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Abstract—To address the increasingly complex computing
tasks of intelligent vehicles, we consider a framework for Re-
configurable intelligent surface (RIS) assisted vehicular edge
computing (VEC) networks. We aim to maximize the weighted
sum throughput of all vehicular user equipments (VUEs) while
limiting the latency of all VUEs in each time slot to a certain
range by jointly optimizing computational edge servers for all
VUEs, the deployment location of the RIS and its reflecting
beamforming matrix. We propose a deep reinforcement learning
(DRL) based algorithm to solve the problem. Evaluation results
show the effectiveness of the proposed algorithm and verify that
RIS deployment is a valid solution to enhance the communication
and computation in VEC network.

Index Terms—reconfigurable intelligent surfaces, vehicular
edge computing, service migration, optimization, Parametrized
Deep Q-Network (PDQN).

I. INTRODUCTION

With the development of the 5th Generation (5G) communi-
cation network and mobile edge computing (MEC) paradigm,
intelligent vehicles have the ability to use sensing and com-
puting capabilities to utilize information about the surround-
ing environment, such as making overall arrangements for
communication and computing resources through cooperation
between vehicular user equipments (VUEs) and edge servers
(ESs), so as to achieve a significant improvement in system
energy efficiency and communication quality [1]. Vehicles
can use edge resources through task offloading, and ESs
achieve active balancing of the computing requirements of
offloading tasks through service migration, thereby greatly
improving the performance of intelligent driving systems. [2]
optimized migration strategies between base stations (BSs) by
jointly managing computing-and-radio resources to maximize
total offload rates, quantify MEC throughput, and minimize
migration costs. [3] jointly studied the service migration and
mobility in vehicular edge computing (VEC) with the road
traffic assignment. The author proposed a deep reinforcement
learning based algorithm to maximize the comprehensive
utility of communication, computing, and traffic assignment.

Reconfigurable Intelligent Surface (RIS) can be used to
implement intelligent reconfigurable wireless channels and ra-
dio propagation environments for 5G wireless communication.

This work is supported by National Natural Science Funds of China (Grant
No.62001028).

RIS is an intelligent surface that includes a large number of
reflective units, each of which is able to control the incident
signal via passive beamforming. Therefore, RIS can improve
the performance of MEC systems by reconfiguring the wireless
environment, thereby promoting information transmission and
increasing offloading rate. [4] introduced a communication
system that performs machine learning tasks on a MEC server
using RIS to maximize throughput. By jointly optimizing the
transmit power of the users, the beamforming vectors of the
BSs, and the phase shift matrix of the RIS, a framework iter-
ative optimization solution based on alternating optimization
was proposed. [5] considered a RIS assisted MEC system that
improves the transmission rate through RISs. The optimization
problem was proposed to optimize the upload bandwidth
allocation for each user’s task data.

Despite the growing body of literature on RIS-assisted
MEC and vehicular communication networks, the research
on RISassisted VEC remains comparatively scarce. This is
largely due to the time variation of channels caused by the
mobility of VUEs, which poses significant challenges to the
joint optimization of task offloading, service migration, and
RIS reflection beamforming matrices. Motivated by these
discussions, we consider a framework for RIS assisted VEC
networks to maximize the weighted sum throughput of all
VUEs while limiting the latency of all VUEs in each time
slot to a certain range by jointly optimizing computational
ESs for all VUEs, the deployment location of the RIS and its
reflecting beamforming matrix. We evaluate the convergence
of the proposed Parametrized Deep Q-Network (PDQN) based
algorithm and validate the effectiveness of it by comparing its
performance with two other schemes under different cases.

