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Abstract—This paper develops the optimal beamforming de-
sign in a downlink multi-user multi-input-multi-output (MIMO)
dual-function radar-communication (DFRC) system, which max-
imizes the weighted sum-rate of communicating users under
the prescribed transmit covariance constraint for radar perfor-
mance guarantee. Specifically, we exploit the connection between
weighted sum-rate and weighted minimum-mean-squared-error
(MMSE) to reformulate the problem, and develop a block-
coordinate-descent (BCD) type algorithm to iteratively compute
the transmit beamforming and receive beamforming solutions.
Using this approach, we reveal that the optimal receive beam-
forming is the classic MMSE one and the optimal transmit
beamforming design solves an orthogonal Procrustes problem
(OPP), thereby allowing for closed-form solutions to subproblems
in each BCD step and fast convergence of the proposed algorithm
to a high-quality overall beamforming design. Numerical results
validate the effectiveness of our proposed scheme.

Index Terms—Dual-function radar-communication, beam-
forming design, block coordinate descent.

I. INTRODUCTION

TO meet the explosive demand for high-speed mobile data
services, radar spectrum bands such as S-band (2–4 GHz)

and C-band (4–8 GHz) are nowadays shared with communica-
tion systems. For this reason, the concept of integrated sensing
and communications (ISAC) has drawn growing attention [1],
[2]. To enable communication and radar spectrum sharing in
the same band, one approach is joint design for co-existence
of radar and communication systems, where radar systems
and communication systems operating on different devices
exchange side-information for cooperation, leading to extra
hardware and energy cost and raised system complexity [3]–
[5]. Toward a more efficient system design, another approach
is development of dual-function radar-communication (DFRC)
systems, where the same set of signals is used for sensing and
communications on the same hardware platform [6].

Some existing literature on DFRC systems has generally
aimed to optimize radar performance under communication
performance constraints, leading to a communication-centric
design. In [6], [7], semidefinite relaxation (SDR) based ap-
proaches were developed to minimize the radar beampattern
matching errors subject to communicating users’ quality-of-
service constraints. Furthermore, [8] proposed to optimize
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Cramér-Rao bound (CRB) for improvement of the target
estimation performance under communication performance
constraints, and [9] developed joint transceiver beamforming
designs to maximize the signal to interference-plus-noise ratio
(SINR) at radar receivers. However, the above-mentioned
designs [6]–[9] could only offer best-effort radar sensing
performance. The sensing performance loss was inevitable.

By contrast, radar-centric DFRC system designs attempted
to embed communication information into radar signals to
achieve dual functionality without degrading radar perfor-
mance. In [10], information sequences were embedded into
radar pulses by employing waveform diversity and sidelobe
control, but spatial multiplexing was not exploited. The sens-
ing performance of multi-input-multi-output (MIMO) radars
highly relies on the transmit covariance of waveforms [11].
A few recent works [12], [13] optimized the communication
performance under a prescribed transmit covariance constraint
preserving the radar performance. Optimal transmit wave-
form/beamforming designs were put forth under the instan-
taneous covariance constraint in [12] or under the average
covariance constraint in [13] for multi-input-single-output
(MISO) systems. However, these existing methods [12], [13]
cannot be readily extended to more general multi-user multi-
stream MIMO systems with the additional need for receive
beamforming design.

In this paper, we consider a downlink MIMO DFRC system
where a base station (BS) simultaneously probes multiple tar-
gets and performs multi-user communications. For this MIMO
DFRC system, we develop the optimal beamforming design
that maximizes the weighted sum-rate for communicating
users under the prescribed transmit covariance constraint to
guarantee radar performance.

The contributions of the paper are summarized as follows.

• We exploit the connection between weighted sum-rate
and weighted minimum mean squared error (MMSE)
to reformulate the intended problem and develop an
efficient block-coordinate-descent (BCD)-type method to
iteratively refine the transmit and receive beamformers.

• With the proposed BCD approach, we reveal that the
optimal receive beamforming takes the classic MMSE
principle and the optimal transmit beamforming amounts
to solving an orthogonal Procrustes problem (OPP).
Closed-form solutions can then be derived for the transmit
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and receive beamformers in each BCD step, ensuring fast
convergence of our algorithm to a high-quality overall
beamforming design.

