advent of 5G and next-generation cellu-
lar networks and the increasing complexity of assigning users
traffic types for efficient resource allocation, Open Radio Access
Networks (O-RAN) offer intelligent virtualized frameworks for
optimizing network operations related to supporting diverse types
of traffic. In this paper, we utilize the native support for machine
learning in O-RAN to develop a transformer-based 5G traffic
classification system that identifies, with high accuracy, conditions
when broadband, machine-to-machine type communication, and
ultra-reliable low-latency communication are present. By utilizing
distinct temporal slices of O-RAN-defined key performance
indicators generated from traffic captures as inputs (as opposed
to directly accessing user-plane data) and filtering for non-critical
control traffic, we ensure user confidentiality while maintaining a
high degree of classification performance. Our transformer model
is able to achieve an average offline accuracy of 99%+ for the
longest traffic slice length, with the online deployment achieving
an average of ∼ 90% accuracy across all slice lengths.

Index Terms—O-RAN, 5G, Transformers, Traffic Classifica-
tion, Network Slicing

I. INTRODUCTION

5G and next-generation cellular systems are evolving to
meet the demands of high data rates, low latency, and
large-scale communication. To accommodate these goals with
efficient network resource allocation, 5G introduces three
traffic classes: i) enhanced Mobile BroadBand (eMBB), ii)
massive Machine Type Communications (mMTC), and iii)
Ultra Reliable Low Latency Communications (URLLC). Such
classification prevents the over-allocation of network resources
for users, which opens the door for improved coexistence with
efficient network resource allocation. The challenge here, how-
ever, is how to perform the first step of the traffic classifica-
tion. Typically, mobile users explicitly convey their requested
service in order to negotiate their assignment to a specific
traffic slice [1], although such an approach raises privacy and
confidentiality concerns. Additionally, the presence of control
(ctrl) traffic, i.e., traffic where no application data is being sent
while the frame resources are still used to maintain the state of
user connection, can overlay other traffic types. This mixture
of control and data traffic further complicates the problem of
traffic classification.
• Traffic classification challenges: Recent performance mea-
surements [2], [3] in deployed 5G networks indicate that the
main contributor to latency spikes and decreased throughput is
within the LTE Enhanced Packet Core (EPC) or 5G Core Net-
work (CN), and not the Radio Access Network (RAN). These
studies also suggest that end-to-end throughput and latency
often do not match desired 5G performance benchmarks due

Fig. 1: Transformer-based 5G traffic classification system used in
TRACTOR.

to improper buffer size and poor TCP congestion control in the
CN. Diverse requirements of the various network slices in 5G-
NR necessitate the meeting of two conditions: i) specifically
designing the entire network path for slices, and ii) properly
classifying traffic demands into correct network slices [4].
Network slicing has several benefits related to latency reduc-
tion and throughput improvements, which indirectly leads to
a reduction in power consumption and support for network
scaling. However, given the concerns of violating user privacy,
we must also preserve the confidentiality of users’ network
activity while performing traffic classification as a precursor to
network slicing [5]. While significant efforts have been made
to design dynamic network slicing algorithms (see Sec. II-B),
these works focus on functions in the RAN portion of the
network.
• Transformer-based solution: To address the challenges of
identifying what traffic types are currently passing through
the network, we propose utilizing machine learning (ML)
algorithms–specifically transformer models [6]. Our ML
model is packaged in an eXtended application (xApp) that runs
within the near real-time (RT) radio intelligence controller,
with the requirement that retrieving the key performance
indicators (KPIs) requested from the gNB and transmitting
the decision of the model back to gNB cumulatively takes
less than 1s of time. Considering that cellular network users
are inherently dynamic both in terms of movement and traffic
usage, the xApp that performs such traffic classification and
then assigns appropriate and optimal network resources, i.e.,
slicing, must keep up with the variations in traffic traces of
these users. This raises interesting questions on whether to
perform traffic classification in the xApp with fewer sets of
KPIs (T ) or to incur additional time overhead of increasing T
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for better classification outcomes.
Our contributions are as follows:
• We propose a transformer-based model that classifies

different traffic patterns in compliance with 5G O-RAN
standard-defined traffic classes and ML operations.

• We utilize a unique traffic filtering scheme that detects
the presence of non-critical ctrl traffic in eMBB, mMTC,
and URLLC traffic. We preprocess our training data and
validate ctrl traffic detection at run time such that any
ctrl traffic that exists within captures of other types of
traffic is more likely to be correctly detected, ultimately
improving our model performance.

• We implement the transformer model for traffic classi-
fication on an individual user basis, preserving privacy
through observations made from KPIs. Similar to [7],
we also implement our model over a variety of input
temporal scales for traffic data collected both offline and
online through an xApp deployed on Colosseum [8], the
largest wireless RF network emulator with real radios in
the loop. We analyze the effect of traffic pattern variations
on classification to further mimic dynamic network usage.