The rest of this paper is organized as follows. Section II
introduces the system model and problem formulation in VEC
network. In Section III, an efficient algorithm is proposed to
solve the formulated problem in Section II. Section IV presents
numerical results to evaluate the performance of the proposed
designs. Finally, we conclude the paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we formulate the joint optimization problem
of task offloading and service migration. As shown in Fig. 1,
we consider a RIS aided VEC system which is comprised
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of a set BSs integrating ESs E = {1, 2, . . . , E}, a RIS and
a set of VUEs with single antenna K = {1, 2, . . . ,K}. The
number of the BSs’ antennas and the RIS’s reflecting elements
are represented by Nt and Nr, respectively. The ESs are
able to balance the load between them through backhaul link
connections. RIS is deployed to enhance the communication
in the VEC network. We assume that each VUE runs various
applications and generate computational tasks for each time
slot t ∈ T as a time unit, where T = {1, 2, . . . , T}. In time
slot t, the tasks of each VUE can be transmitted to the local
BS through task offloading and computed by any but only a
BS with integrated ES of the whole VEC networks through
service migration and backhaul link between BSs.

Fig. 1. The RIS aided VEC system

Each VUE is served by a dedicated virtual machine (VM),
and the ES that hosts the corresponding VM of the VUE can
provide computing services to it. VM is defined as a software
clone of the VUE’s service environment which contains the
VUE’s profile and the application that runs the VUE’s offload-
ing tasks [2]. It is assumed that each VM provides services
only for the corresponding individual VUE, i.e., the VUE and
VM are in one-to-one correspondence.

A. Service Migration
To reduce the service latency, VMs should be hosted on

the ES integrated with the local BS of the VUEs or nearby.
The VUE sends service requests to the local ES through the
relevant BS. If the local ES hosts the corresponding VM, it
will accept the requests, otherwise it will forward the requests
to the ES hosting the corresponding VM via backhaul link.
Therefore, to meet the service latency of the VUE, VMs should
follow the mobility of the corresponding VUEs and migrate
dynamically between ESs.

Let xi,k[t] ∈ {0, 1} denote whether VUE k ∈ K is
associated with BS and ES ei ∈ E and yj,k[t] ∈ {0, 1} denote
whether the VM of k is hosted on ES ej ∈ E in time slot
t ∈ T , where T = {1, 2, . . . , T}. In a time slot, each VUE
can only be associated with one BS and its VM can only be
hosted on one ES, thus satisfying∑

ei∈E
xi,k[t] = 1, ∀k ∈ K,∑

ej∈E
yj,k[t] = 1, ∀k ∈ K.

(1)

The migration delay is caused by the migration of VMs
from the ES integrated with BS ej′ ∈ E in the previous time

slot t− 1 to the ES integrated with BS ej ∈ E in the current
time slot t. The migration delay increases with the service VM
data size and migration distance [6], which is defined as

DM
j′,j,k[t] =

{
0, j′ = j,
ϑs
k/η

mig + σmigdj′,j , j′ ̸= j,
(2)

where ϑs
k is the size of the migrated service of VUE k, dj′,j

is the length of the service migration path between ej′ and
ej , ηmig is the network bandwidth along the migration path,
σmig is a positive coefficient.

B. Task Offloading

In time slot t ∈ T , let gi[t]∈ CNt×Nr , hR
k [t]∈ CNr×1 and

hD
k,i[t]∈ CNt×1 denote the channel gain from RIS to BS ei,

the channel gain from VUE k to RIS and the channel gain
from VUE k to BS ei, respectively. In addition, it is assumed
that the power of signal reflected more than twice by RIS can
be ignored due to high path loss. We adopt a quasi static
flat fading channel model, assuming that the channel state
information (CSI) of all channels is completely known. We
assume that the communication distance of a single link is d,
the path loss model can be expressed as

