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Abstract—Physarum solver (PS), which is inspired by the
foraging behavior of Physarum polycephalum, has been at-
tracting attention as a metaheuristic for solving optimization
problems such as finding the shortest path. However, it could not
solve optimization problems such as routing with link capacity
constraint due to the lack of the link capacity concept in the
PS. To address this problem, this paper introduces an extended
Physarum solver (EPS) that can recognize and maintain link
bandwidth resources. The EPS makes minimal changes to the
existing PS adaptive equations but enhances the PS to solve
optimization problems involving capacity-constraint routing by
introducing the concept of link capacity. Experiments with
various traffic scenarios show that the EPS achieves the optimal
routing and further extends the link capacity of the PS. It
was also confirmed that the EPS is consistent with the existing
research. This suggests that metaheuristics based on the foraging
behavior of Physarum polycephalum can be promising solutions
to optimization problems in communication networks.

Index Terms—routing, engineering neo-biomimetics, slime
mold, Physarum solver, optimization problem, metaheuristic

I. INTRODUCTION

In recent years, metaheuristics inspired by natural phe-
nomena have been studied as a method for solving complex
optimization problems [1]–[5]. In particular, metaheuristics
based on the foraging behavior of Physarum polycephalum
(hereafter referred to as a slime mold), a type of deformable
fungus, have recently been attracting much attention. Slime
molds are large, multinucleate, and unicellular organisms that,
when they find food, take it in by extending their tubes and
moving their protoplasm to cover the food. Nakagaki et al.
observed the behavior of slime molds by placing two foods
and showed that slime molds connect the foods by the shortest
pathway [6]. Building upon this, Tero et al. mathematically
modeled the path construction of slime molds and proposed
the Physarum solver (PS) [7].

The PS has well solved several types of optimal problems,
including the pathfinding problem [8], [9]. However, the PS
does not support the concept of link capacity in the graph
theory and cannot solve capacity-constraint optimization prob-
lems, e.g., a routing problem with link capacity constraint.
Although some previous studies have attempted to adapt the
notion of capacity to the PS [10], [11], they encountered
challenges in terms of complexity due to additional algorithms,
delayed speed of convergence, and limited applicability in
optimization problems.

In this paper, we propose an extended Physarum solver
(EPS) to address the above-mentioned issues. The EPS in-
troduces the concept of graph-theoretic link capacity into the
PS with minimal changes to the basic adaptive formulae of
the PS. Various use cases envisaged show that the capacity-
constraint routing problem can be solved by the EPS. The
EPS significantly broadens the scope of the application of the
PS, making it possible to apply it to practical optimization
problems such as network routing. It is also expected to make
it easier to extend the concept of link capacity in previous
studies. In this paper, the applicability and convergence of EPS
are verified by solving assumed routing problems in different
scenarios of traffic patterns.

The contributions of this study can be summarized in the
following three points. Firstly, we propose an EPS, which
extends the concept of link capacity to the conventional PS.
The EPS enables to solve capacity-constrained optimization
problems while the conventional PS cannot. Secondly, by
examining the EPS in various network scenarios, we can
conclude that the EPS can determine the optimal routing path
while accounting for link capacity constraints. The results in-
dicate that the EPS is useful for solving optimization problems
in real-world communication networks. Finally, we show that
the EPS is consistent with previous research, indicating that
the EPS successfully extends the PS adaptation formulae with
minimal modifications while inheriting previous research. This
facilitates the extension of the framework of existing research.
These contributions suggest that the EPS is an important
method for communication network optimization.