• Simulations demonstrate that the proposed BCD algo-
rithm converges rapidly to an efficient beamforming
solution that performs at least 40% better than benchmark
schemes under the medium-to-high signal-to-noise ratio
(SNR) settings.

The rest of this paper is organized as follows. Section II
describes the system model. Section III develops an efficient
BCD-type algorithm to obtain a high-performance beamform-
ing design. Simulation results are provided in Section IV,
followed by the conclusions in Section V.

Notation: Bold-face lower-case letters are used for vectors
and bold-face upper-case letters represent matrices; for a
matrix, (·)H , Tr(·), det(·) and ||·||F denote its conjugate trans-
pose, trace, determinant, and Frobenius norm, respectively; In
denotes the n × n identity matrix; Cm×n denotes the set of
m×n complex matrices; Re{·} takes real part; E{·} denotes
ensemble expectation.

II. SYSTEM MODEL

We consider a MIMO DFRC system where a BS simul-
taneously probes J far-field targets and communicates with
K downlink users at the same time. Suppose that the BS
is equipped with Ntx transmit antennas. Let Fk ∈ CNtx×d

denote the beamforming matrix for (multi-stream) communi-
cation symbol vector ck(t) ∈ Cd at time t from BS to user k.
Without loss of generality, we assume that E{ck(t)ckH(t)} =
Id and the communication symbols of different users are
generated independently. Overall, the communication symbol
vector c(t) = [cT1 (t), . . . , c

T
K(t)]T containing D = d×K data

streams is precoded linearly using Fc = [F1,F2, ...,FK ] ∈
CNtx×D.

For sensing purpose, a radar signal vector r(t) ∈ CNtx−D

consisting of (Ntx −D) independently and pseudo-randomly
generated symbols [7], is transmitted along with c(t). Assume
that E{r(t)rH(t)} = INtx−D, and the radar signals are uncor-
related with the communication symbols, i.e., E{r(t)cH(t)} =
0(Ntx−D)×D. The radar symbols are precoded using a beam-
forming matrix Fr ∈ CNtx×(Ntx−D).

With the Ntx ×Ntx beamforming matrix F = [Fc,Fr], the
transmit signal vector x(t) ∈ CNtx is given by

x(t) = F

[
c(t)
r(t)

]
= Fcc(t) + Frr(t), t = 0, 1, · · · . (1)

A. Radar Performance Guarantee

For MIMO radar, the sensing performance highly relies
on the transmit beampattern. Based on the signal model (1),
the transmit beampattern is determined by the covariance of
transmit signals:

Rx = E{x(t)xH(t)} = FFH = FcF
H
c + FrF

H
r . (2)

Achieving the desired beampattern then amounts to a transmit
covariance constraint for the beamforming matrix. Based on

the specific applications and performance metrics of interest, a
desired transmit covariance matrix Rdes can be determined in
advance [11]. To ensure an acceptable sensing performance,
we require the transmit covariance to match the prescribed
Rdes; i.e.,

FFH = Rdes. (3)

It is worth noting that the transmit covariance constraint (3)
also accounts implicitly for a power constraint for the transmit
beamforming matrix F. Given F, the total transmit power is
clearly given by P = Tr(FFH) = Tr(Rdes).

B. Communication Performance Metric

Suppose that each user is equipped with Nrx (d ⩽ Nrx ⩽
Ntx) receive antennas. For downlink communications in the
DFRC system, the received signal of user k is the mixture of
its own signal, the interference from the other users, the radar
signal, and the noise; i.e.,

yk(t) = HkFkck(t) +Hk

∑
i̸=k

Fici(t) +HkFrr(t) + nk(t),

(4)
where Hk ∈ CNrx×Ntx represents the channel matrix from
the BS to user k, and nk(t) ∈ CNrx denotes the additive
white Gaussian noise (AWGN) with zero mean and covariance
matrix σ2INrx

. The noise is independent of communication
and radar signals. With linear receive beamforming matrix
Gk ∈ CNrx×d, the estimated signal can be expressed as

ĉk(t) = GH
k yk(t). (5)

We use a weighted sum of user rates as communication
performance metric. Based on the well-known MIMO capacity
formula, the achievable weighted sum-rate is given by

C =

K∑
k=1

ωkCk, (6)

where ωk denotes the priority weight of user k and the
achievable rate Ck of user k is given by

Ck = log det(Id + FH
k HH

k (σ2INrx +
∑
i̸=k

HkFiF
H
i HH

k

+HkFrF
H
r HH

k )−1HkFk).