L(d) = C0d
−α, (3)

where C0 is the frequency-dependent pass loss, α is the
path loss exponent, which usually takes a value between
2 and 6. Moreover, the phase shift θn ∈ [0, 2π) and the
reflection amplitude βn ∈ [0, 1] applied to the incident signal
by the nth reflection unit of the RIS are denoted. Moreover,
the phase shift and the reflection amplitude applied to the
incident signal by the nth reflection unit of the RIS are
denoted by θn ∈ [0, 2π) and βn ∈ [0, 1]. Consequently,
we have Θ = diag(β1e

jθ1 , · · · , βNre
jθNr ). To simplify the

calculation, βn[t] = 1 is usually taken. We assumed that all
VUEs offload the tasks on a fixed frequency band B during
time T . In time slot t, we define the offloading signal and the
transmission power of VUE k as xk[t] and pk, respectively.
The received signal ym[t]∈ CNt×1 at BS em ∈ E is given by

ym[t] =
∑
k∈K

xm,k[t](h
D
k,m[t] + gm[t]Θ[t]hR

k [t])xk[t] + cnm,

(4)
where cnm ∼ CN (0, σ2

m) denotes the additive white Gaussian
noise (AWGN), and CN (0, σ2

m) is the circular symmetric com-
plex Gaussian distribution with zero mean and σ2

m variance.
After processing by a beamforming vector wk[t]∈ CNt×1,

which satisfies |wk[t]||2 = 1, the estimated signal for VUE k
can be written as

x̂k[t] =
∑

ej∈E
xi,k[t]w

H
i [t]yi[t], (5)

Accordingly, when we know that xi,k[t] = 1, the signal
to interference and noise ratio (SINR) and the offloading
throughput of VUE k at time slot t is expressed as

SINRi,k[t] =
pk
∣∣wH

k [t]hk[t]
∣∣2∑

k′∈K,k′ ̸=k

xi,k′ [t]pk′
∣∣wH

k [t]hk′ [t]
∣∣2+σ2

i

, (6)
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Roff
i,k [t] = Blog2(1 + SINRi,k[t]), (7)

where hk[t] =
∑

em∈E
xm,k[t](h

D
k,m[t] + gm[t]Θ[t]hR

k [t]),∀k ∈

K.
Given the local BS for VUE k, the coordinates of the RIS

and its reflecting beamforming matrix Θ, the solution of wk[t]
for VUE k can be computed in closed-form by [7]

wk[t] =

(
INt

+
∑

k′∈K

pk′xi,k′ [t]

σ2
i

hk′ [t]hH
k′ [t]

)−1

hk[t]∥∥∥∥∥
(
INt

+
∑

k′∈K

pk′xi,k′ [t]

σ2
i

hk′ [t]hH
k′ [t]

)−1

hk[t]

∥∥∥∥∥
2

,

(8)
Let ϑo

k[t] denote the size of the offloading task of VUE k
in time slot t, the offloading latency is obtained as

DT
i,k[t] = ϑo

k[t]/R
off
i,k [t], (9)

C. Task Backhaul

When the computation ES of VUE k is different from its
local ES, the tasks and results need to be backhauled. The
backhaul latency depends on the length of task backhaul path
and the data size of tasks [6], which is expressed as

DB
i,j,k[t] =

{
0, i = j,
ϑo
k[t]/η

b + σbdi,j , i ̸= j,
(10)

where xi,k[t] = 1, yj,k[t] = 1, di,j is the length of the task
backhaul path between ei and ej , ηb is the network bandwidth
along the backhaul path, σb is a positive coefficient.

D. Task Computing

Each ES accommodates VUEs’ offloaded tasks into their
own VMs and executes them in parallel [2]. Considering the
Input/Output (I/O) interference in parallel computing, we use
the computational model in [8] to describe the computational
throughput. When yj,k[t] = 1, the computational throughput
and the computational latency for performing the computa-
tional task of VUE k are expressed as

Rcom
j,k [t] = fj,k(1 + dj)

1−
∑

k∈K yj,k[t], (11)

DC
j,k[t] = ϑo

k[t]/R
com
j,k [t], (12)

where fj,k denotes the expected computation rate of the VM
of VUE k when running in isolation at the ES integrate with
BS ej , dj > 0 is the performance degradation factor of the ES
integrate with BS ej to specify a decrease in the computation
rate of a VM when reused with another VM.