II. RELATED WORK

A. Physarum Solver

PS is a metaheuristic inspired by the foraging behavior of
slime molds [7]. Slime molds construct pathways according
to the arrangement of food in the maze. This is illustrated in
Fig. 1. Fig. 1 (a) shows the initial state with food sources
(FS) at two locations, in which all pathways including paths
α1 and α2 that are the routes between the center point and the
upper-right food source are filled by the slime mold. Fig. 1
(b) shows the changes in the maze after a certain time from
state (a). It can be seen that the slime molds are retreating
from the pathways that do not reach the food source. Fig. 1
(c) shows a further time after state (b), where the slime molds
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Fig. 1. Figures (a) – (c) represent slime molds solving a maze: (a) initial
state, (b) intermediate state, and (c) final state. Figure (d) is graph-theoretic
representation of a maze.

have formed the shortest path between the two food sources
via α1. Fig. 1 (d) shows the maze applied to graph theory.
The intersections and dead ends in the maze are designated as
node vi ∈ V, and the slime tube between the nodes vi and vj
is denoted as link eij ∈ E. One of the feeds is designated as
the source node s, and the other as the destination node d.

The following is a mathematical model of how a pathway
is constructed by slime mold between two nodes. Let Qij(t)
be the flow rate of link eij between nodes vi and vj at time t.
This flow rate is based on the Poiseuille flow and expressed
as follows:

Qij(t) =
π(aij(t))

4

8κ

pi(t)− pj(t)

Lij
, (1)

where aij(t) is the radius of the tube at time t, κ is the viscos-
ity coefficient of sol, pi(t) is the pressure at the contact point
on node vi at time t, and Lij is the length of the tube between
nodes vi and vj . Eq. (1) can be changed to the following
equation using the conductivity Dij(t) = π(aij(t))

4/8κ,

Qij(t) =
Dij(t)

Lij
(pi(t)− pj(t)), (2)

assuming Dij(t) is closely related to the thickness of the
tube. The source node s and the destination node d represent
the inflow and outflow points in the entire network, while
Qij(t) balances the inflow at the other nodes. Summarizing
the equations, Qij(t) can be expressed as follows:

∑
i

Qij(t) =


−I0 (j = s)

I0 (j = d)

0 (otherwise)

. (3)

Note that I0 is the amount of flow from the source node to
the destination node and given as a constant. Experimental
observations show that the tube conductivity Dij(t) tends to
increase or decrease with time according to the flow rate
through the tube. The following equation is a mathematical
expression of this adaptive property of slime molds with
respect to time:

d

dt
Dij(t) = f(|Qij(t)|)− rDij(t). (4)

An increasing function satisfying f(0) = 0 is usually
used for f(|Qij(t)|), and the convergence of the final path
changes depending on the function used. For example, if
f(|Qij(t)|) = |Qij(t)|, the path converges to the shortest
path, and if f(|Qij(t)|) = |Qij(t)|µ/(1 + |Qij(t)|µ), µ > 1, it
converges to multiple paths. r is a parameter that controls the
convergence speed of the tubes and r = 1 is commonly used.
Discretizing Eq. (4) to solve it yields the following equation,

Dij(t+∆t)−Dij(t)

∆t
= f(|Qij(t)|)− rDij(t), (5)

where 0 < ∆t < 1 denotes the time interval. This equation
can be expressed as

Dij(t+∆t) = Dij(t) + ∆t{f(|Qij(t)|)− rDij(t)}. (6)

By calculating Eqs. (2), (3), and (6), Qij(t) is tentatively
obtained, and by repeated calculations, the value of Qij

converges, and then the path is finally determined. The PS
is described as follows:

1) Calculate the pressure loss pi−pj generated in each tube,
using Eq. (2) with the old flow rate Qij , and Eq. (3).

2) Substitute the calculated pressure loss pi − pj occurring
in the tube into Eq. (2), and calculate the new flow rate
Qij .

3) Substitute the derived new flow rate Qij into Eq. (6),
and update the tube conductivity Dij .

4) Feedback the tube conductivity Dij to Eq. (2).
5) Repeat the above procedures until Qij converges.