II. RELATED WORK

A. O-RAN Background

In [9], the authors provide a detailed presentation and insight
into the O-RAN paradigm, architecture, interfaces, security,
algorithms to deploy, and future research areas. As an early
noteworthy implementation, [10] creates a prototype testbed
for O-RAN for next-generation operations using USRPs. Their
implementation is based on the software radio system RAN
(srsRAN), focusing on the E2 interface that connects the RAN
intelligent controller (RIC) to the other the RAN nodes by
developing two xApps for the near-RT RIC that are for KPI
collection and RAN slicing. The work in [11] introduces an
open and virtualized prototyping platform for modern cellular
systems, called SCOPE, which is a ready-to-use portable
container that embodies various wireless deployments.

B. Traffic Classification

Traditional IP traffic classification relies on packet inspec-
tion, as seen in [12] and [13]. However, these methods fail
when packets are encrypted at the network or data-link layer.
To overcome this, statistical traffic properties were used to
identify applications, which naturally led to the use of ML
in traffic classification, including encrypted traffic. Generally,
encrypted traffic classification techniques either use traffic
flows defined by a 5-tuple (source IP, source port, destination
IP, destination port, and transport-level protocol) [14] or the
entire encrypted packet [15]–[17] as the input. Both of these
options present a high risk to privacy and security, especially
when paired with other information unique to a cellular
environment, such as physical location. Furthermore, in an
O-RAN system, the near-RT RIC does not have access to the
entire packet, encrypted or otherwise.

The work in [18] selects the best-performing scheduling
policy and resource block assignment in each network slice
using deep reinforcement learning fed with data generated in
the Colosseum emulator. Both UE assignment and the rewards

in the DRL agents are based on knowing the traffic slice a
priori. The authors in [19] aim to predict incoming traffic
at the LTE base station (eNB) using supervised ML and test
their model using simulated bursty LTE traffic data. The work
in [20] predicts traffic type (among IM, web browsing, and
video data) in an upcoming 5-minute period using the previous
3 hours of traffic data in a framework that consists of α-
stable models, dictionary learning, and alternating direction
method (ADM) using 7 million users’ OTA 2G-4G application
layer data. The authors in [21] perform network slicing and
scheduling on an xApp that is based on srsRAN using policy-
driven heuristic methods.

In [22], the authors present SenseORAN to detect radar
pulses within the CBRS band using O-RAN networks. Their
design paradigm of reusing existing cellular infrastructure with
O-RAN-compliant sensing and communication slices aims to
eliminate the need for dedicated spectrum sensors along the
coastline as well as severe restrictions on the transmit power
for modern LTE operators. The gNB uses a YOLOv3 module
as an xApp that is trained to detect radar signals present within
spectrograms generated from I/Q samples collected during the
regular uplink cellular operation.

III. SYSTEM ARCHITECTURE

A. O-RAN Architecture

We implement a software-defined RAN using a framework
based on SCOPE [11] for both the gNB and UE. Our near-
RT RIC, a part of the ColO-RAN framework [23], provides
vital functionalities such as support for the E2 interface for
data collection and control communication with RAN nodes,
alongside a sample xApp for collecting fundamental KPIs
from the gNB. We add several key elements to this framework
by creating a custom traffic generator and developing an
xApp named TRaffic Analysis and Classification Tool for O-
RAN, or TRACTOR [7]. Our present study aims to enhance
the functionality of this xApp and our contributions will be
integrated into the public release of TRACTOR’s code base.

B. ML Components

1) Dataset and Preprocessing: We perform our exper-
iments using the same dataset collected in [7], which is
based on a set of real 5G cellular traffic data obtained using
PCAPDroid [24] and 5G handsets. Briefly, the dataset contains
wireless packet captures of different applications, which we
categorize under different types of wireless traffic, namely,
eMBB, mMTC, and URLLC traffic. We replay all traffic
on Colosseum via TRACTOR, emulating packets exchanged
between the real UE and gNB and collecting the resultant
stream of KPIs, which are used as the input to our model. To
characterize features of ctrl traffic, we also separately collect a
set of KPIs that represent instances of communication, where
the UE is idle while still being associated with the gNB.

To form our input, we stack slices of T consecutive KPIs,
which are sampled by the gNB every 250 ms. The values of
T are given in Table I, and each slice contains M = 17 KPIs,
resulting in a T×M 2D input, as shown in Fig. 1. The different
T values provide insight into how traffic indicators evolve over
a T × 250 ms timespan; thus, T needs to be carefully chosen
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Fig. 2: A visualization of input KPIs for different traffic patterns (top) and the relative classifier output (bottom).