E. Problem Formulation

According to the definitions above, the weighted sum
throughput and total delay of VUE k in time slot t are denoted
as

Rk[t] =
∑
ei∈E

∑
ej∈E

xi,k[t]yj,k[t][ϖRoff
i,k [t] + (1−ϖ)Rcom

j,k [t]],

(13)

Dk[t] =
∑
ei∈E

∑
ej∈E

xi,k[t]yj,k[t]
[
max{DM

j′,j,k[t], D
T
i,k[t]}

+DC
j,k[t] +DB

i,j,k[t]
]
,

(14)
where ϖ is the weight parameter of offloading throughput.
Due to the small amount of result data, the downlink delay of
returning results from ESs to VUEs is negligible compared to
the uplink delay of offloading tasks from VUEs to ESs.

We consider a problem that jointly optimizes task offloading
and service migration in the proposed VEC network. We
aim to maximize the weighted sum throughput of all VUEs
across the communication and computing network in T while
limiting the latency of all VUEs in each time slot to a certain
range. Therefore, it is necessary to select the appropriate
computational ES for all VUEs, the deployment location of
the RIS and its reflecting beamforming matrix. As such, the
optimization problem is formulated as

(P ) max
Θ,Y,cr

∑
t∈T

∑
k∈K Rk[t],

s.t. Dk[t] ≤ Dmax,
yj,k[t] ∈ {0, 1}, ∀k ∈ K, ∀ej ∈ E ,∑

ej∈E yj,k[t] = 1,∀k ∈ K,
θ1[t], θ2[t], . . . , θNr

[t] ∈ [0, 2π), cr ∈ Cr,

(15)

where Dmax is the maximum latency that VUEs can tolerate,
cr is the deployment location of the RIS, Cr denotes the dis-
crete set of all possible deployment locations for the RIS. Y =
[[y[1]], [y[2]], . . . , [y[T ]]] denotes the choice of computational
ES for all VUEs, where y[t] = [y1[t],y2[t], . . . ,yK [t]],∀t ∈
T , yk[t] = [yk,1[t], yk,2[t], . . . , yk,E [t]] , ∀k ∈ K.

Obviously, it is challenging to obtain the optimal solution to
(P), since the problem is non-concave because Θ, Y and cr are
coupled. To avoid the complex derivations and transformations
of traditional convex optimization methods, we can model the
problem as a Markov Decision Process (MDP) model and
solve it by deep reinforcement learning (DRL) algorithms.

III. PDQN-BASED JOINT TASK OFFLOADING AND
SERVICE MIGRATION OPTIMIZATION

In this section, the MDP model is formulated and an
optimization algorithm based on PDQN [9] is proposed to
solve (P).

A. Markov Decision Process Model

To solve the established optimization problem using DRL
first requires converting the formulated problem into an MDP
model, where the key elements are defined as follows.

The MDP has five basic components < S,A, r,P, γ >,
where S is the state space, A is the action space, r is the
immediate reward obtained from the environment, P is the
transition probability, and γ ∈ [0, 1] is the discounted factor.

1) State space: Since all BSs with ESs are able to commu-
nicate with each other using backhaul links and the delay in
transmitting optimization decisions between BSs within each
time slot is much smaller than the total latency of any VUE,
the BS associated with the most number of servers is able to

2024 International Conference on Computing, Networking and Communications (ICNC): Network Algorithms and 
Performance Evaluation

1039



play the role of agent. We define the state space of the agent
in t as

s[t] = {xi,k[t], Rk[t], Dk[t]| ∀ei ∈ E ,∀k ∈ K} ∈ S, (16)

2) Action space: we define the action space of the agent in
time slot t as

a[t] = {Θ[t], cr[t],yk[t]|∀k ∈ K} ∈ A, (17)