B. Previous Study about Physarum Solver

There has been a wide range of research on PS, including
studies on speeding up solution convergence [12], [13] and
solving real-world problems and optimization problems [14],
[15]. However, these previous studies on PS have focused
on its application to path-finding problems. The reason is
that while PS is a good adaptive metaheuristic for solving
routing problems, it does not include the concept of link
capacity in graph theory at the same time. Therefore, flow
network optimization problems such as capacity-constraint
routing could not be solved. Wang et al. incorporated the
concept of capacity and solved the maximum flow problem,
which is one of the flow network problems [10]. This method
introduced the concept of energy when solving the problem.
This concept, however, complicates the PS calculations and
may even have a negative impact on convergence. On the other
hand, Huang et al. introduced the concept of capacity without
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adding spare nodes and solved flow network problems such
as the maximum flow problem [11]. However, this approach
limits the situations in which the concept of capacity can be
incorporated into the PS, and the scope of application of the
PS is restricted to the conditions of a specific formula. This
drawback is not in line with the idea of a metaheuristic that
is not concerned with a specific problem.

C. Measurement of Convergence

In this paper, the relative gap (RGAP) is used to measure
convergence:

RGAP =
|f(O)− f(P )|

|f(O)|
, (7)

where f(O) and f(P ) denote the value of the theoretical
objective function of the optimization and that of the solution
obtained by the proposed algorithm, respectively. RGAP is
taken as an absolute value to indicate the difference between
the proposed and the optimal solutions. The closer Eq. (7) is
to 0, the closer the proposed solution is to the optimal solution
and the more the convergence is obtained.

III. PROPOSED METHOD

This section describes our proposed method, EPS, which
extends the capacity to the traditional PS framework and can
be used to solve optimization problems such as capacity-
constraint routing problems. The proposed method introduces
new elements to the conventional PS. Meanwhile, the modifi-
cation should be minimized to maintain the original character-
istics of the PS. In the EPS, therefore, we keep to use Eqs. (2)
and (3) and modify only Eq. (6) as follows:

Dij(t+∆t) = Dij(t)

+ yij(t)∆t{f(|Qij(t)|)− rDij(t)},
(8)

yij(t) = tanh(Cij − |Qij(t)|). (9)

The calculation procedure for the EPS is the same as for the
conventional PS, where Eqs. (2), (3), and (8) are computed
iteratively. A particularly important element of the proposed
method is Cij , which represents the capacity of each link,
added to Eq. (9). In the conventional PS, the flow through
each link can exceed the capacity of the link Cij because
this factor is not taken into account. In the proposed method,
the concept of link capacity is introduced into Eq. (6), which
models the adaptive characteristics of slime molds, so that the
flow Qij flowing through each link between a node pair vi and
vj is controlled to be not more than its capacity Cij , which is
reflected in Eq. (9). Specifically, yij introduces the hyperbolic
tangent function. As a result, the EPS considers the current
flow rate Qij and capacity Cij between nodes vi and vj and
behaves as follows:

• If Qij is less than Cij : yij functions like a normal PS
and flow is not restricted.

• If Qij exceeds Cij : yij works to shrink the conductivity
Dij to decrease flow and make Qij converge to Cij .

𝒗𝒗𝟎𝟎

𝒗𝒗𝟏𝟏

𝒗𝒗𝟐𝟐

𝒗𝒗𝟑𝟑

Link 0 : (1, 30) 

Link 1 : (3, 20) 

Link 2 : (1, 10) 

Link 4 : (2, 20) 

Link 3 : (5, 30) 

Link : (cost, capacity) 

Fig. 2. Simulation topology.

• If Qij reaches or approaches Cij : yij restricts the change
in Dij and adjusts the flow according to the difference
Cij − |Qij | so that it is stable and within the capacity.