Fig. 3: Visualization of PDF for Euclidean difference for each traffic
class (T = 16) when compared to mean ctrl template T . The solid
vertical line is the Euclidean distance value used as the threshold
for ctrl relabeling: if the norm of the difference between T and an
input sample falls below this threshold, the sample is automatically
relabeled as ctrl traffic.

based on the timing requirements of the traffic classification
task. A visualization of the input KPI stream is shown in
Fig. 2. We use a sliding window approach with overlap of
T − 1 KPI samples to form slices of our inputs and make
a new prediction every 250 ms once the first T − 1 samples
are collected. Input slices are preprocessed in the dataset via
min-max normalization over each KPI feature in order to keep
every input feature within a [0,1] range. We then randomize
the order of slices and partition 80% of input samples to
train the model and retain the other 20% for offline validation
purposes. After training and validation datasets are defined, we
obtain 111.6K training samples and 27.9K validation samples,
covering the main 3 traffic types and ctrl classes.

For online testing purposes, we generate a separate set of
traffic traces, one for each traffic type, and collect a new set
KPIs that are used to test our models trained offline. While
replaying each traffic type through Colosseum may result
in different input patterns due to the varying nature of the
network conditions, our intuition is that the classifier will be
able to generalize well in the presence of unseen sets of KPIs,
given the similar category of traces provided during training.

2) Data Filtering: During traffic generation, the gNB and
UE do not actively communicate at all times; ctrl messages are
regularly exchanged to maintain UE association. Additionally,
depending on the UE’s activities, ctrl traffic might be found
in any of the other three traffic categories, so we consider
ctrl as a fourth “class” of traffic that can be used to identify
idle portions of communication. Due to this coexistence, it
is inevitable that samples from a non-ctrl traffic type will
be misclassified due to the presence of ctrl traffic; thus, we
design a filtering and relabeling heuristic, which we call Idle

T Num. params Inference time (ms)
4 164,704 0.7575± 0.0162
8 182,112 0.7640± 0.0419
16 216,928 0.7716± 0.0142
32 286,560 0.7264± 0.0293
64 425,824 0.7537± 0.0440

TABLE I: Parameters and inference time for each slice size.

Traffic Removal (ITR) heuristic, that we use to relabel idle
portions of non-ctrl traffic samples and validate ctrl detections
online via threshold comparison. This threshold, as shown in
Fig. 3, is dynamically calculated during dataset generation by
deriving the N (µ∗, σ) probability density function (PDF) of
Euclidean distance between all known ctrl samples and the
T ×M mean features of ctrl samples in our training dataset,
based on the assumption that KPI values in ctrl traffic remain
quasi-constant along T due to its idle nature. Once such a
mean ctrl template and the PDF of Euclidean distance for ctrl
samples is computed, we compute the same distance metric
for each non-ctrl traffic sample: if the norm of difference is
below the mean of PDF, we relabel the sample as ctrl, as it
is statistically similar to the average ctrl sample configuration.
We formulate the ITR heuristic as follows:

ITR(⟨X, y⟩, T ) =

{
⟨X, ctrl⟩, if ∥X− T ∥2 < µ∗

⟨X, y⟩, otherwise

where ⟨X, y⟩ is a sample input and label pair, T is mean
ctrl template used as reference and µ∗ is the threshold,
corresponding to the mean of normal PDF derived above.

3) Transformer: Since transformer models are designed to
process sequential data, we treat the selected T consecutive
time samples of the KPIs as a sequence. This means that we
consider the KPIs sampled at a particular time as a token
or element of the sequence and we have a contextualized
representation of each token from the sampled KPIs at a given
time step. After generating the dataset, we pass each input of
T tokens through transformer encoder layers [6], as shown
in Fig. 1. These representations are then flattened and fed to
a Fully Connected (FC) layer that consists of 256 neurons
followed by ReLU activation. Finally, a LogSoftmax output
layer calculates the log probabilities of an input slice belonging
to each traffic type. We train our model for 350 epochs using
the Adam optimizer with learning rate 10−2, reduced by an
order of magnitude when a plateau in loss is encountered and
an early stopping criterion to halt training when the loss does
not improve for a sufficient number of epochs. The parameters
and inference times for various sizes of T are shown in Table I,
with all computations performed on an NVIDIA A100 GPU.
Note that, as the average inference time is less than 1 ms
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(a) (b) (c) (d) (e)

Fig. 4: Offline transformer confusion matrices for input sizes T = {4, 8, 16, 32, 64} (left to right) without traffic filtering.

(a) (b) (c) (d) (e)

Fig. 5: Offline transformer confusion matrices for input sizes T = {4, 8, 16, 32, 64} (left to right) with traffic filtering.

Fig. 6: Average offline accuracy of classifiers for different T =
{4, 8, 16, 32, 64}. Performance is compared among transformers with
and without the ITR heuristic and CNN model presented in [7].

on GPU and 1.5 ms on CPU, no latency is introduced by
the inference operation when sampling KPIs every 250 ms;
therefore, our approach is feasible for real-time deployment
and suitable for xApp operations (i.e., event reaction time
between 10 ms and 1 s).