3) Reward function: considering that the objective function
of (P) is to maximize the weighted sum throughput of all
VUEs while the objective of MDP is to maximize long-term
cumulative rewards, we define the reward function of the agent
in time slot t as

r[t] =

{ ∑
k∈K

Rk[t], if Dk[t] ≤ Dmax,∀k ∈ K,

−1, otherwise.
(18)

B. Proposed Algorithm Based on PDQN

Considering that the action space of MDP contains both
continuous and discrete variables, it is not possible to directly
use the common DRL algorithm as we need to preprocess the
current hybrid action space. Therefore, we propose a PDQN
based optimization algorithm. The PDQN-based algorithm
combines the actor-critic structure and deep neural network
(DNN), which consists of three sections, namely, a Parameter-
ized Actor network, a Q Actor network and a replay memory.
Besides, Parameterized Actor and Q Actor networks consist
of two DNNs i.e., an online network and a target network,
separately. The algorithm based on PDQN combines actor-
critic structure and fully connected neural network, including
Parameterized Actor network, Q Actor network, and the replay
memory. In addition, both Parameterized Actor and Q Actor
networks are composed of online network and target network.
Base on the proposed algorithm, we split a[t] into aparam[t] =
{Θ[t], ỹi,k[t]|∀k ∈ K} ∈ Aparam and ad[t] = {cr[t]} ∈ Ad,
where ỹi,k[t] is the relaxation value of the discrete variable
yi,k[t]. There are only two discrete values for yi,k[t], so there
is a condition for continuity, and it needs to be rounded based
on ỹi,k[t] in subsequent calculation. The detailed procedure of
PDQN-based algorithm is shown as follows.

Initially, based on equation (16) to obtain environment state
information, the online Parameterized Actor network is able
to output parameterized actions, which is described as

aparam[t] = µ (s[t]|θ) +N , (19)

where θ is the parameters of the online Parameterized Actor
network. By adding Gaussian noise N to the selected action,
the exploration can be realized [10].

The online Q Actor network is used to calculate the state-
action value function Q

(
s, aparam, ad

)
to evaluate the effect

of continuous actions selected by the online Parameterized
Actor network and select appropriate discrete actions based
on the evaluation value, namely

ad[t] = argmax
Ad

Q(s[t], aparam[t], ad|ω), (20)

where ω is the parameters of the online Q Actor network.
By performing the current actions aparam[t] and ad[t] in the
VEC network and updating the vehicle running trajectory, we
can obtain the instant reward r[t] and the next states s[t +
1] = s′[t] according to Equations (16) and (18). After that,
the sequence (s[t], aparam[t], ad[t], r[t], s′[t]) is saved into the
replay memory D for subsequent training of online network. In
order to eliminate the correlation between samples for training,
a mini-batch of samples with the size of Z is usually randomly
selected from D.

The target networks are used to generate target values for
updating online network parameters as follow

θ′ ← τθ + (1− τ) θ′,

ω′ ← τω + (1− τ)ω′,
(21)

where θ′ and ω′ are the parameters of the target Parameterized
Actor network and the target Q Actor network, τ ≪ 1 is
the soft replacement parameter to ensure the high stability in
training [10].

The online Parameterized Actor network is updated by
policy gradient (PG) method [11] with respect to the actor
parameters θ, which is expressed as

∇θL
µ = E

z∈Z
[∇θµ (s|θ) |s=sz×

∇aparam
Q
(
s, aparam, ad|ω

) ∣∣
s=sz,aparam=µ(sz|θ),ad=ad

z

]
(22)

where Z stands for the mini-batch dataset and z represents
the mini-batch sample index.