The function yij acts as a regulating valve to prevent the slime
mold protoplasm from clogging the pathways. With these
improvements, the EPS extends the applicability of the PS
to practical flow network optimization problems, in particular
network resource-aware routing. As the proposed method does
not significantly modify the adaptation formulae of the PS, it
is so highly scalable as to be applied to both flow network
and routing problems, and also can be integrated into the
conventional PS research without difficulty.

IV. PEFORMANCE EVALUATION

In this section, the performance of the proposed EPS is
evaluated. For the evaluation, three different network scenarios
are considered, and the EPS is applied to verify its effective-
ness and convergence. The routers deployed in the network are
considered as nodes and the link capacity extended by the EPS
is regarded as the maximum bandwidth between routers. For
the convergence, the EPS is considered to be converged when
the RGAP value expressed by Eq. (7) is less than 1 × 10−5.
The simulation software was implemented using C++.

1) Scenario 1: Single source – single destination with small
amount of traffic data: In this scenario, we evaluate a case in
which a small amount of traffic is transferred from a single
source node to a single destination node using the EPS. The
small amount here refers to the condition that the offered
traffic does not exceed the maximum capacity of any link
on the path. The experiment utilizes a topology shown in
Fig. 2 and transfers 5 Mbps of data from node v0 to node
v3. For the function in Eq. (8), we use the one commonly
used to find the shortest path for the conventional PS, i.e.,
f(|Qij(t)|) = |Qij(t)|, and ∆t = 0.01. While we assume the
undirected weighted graph shown in Fig. 2 and do not consider
the link direction theoretically, the calculation procedure treats
flows as signed values. The direction of link 2 between nodes
v1 and v2 is assumed to be positive from node v1 to node
v2. Dijkstra’s algorithm is used in Open Shortest Path First,
which is a protocol for determining the path in the Internet
routing protocols. The optimal solution obtained by Dijkstra’s
algorithm is link 0 → link 2 → link 4.

Fig. 3 shows the link bandwidth assigned by the EPS. Fig. 3
shows that, before the number of calculation iterations reaches
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Fig. 3. The results of the EPS in scenario 1: single source - single destination
with small amount of traffic.
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Fig. 4. The optimal solution of NetworkX in scenario 2: single source - single
destination with large amount of traffic.

1000, the assigned bandwidth on link 1 and link 5 drops to
0 Mbps, while that on link 0, link 2, and link 4 reaches 5
Mbps. In other words, the EPS found the forwarding path
link 0 → link 2 → link 4. The RGAP was 9.99983× 10−6 at
the 2557th calculation, indicating that the EPS has converged
at this point. Comparing the solution of the EPS with that of
Dijkstra’s algorithm, the EPS can precisely find the shortest
path to forward traffic. While the previous study [8] showed
that the PS can solve the shortest path problem, this result
suggests that the EPS can provide a solution that is consistent
with the previous study while considering the concept of
link capacity. The computational complexity is O(n3) as in
the original PS, but the application of the previous studies
on improving the convergence speed [12], [13] to the EPS
suggests the possibility of speeding up the EPS.

2) Scenario 2: Single source – single destination with large
amount of traffic data: In this scenario, we evaluate a case in
which a large amount of traffic is transferred from a single
source node to a single destination node using the EPS. The
large amount here refers to the condition that the offered
traffic exceeds the maximum capacity of a particular link on
the path: multiple paths are thus required to transfer all the
data considering the link cost that should be minimized. As in
scenario 1, the topology in Fig. 2 is used for the experiments,
and 40 Mbps data are transferred from node v0 to node v3.
To validate the calculation results from the PS and EPS, we
utilized NetworkX [16], a Python library that can solve the
optimization problem of sending flows with minimum cost in
a directed graph. The solution obtained by NetworkX is shown
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Fig. 5. The results of the PS in scenario 2: single source - single destination
with large amount of traffic.
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Fig. 6. The results of the EPS in scenario 2: single source - single destination
with large amount of traffic.