IV. RESULTS

We evaluate how the transformer-based classifier performs
both offline and online when trained on both unflitered and
filtered traffic samples, considering configurations of slice
length T = {4, 8, 16, 32, 64}.

A. Offline Results

We display the offline evaluation on validation data of pro-
posed transformer model without traffic filtering in Fig. 4 and
with traffic filtering in Fig. 5 for all T values considered. The
proposed relabeling approach improves average classification
accuracy up to 20% as shown in Fig. 6. Here, for comparison,
we also include the results obtained via the convolutional
neural network (CNN) from our previous work [7], which uses
the same dataset for training and validation. The effectiveness
of traffic filtering in our offline evaluation is clear, with an
average improvement of ∼ 8% over the transformer trained
without traffic filtering and the CNN presented in the previous
work when considering all T settings.

It is important to note that, while we focus on relabeling
only idle portions of traffic at training time, we obtain a boost

Traffic Type T = 4 T = 8 T = 16 T = 32 T = 64
Without Filtering

eMBB 66.34 48.85 65.25 67.13 95.28
mMTC 94.49 94.83 75.10 99.62 90.79
URLLC 79.16 76.43 79.9 82.37 78.32

With Filtering
eMBB 37.82 58.73 48.15 81.17 85.85
mMTC 83.75 85.80 82.20 85.85 98.36
URLLC 87.73 82.32 83.80 85.76 78.50

TABLE II: Online classification accuracy (%) with and without traffic
filtering for T = {4, 8, 16, 32, 64} using the same test traces in both
sets of results; results in bold indicate best performance.

in classification accuracy across all traffic types, validating the
need for more precise labeling of input traces to enhance the
accuracy of the proposed classifier.

Regardless of filtering, it is clear that a longer T length
significantly improves classification accuracy, from an average
accuracy of ∼ 80% for T = 4 to 99%+ for T = 64. However,
we note that out of the non-ctrl traffic classes, URLLC is the
least impacted by T size. This may be due to the temporal
features of eMBB and mMTC traffic, which we observe to
be “bursty” in nature and, thus, may be harder to distinguish
from each other in comparison to URLLC, which typically
involves long instances of active traffic exchange (e.g., long
video chats and voice calls).

B. Online Results

The online evaluation results are shown in Table II, with
separate results for traffic without and with filtering. We
measure the average accuracy as follows:

acc =
Tp

Ns −Nctrl

where Tp is the number of true positives matching the traffic
class considered to be groundtruth while replaying a given
test trace, Ns is the total number of inputs to the classifier
generated from the sequential KPIs and Nctrl is the number
of samples classified as ctrl by the classifier and whose label
is validated via the ITR heuristic described in Sec. III-B2.

We observe a similar trend to our earlier work [7] in which
there is no universal slice size that gives the best performance
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for all classes, which highlights the challenges of deploying
traffic classification methods that potentially consider different
time scales to identify each traffic type. Nonetheless, these
results are largely consistent with the offline results in that
a longer T length generally provides higher classification
accuracy. We also note that in most cases, with the exception of
T = 4, traffic filtering does provide more stable performance
and higher classification accuracy for a majority of traffic
captures (two out of three non-ctrl classes for each classifier),
and it always provides higher detection accuracy for URLLC
traffic. The drop in performance in some traffic instances
suggests that the proposed filtering method might also be
sensitive to parameter T , possibly over-filtering samples that
might resemble ctrl patterns (especially for lower values of
T ) and highlighting the need for more fine-grained threshold
levels, possibly computed on a per-class basis. Finally, using
the ITR heuristic, we observe that the models trained with
proposed ctrl filtering approach show an average validation
rate of 99.7% for all traffic types in test data, while the models
trained without filtering only reaches 86.4%, further confirm-
ing that idle traffic detection is statistically more accurate with
the proposed relabeling method.

V. CONCLUSIONS

Fulfilling the varied and competing promises of 5G and
next-generation cellular networks will require an automated
approach to traffic classification and slice assignment. With
a full-stack srsRAN-based O-RAN traffic generation that na-
tively supports incorporating ML models, we demonstrate the
feasibility of using a transformer architecture with data filter-
ing for traffic classification while simultaneously maintaining
privacy and security via the use of KPIs instead of user traffic.
Our proposed model reaches up to 99%+ of accuracy on
offline data when longer temporal inputs are provided while
reaching an average of ∼ 90% accuracy across all slice lengths
when tested on new traces collected online. Overall, our
work demonstrates the potential for next-generation networks
to deliver along the orthogonal performance axes of traffic
classification and fine-grained user needs in a secure manner.
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