The online Q Actor network is updated by minimizing the
loss function Lω with the stochastic gradient descent (SGD)
method shown as follows

Lω = E
z∈Z

[(
yz −Q

(
sz, a

param
z , adz |ω

))2]
, (23)

where yz is the current target Q value based on the target Q
Actor network which is given by

yz = rz + γmaxQ′ (sz, µ′ (s′z|θ′) , adz |ω′) . (24)

Therefore, the proposed PDQN-based joint optimization
algorithm for task offloading and service migration is sum-
marized in Algorithm 1.

IV. PERFORMANCE EVALUATION

In this section, we use numerical simulation to show the
performance of the proposed PDQN-based joint optimization
algorithm in our RIS-aided VEC network. Since the proposed
algorithm adopts DRL framework, we implement the simula-
tion in the PyTorch framework with Python 3.8.

A. System Parameters

For simulation scenario setup, we assume that the width of
all streets is 20m, the side length of all square blocks is 500m,
and the coverage of each BS is 368m. BSs are deployed on
the center of the square blocks. RIS can be deployed in the
edge area of the BS service area and the optional deployment
locations include the corner position of the street intersection
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Algorithm 1 PDQN-Based Joint Optimization Algorithm for
Task Offloading and Service Migration.

1: Randomly initialize online Parameterized Actor network
and online Q Actor network with θ and ω;

2: Initialize θ′ and ω′ by θ′ ← θ, ω′ ← ω;
3: Initialize discounted factor γ, replay memory D, mini-

batch size Z, soft replacement parameter τ ;
4: for episode = 1 to Iterations do
5: Initialize a random process N ;
6: Receive initial states s[0] from the environment;
7: for t = 0 to T do
8: select parameterized actions aparam[t] = µ(s[t])+N ;
9: select discreate actions ad[t] =

argmax
Ad

Q(s[t], aparam[t], ad|ω);

10: Execute aparam[t] and ad[t] and updating the vehicle
running trajectory to obtain r[t] and s[t+ 1] = s′[t];

11: Store (s[t], aparam[t], ad[t], r[t], s′[t]) in D;
12: Update the states: s[t]← s[t+ 1];
13: Sample a random mini-batch samples

(sz, a
param
z , adz , rz, s

′
z) from D;

14: Update online Q Actor network with SGD by (23)
and (24);

15: Update online Parameterized Actor network with PG
by (22);

16: Update target networks by (21).
17: end for
18: end for

and the midpoint of two corner positions. For the BS-RIS,
RIS-VUE and BS-VUE links, we adopt αBR, αRU , αBU to be
2.2, 2.4 and 3.8, respectively. Furthermore, it is assumed that
the BS-RIS is the line-of-sight (LOS) channel, the BS-VUE
and RIS-VUE links are the Rayleigh fading channel. In order
to conform to the actual design, we maintain the deployment
location of the RIS unchanged during an epoch, that is, the
fixed deployment location of the RIS for this round is the one
that has the most occurrences of all the theoretical deployment
locations output during the previous training round.

Besides, we set the travel speed range, the size of offloading
tasks and the service need to be migrated of VUE as [10,12.5)
m/s, [500, 1000) bits and [5000,10000) bits, respectively. We
assume that fi,k ∈ [2, 0.5, 0.5, 0.5]Mbps, di = 0.25, ηmig =
5Mbps, ηb = 5Mbps, σmig = 1µs/m, σb = 0.2µs/m, ϖ =
0.7. Other parameters related to the environment are provided
in Table I while the parameters related to PDQN are shown
in Table II.

B. Performance Comparisons

Based on the above simulation scenario and parameters, we
evaluate the convergence of the proposed algorithm. From Fig.
2, it can be observed that the cumulative reward of the RIS
assisted VEC network converges around 1000 iterations and
remains stable in subsequent training.