in Fig. 4.
First, we evaluate the results of solving the problem with the

conventional PS, as shown in Fig. 5. The bandwidth assigned
on link 0, link 2, and link 4 converges to 40 Mbps, which
significantly exceeds the link capacity, 30 Mbps, 10 Mbps,
and 20 Mbps, respectively. These results mean that the con-
ventional PS cannot precisely solve capacity-constraint routing
problems. Next, the solution solved by EPS is evaluated. The
function in Eq. (8) used to find the solution is the same as
in scenario 1, i.e., f(|Qij(t)|) = |Qij(t)|, and ∆t = 0.01.
Fig. 6 shows the convergences of the link bandwidth assigned
by the EPS. Although the bandwidth on some links is not
stable in the initial calculation stage, that converges stably by
about 100 calculation iterations, and after about 400 iterations,
the bandwidth on link 0 converges to 30 Mbps, that on link
1 and link 2 to 10 Mbps, and that on link 3 and link 4 to
20 Mbps. The RGAP reached 9.89628 × 10−6 at the 708th
iteration, confirming that the EPS calculations have converged.
Comparing Figs. 4 and 6, it can be seen that the solution of
the EPS is the same as that of NetworkX. Therefore, it can
be confirmed that the EPS can successfully find the optimal
solution to transfer the amount of data to the destination node
with the minimum cost.

3) Scenario 3: Multiple sources – single destination with
large amount of traffic data: In this scenario, we evaluate
a case where a large amount of traffic is transferred from
multiple source nodes to a single destination node using the
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Fig. 7. The optimal solution of NetworkX in scenario 3: multiple sources -
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Fig. 8. The results of the EPS in scenario 3: multiple sources - single
destination with large amount of traffic.

EPS. As in scenario 1, the topology shown in Fig. 2 is used
for the experiment. Two traffic flows are assumed: 10 Mbps
traffic from node v0 and 30 Mbps traffic from node v2 flowing
to node v3. The function in Eq. (8) used to find the solution is
the same as in scenarios 1 and 2, and the direction of link 2 is
positive from node v1 to node v2. NetworkX was also utilized
to obtain the optimal solution, which is shown in Fig. 7.

Fig. 8 shows the results obtained by the EPS. We can see
that the assigned bandwidth on link 3 and link 4 is 20 Mbps,
that on link 0 is 10 Mbps, that on link 1 is 0 Mbps, and that on
link 2 is −10 Mbps. Since the direction of link 2 is considered
positive from node v1 to node v2, this result indicates that 10
Mbps flows from node v2 to node v1 is assigned. Unlike sce-
nario 2, no bandwidth was assigned on link 1. This is because
the EPS has appropriately avoided selecting a costly link. The
RGAP converged to 9.95641 × 10−6 at the 1076th iteration.
The assigned bandwidth on each link is completely equal to the
solution using the Python library NetworkX, which indicates
that slime mold can solve this problem appropriately.

The above experiments suggest that the proposed EPS
can solve optimization problems such as capacity-constraint
routing, and that the EPS can be applied directly to the
previous studies.

V. CONCLUSION

This paper proposed an extended Physarum solver to appro-
priately solve capacity-constraint network routing problems.
We introduced the concept of link capacity into the conven-
tional PS, which did not take this factor into account. By eval-

uating the proposed EPS in three typical network scenarios,
we can conclude that the EPS successfully extends the PS
adaptation formulae with minimal modifications and precisely
solves capacity-constraint routing problems. Furthermore, it
was shown that the EPS can be applied in a way that is
consistent with existing research.

This study is a step forward in showing that a metaheuristic
based on the foraging behavior of Physarum polycephalum
is a promising solution for capacity-constraint optimization
problems. Future work includes investigating the relative
performance and benefits of the EPS through comparisons
with algorithms already in use in the real world. In addition,
conducting intricate simulations is necessary to adapt the EPS
to very large or dense networks. Measures to deal with the
resulting increase in computational complexity also need to
be addressed.
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