(7)

Note that to achieve the maximum rate in (7), the optimal
MMSE beamforming matrix Gmmse

k should be adopted in the
receiver. Hence, the expression for the maximum achievable
user rate here does not explicitly include the receive beam-
former; it can be written merely as a function of F.

Our goal is then to optimize Fc and Fr, hence maximiz-
ing the weighted sum-rate (6) under the transmit covariance
constraint (3).
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III. PROPOSED BEAMFORMING DESIGN

We consider the beamforming design in a multi-user MIMO
DFRC system. Based on (6) and (7), the intended optimization
problem can be expressed as

max
F

K∑
k=1

ωk log det(Id + FH
k HH

k (σ2INrx
+

∑
i̸=k

HkFiF
H
i HH

k +HkFrF
H
r HH

k )−1HkFk) (8a)

s.t. FFH = Rdes. (8b)

Recall that the total transmit power constraint for F is incor-
porated into the transmit covariance constraint (8b). Hence,
there is no need for an explicit transmit power constraint.

The problem (8) is clearly non-convex. Yet, notice that
constraint (8b) indeed confines the beamforming design in
a complex Grassmann manifold. Hence, one can develop a
Riemannian gradient descent-based method to approximately
solve (8) using the existing Manopt toolbox; see the derivation
in Appendix A of our extended version [14].

Different from such a standard manifold optimization ap-
proach, we opt to a judicious reformulation to propose a more
efficient BCD algorithm to solve (8) with better performance.

A. Problem Reformulation

To make the challenging non-convex problem (8) more
tractable, we exploit the connection revealed in [15] between
weighted sum-rate and weighted MMSE to reformulate (8) as
follows.

Let G = [G1, . . . ,GK ] collect the receive beamforming
matrices. We define the mean squared error (MSE) matrix of
user k as

Ek(G,F) = E{(ĉk(t)− ck(t))(ĉk(t)− ck(t))
H}

= Id − 2Re{GH
k HkFk}+

K∑
i=1

GH
k HkFiF

H
i HH

k Gk

+GH
k HkFrF

H
r HH

k Gk + σ2GH
k Gk

= Id − 2Re{GH
k HkFk}+GH

k HkRdesH
H
k Gk + σ2GH

k Gk,
(9)

where the last equality holds due to constraint (8b). Then we
can transform the original problem (8) into a matrix-weighted
sum-MSE minimization problem:

min
F,G,W

K∑
k=1

ωk(Tr(WkEk)− log det(Wk)) (10a)

s.t. FFH = Rdes, (10b)

where the weight matrices Wk ⪰ 0, ∀k, are auxiliary
optimization variables. The equivalence between problems (8)
and (10) can be established since the optimal solution F∗

of the two problems are identical; more generally, F∗ is a
stationary point solution for (8) if and only if it is part of a
stationary point solution for (10) [15], [16].

B. BCD Algorithm

Note that the optimization variables in problem (10) consist
of F, G, and W. A BCD-based approach can be used to
optimize G, W, and F alternately. Specifically, given fixed
F, the optimal receive beamformer is clearly provided by
following the MMSE criterion:

Gmmse
k = (HkRdesH

H
k + σ2INrx

)−1HkFk, ∀k. (11)

With F and G fixed, we have an unconstrained convex
problem concerning W, for which the optimal solution is

W∗
k = E−1

k , ∀k. (12)

With G and W fixed, problem (10) becomes

max
F

K∑
k=1

ωkRe{Tr(WkG
H
k HkFk)} (13a)

s.t. FFH = Rdes. (13b)

Here, (13b) is a non-convex quadratic equality constraint.
Hence, the problem (13) is non-convex. Nevertheless, we next
show that the globally optimal F∗ can be actually obtained in
a closed form for problem (13). Specifically, we first perform
Cholesky decomposition on Rdes to obtain