TABLE I
PARAMETERS RELATED TO THE ENVIRONMENT

Parameters Explanation Value
Dth Maximum latency that VUEs can tolerate 0.2s
Nt Number of BS receiving antennas 8
Nr Number of RIS reflecting units 16
Kl Number of VUEs 8
C0 Path loss -30dB
σ2
i Noise variance -80dBm
t Unit time slot size 1.0s
K Number of VUEs 8
pk Transmission power of VUE k 0.2W

TABLE II
PARAMETERS RELATED TO PDQN TRAINING

Parameters Explanation Value
layers Number of hidden layers 2

γ Discounted factor 0.99
αparam, αq Learning rate 0.0002

τ Soft replacement parameter 0.01
B Replay memory size 1e6
Z Mini-batch size 256

activation Activation function Relu, Tanh
units Number of neuros 400, 300
T Update steps in an epoch 100

To verify the effectiveness of the proposed algorithm, we
use two comparative schemes – the Deep Deterministic Policy
Gradient (DDPG) based scheme [10] and the NRIS scheme.
The difference between DDPG and PDQN lies in the pro-
cessing of discrete action space. The former chooses to scale
to continuous variables, while the latter chooses to use Q-
network for discrete learning. The two comparative schemes
are as follows.

1) DDPG-based scheme: the action becomes a[t] =
{c̃r[t], ỹi,k[t]|∀k ∈ K} ∈ S,∀t, where c̃r[t] is the re-
laxation value of the discrete variable cr[t] which needs
to be rounded based on c̃r[t] in subsequent calculation.

2) NRIS scheme: there is not a RIS to assist the VEC
network. Therefore, all elements about the RIS in (P) are
removed, the action space becomes a[t] = {ỹi,k[t]|∀k ∈
K} ∈ S,∀t and the algorithm structure keeps the same
as that in DDPG-based scheme.

The relationship between cumulative rewards and the num-
ber of RIS reflecting beamforming units is shown in Fig.
3. When the number of RIS reflected beamforming units
increases from 4 to 24, the RIS reflected beamforming units
will not affect the NRIS scheme. Compared with the MAPPO-
base scheme in VEC network without multi-RIS assistance,
the proposed scheme has a 18.1% increase in the system
throughput. Besides, the performance improvement of the
proposed algorithm compared to the NRIS scheme is 249%
of that of the DDPG-based scheme compared to the NRIS
scheme when the number of RIS reflective units is 16. The
results show the advantages of deploying more RIS reflecting
beamforming units. That is because the RIS has the capability
to improve signal propagation with high transmission rate, so
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Fig. 2. Convergence of the accumulated rewards.

Fig. 3. Comparison of accumulated rewards with different numbers of RIS
reflecting beamforming units.

Fig. 4. Comparison of accumulated rewards with different transmission power
of VUEs.

adding RIS reflecting units can improve system performance.
Fig. 4 shows the relationship between the accumulated

rewards and the transmission power of VUEs. With the
increase of the transmission power of VUEs from 0.05W

to 0.30W, the effectiveness of all three schemes has been
improved, but the cumulative rewards of the proposed scheme
are significantly higher than the other two schemes. For
instance, when pk = 0.15W, our proposed scheme has a
20.4% increase in the accumulated rewards compared with
the NRIS scheme, and the performance improvement of the
proposed algorithm compared to the NRIS scheme is 217%
of that of the DDPG-based scheme compared to the NRIS
scheme. The comparison between the proposed scheme and
the NRIS scheme demonstrates the advantages of RIS in rate
improvement and delay reduction.

V. CONCLUSION

In this paper, with the objective of maximizing the weighted
sum throughput of all VUEs, a throughput-maximization
problem was studied in the RIS assisted VEC network. To
solve the problem, we propose a PDQN based algorithm
jointly optimizing the deployment location of the RIS and its
reflecting beamforming matrix. Simulation results demonstrate
that our RIS assisted VEC network is able to achieve higher
sum throughput than the conventional VEC network without
the deployment of RIS, and the proposed algorithm performs
effectively than DDPG-based algorithm. Our future work
will focus on joint optimization of beamforming and VUEs
trajectory in multiple RIS assisted VEC network.
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