Rdes = LLH , (14)

where L ∈ CNtx×Ntx is a lower triangular matrix.
By substituting (14) into (13b), we can rewrite (13b) as

L−1FFHL−H = INtx
. (15)

Define F̃ = L−1F and H̃k = HkL. We can then equivalently
rewrite problem (13) as

max
F̃

K∑
k=1

ωkRe{Tr(WkG
H
k H̃kF̃k)} (16a)

s.t. F̃F̃H = INtx . (16b)

With some algebraic manipulations, we can subsequently
transform problem (13) into the following equivalent form

max
F̃c

Re{Tr(MHF̃c)} (17a)

s.t. F̃H
c F̃c = ID, (17b)

where M =
[
ω1H̃

H
1 G1W

H
1 , · · · , ωkH̃

H
KGKWH

K

]
. Due to

(17b), problem (17) is indeed also equivalent to the following
OPP:

min
F̃c

||M− F̃c||2F (18a)

s.t. F̃H
c F̃c = ID. (18b)

It has been established in [17, Proposition 7] that problem
(18) has a unique globally optimal solution in closed form.
More explicitly, by performing singular value decomposition
(SVD), i.e., M = UMΣMVH

M, with the eigenvalues arranged
in descending order along the diagonal of ΣM, the unique
globally optimal solution for problem (18) is given by

F̃∗
c = UM(1 : D)VH

M , (19)
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where UM(1 : D) collects the first D column vectors of UM.
According to (16b), the optimal radar beamformers F̃∗

r should
be in the null space of F̃∗

c . It then follows that

F̃∗
r = UM(D + 1 : Ntx), (20)

where UM(D + 1 : Ntx) collects the last (Ntx −D) column
vectors of UM. With F̃∗ = [F̃∗

c , F̃
∗
r ], we can in turn obtain

the optimal F∗ = LF̃∗.
Algorithm 1 summarizes the overall procedure to solve (10).

Algorithm 1 BCD Algorithm for Solving (10) .
1: Initialize F = L.
2: Repeat
3: Obtain Gk by (11), ∀k.
4: Obtain Wk by (12), ∀k.
5: Obtain F̃ using (19) and (20) , and update F = LF̃.
6: Until convergence.

The convergence of Algorithm 1 is guaranteed since each
BCD iteration monotonically decreases (the lower-bounded)
objective function of problem (10) over a compact feasible
set. Moreover, problem (10) features a differentiable objec-
tive function and a separable feasible set, i.e., the overall
feasible set F(F,G,W) = F(F)×F(G)×F(W). It then
follows from [18] that the BCD-based Algorithm 1 surely
converges to at least a stationary point solution (F∗,G∗,W∗)
of problem (10). As discussed earlier in Section III-A, the
transmit beamforming matrix F∗ in the stationary point solu-
tion (F∗,G∗,W∗) obtained for (10) is also a stationary point
solution of (8).

Note that at each BCD step, we attain a unique closed-form
solution for F, G, and W. Hence, the BCD-based Algorithm 1
has very low computational complexity. Numerical results next
also show that Algorithm 1 can converge within only a few
iterations and yield a beamforming solution with much better
performance than that based on the manifold optimization (i.e.,
Riemannian gradient descent) approach.

IV. NUMERICAL RESULTS

We run Monte Carlo simulations to gauge the performance
of the proposed schemes. Suppose that the BS and the users
are equipped with uniform linear arrays with half-wavelength
spacing between adjacent antennas. Assume a Rayleigh fading
model, where each element of channel matrix Hk is indepen-
dently generated according to the standard complex Gaussian
distribution CN (0, 1). The total transmit power is P and the
transmit SNR is defined as P/σ2.

Assume that the radar system directs beams towards J = 3
targets of interest located at θ1 = −60◦, θ2 = 0◦, and θ3 =
60◦. The desired transmit covariance Rdes is determined by
solving a constrained least-squares problem to minimize the
radar beampattern matching errors as in [11], where the ideal
beampattern consisting of three ∆ = 9◦ main beams, is given
by

P̃d(θ) =

{
1, if θj −∆/2 ⩽ θ ⩽ θj +∆/2, j = 1, 2, 3,
0, otherwise.
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Fig. 1. Spectral efficiency versus transmit SNR under different schemes in
the multi-user case.

The BS equipped with Ntx = 16 transmit antennas sends
d = 4 independent data streams to each downlink user. We
assume that there are K = 4 users, each equipped with Nrx =
4 receive antennas. For simplicity, we set ωk = 1,∀k. To
compare “Proposed BCD” solution yielded by Algorithm 1,
we consider the following benchmark schemes:

• DPC [13]: DPC is employed for the sum-rate maximiza-
tion problem to pre-cancel the interference caused by
radar and other users’ signals at the transmitter. However,
the DPC scheme proposed in [13] only applies to MISO
systems. For a fair comparison, when user k is equipped
with multiple antennas to receive a single data stream,
the row with the largest 2-norm in Hk is selected for
implementation of such a DPC scheme.

• Manopt [19]: Recall that constraint (8b) defines a com-
plex Grassmann manifold for the feasible set of F. Hence,
problem (8) could be solved by the Riemannian gradient
descent method delineated in Appendix A of our extended
version [14].

• MMSE filter [12]: Here, MMSE is selected as the opti-
mization objective instead of the weighted sum-rate (8a),
and the transmit and receive beamformers are optimized
in an alternating manner until convergence.

• Cholesky: The transmit beamforming matrix is set to F =
L, where L is obtained by Cholesky decomposition of
Rdes as defined in (14). Note that L also serves as the
initial point of our proposed BCD algorithm.

Fig. 1 shows the the spectral efficiency (i.e., the achiev-
able sum-rate under a unit bandwidth) obtained by different
beamforming schemes under different transmit SNRs. It is
observed that the proposed BCD-based scheme significantly
outperforms the four benchmark schemes. The proposed BCD
solution performs much better (e.g., yields a 97% higher spe-
cial efficiency at 30 dB SNR) than the MMSE filter, especially
in a high SNR regime. This is due to the fact that MMSE
does not necessarily lead to the sum-rate maximization in most
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Fig. 2. Convergence behaviour under different schemes with Ntx = 16,
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cases. It is also clearly shown that the proposed BCD scheme
exhibits superior performance compared to Manopt, achieving
at least 40% higher spectral efficiency. Although, in principle,
both the proposed BCD and the manifold optimization method
can achieve stationary point solutions for problem (8) upon
convergence, the simulation results verify that the proposed
BCD algorithm can take advantage of the derived closed-form
solutions for the subproblems in each step to facilitate faster
convergence and yield a better-quality overall beamforming
design than Manopt. In addition, a big gap (e.g., 5.1 times
higher spectral efficiency at 30 dB SNR) between the proposed
BCD solution and Cholesky decomposition clearly corrobo-
rates the substantial gain from our proposed BCD iterations.
Compared with the DPC scheme that only supports d = 1 data
stream transmission to each user, the proposed BCD solution
supporting multi-stream transmissions per user could achieve
a much (at least 41%) higher spectral efficiency, justifying
that the proposed solution can effectively leverage the MIMO
transmissions to benefit the communication capacity of DFRC
systems. It is worth mentioning that implementation of the
DPC scheme could dramatically raise the complexity of the
multi-user MIMO systems and might even be computationally
prohibitive in practice.

Fig. 2 shows the convergence behavior of the proposed
method and Manopt under different transmit SNRs, where
d = 4, K = 4, and Nrx = 4. It is evident that the
proposed BCD quickly converges within only a few iterations.
Not only does it converge much faster than Manopt, but
also yields beamforming solutions with much higher spectral
efficiency, e.g., 45% higher at the 10 dB SNR, and 41% higher
at the 20 dB SNR. The computational complexity and the
implementation time of the proposed BCD approach is very
low, comfirming its applicability in practical systems.

V. CONCLUSION

We developed beamforming design that maximizes the
weighted sum of user rates under a prescribed transmit co-

variance constraint for MIMO DFRC systems. An efficient
BCD-based algorithm was proposed to find a high-quality
beamforming design with fast convergence and low compu-
tational complexity. Simulations demonstrated the superiority
of the proposed schemes to the existing benchmarks, with at
least 40% higher spectral efficiency under a multi-user MIMO
setting in the medium-to-high SNR regime.
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